
1

Tensor Completion Via Optimization on the Product
of Matrix Manifolds

Josh Girson, Shuchin Aeron
School of Engineering, Tufts University, Medford, MA 02155

joshua.girson@tufts.edu, shuchin@ece.tufts.edu

Abstract—We present a method for tensor completion using
optimization on low-rank matrix manifolds. Our notion of tensor-
rank is based on the recently proposed framework of tensor-
Singular Value Decomposition (t-SVD) in [1], [2]. In contrast to
convex optimization methods used in [1] that operate in a high-
dimensional space, in the manifold setting, one works directly in
the reduced dimensionality space and is thus able to significantly
reduce the computational costs [3], [4]. In this paper we focus
on 3-D data and under the tensor algebraic framework of [1],
[2] we show that a 3-D tensor of fixed tubal-rank can be seen as
an element of the product manifold of fixed low-rank matrices in
the Fourier domain. The tensor completion problem then reduces
to finding the best approximation to the sampled data on this
product manifold.

Further, for 3-D data we consider and compare recovery
performance under two approaches. In the first approach one
samples entire mode-3 fibers of the tensor, which we refer to
as tubal-sampling. The second approach employs element-wise
sampling and we simply refer to this method as sampling. For
these two types of sampling approaches, we present simulation
results for surveillance video data and show that recovery
under random sampling has better performance compared to
the random tubal-sampling.

I. INTRODUCTION

In this paper we consider manifold based optimization
for tensor completion. The theory and methods for tensor
completion depend on the particular algebraic framework and
the kind of tensor factorization used, see section II for a brief
survey. These factorizations yield different notions of tensor
rank. Tensor completion methods then seek to find a tensor
of lowest tensor-rank subject to data matching constraints.
In some cases one can relax this criteria to a computable
convex surrogate function, such as the tensor nuclear norm,
appropriately defined in many different ways by different
authors. This leads to computationally efficient algorithms as
well as sufficient conditions for provable guarantee in recovery
under given sampling constraints. However, all these methods
are iterative and they require computing the rank revealing
tensor factorization (possibly involving sparse matrices) at
each step in order to regularize the spectra. This makes
them computationally very expensive and leads to issues of
scalability for many practical problems.

On the other hand if the tensor rank is known a-priori
then manifold based optimization methods have shown to be
promising [3], [4] in significantly reduce computational costs
(per iteration) by exploiting manifold geometry and using
tools from numerical linear algebra. In this paper we consider
using such methods for tensor completion under the recently
proposed algebraic framework for tensor decomposition [1],
[2] as summarized in section II-B below.

In addition we consider two types of sampling methods,
namely tubal-sampling (which naturally arises in a number of
scenarios) where entire tensor fibers are sampled at a time
and element-wise sampling where each element is sampled at
a time. Then we look at the recovery performance for both of
these cases. We show that element-wise sampling has better
performance compared to tubal-sampling by direct evaluation
on real data sets.

Notation: Tensors are denoted by bold-face calligraphic
letters X, matrices by bold-face uppercase letters X and
vectors by bold-face lower case x and sometimes with an
arrow ~x to denote tensor fibers. The elements of the arrays are
denoted using MATLAB convention. For example, X(:, :, i)
denotes the i-th frontal slice, X(i, j, :) denotes the (i, j)-
th fiber going into the board and so on. X(i) is shorthand
to denote i-th frontal face X(:, :, i). Additional notation is
introduced as needed.

II. BACKGROUND: TENSOR ALGEBRA AND RANK

A. Tensors as multilinear operators
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Fig. 1: SVD expressed in terms of mode multiplications.

In the multilinear algebraic framework, a tensor is treated as
an element of a multilinear space, which in turn is constructed
as outer products of vector spaces [5]. To appreciate this
idea, consider two vector spaces U and V of dimensions
n1 and n2 respectively. Then an element X of the outer
product U ⊗ V of vector spaces U, V is an n1 × n2 matrix
of the form X = UWV> where columns of U span U and
columns of V span V . In multilinear algebraic notation, this
can also be written as W×1U×2V, where ×1 denotes matrix
multiplication by mode-1 fibers (columns in this case) and ×2

denotes multiplication by mode-2 fibers (rows in this case),
see [6]. When W is restricted to be diagonal and U, V to be
unitary, we obtain the Singular Value Decomposition (SVD)
as shown in Figure 1.

For order N -tensors when seen as elements of outer product
of N vector spaces, V1 ⊗ V2 ⊗ . . . ⊗ VN , the Canonical
Polyadic (CP) decomposition [6] generalizes the SVD (with
some caveats, [7], [8]) via, X = S ×1 G1 ×2 . . . ×N GN ,
where S is a super-diagonal tensor and ×k denotes the
multiplication along the mode k fibers. On the other hand
Higher Order SVD (HOSVD) or Tucker decompositions [9]
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Fig. 2: CP and HOSVD for 3-D tensors. For CP the core tensor is
super-diagonal.

flatten or matricize the data along various modes and use
SVD of these matrices to obtain the following factorization,
X = C ×1 G1 ×2 G2 ×3 .... ×N GN , where the core tensor
C is not super-diagonal. The CP and HOSVD are illustrated
in Figure 2. These models have shown to be promising for
modeling various types of data as low-rank tensors with gains
over traditional methods [6].

B. Tensors as linear operators

In contrast to treating tensors as multilinear operators, in this
paper we will consider the linear algebraic setting developed
in [2] that treats tensors as linear operators. This construction
has shown to be useful in a variety of applications [1], [10].
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Fig. 3: 3-D tensors as operators on oriented matrices.

In the framework proposed in [2] a 3-D array is defined
as a linear operator using the t-product defining the multi-
plication action. As shown in [1] one views a 3-D tensor
X ∈ Rn1×n2×n3 as an n1 × n2 matrix of tubes (vectors ori-
ented into the board). Similarly one can consider a n1×1×n3

tensor as a vector of tubes. Such tensors are referred to as
oriented matrices [2], and are denoted by ~M.

Now in order to define the 3-D tensor as a linear operator on
the set of oriented matrices ~M [2], one defines a multiplication
operation between two tubes ~v ∈ R1×1×n3 and ~u ∈ R1×1×n3

resulting in another tube of the same length. Specifically
this multiplication operation is given by circular convolution
denoted by ?. See appendix for the definition of circular
convolution.

Under this construction, the operation of a tensor X on ~M∈
Rn2×1×n3 is another oriented matrix of size n1×1×n3 whose
i-th tubal element is given by,

X ? ~M =

n2∑
j=1

X(i, j, :) ? ~M(j, 1. :)

as illustrated in Figure 3. This product between is referred to
as the t-product.

t-SVD - Under the above construction viewing a 3-D tensor
as a linear operator over the set of oriented matrices, one can
compute a tensor-Singular Value Decomposition (t-SVD) as
shown in Figure 4. Since ? is given by the circular convolution

=  !  !
n1

n2

n3

n1

n1

n3

n2
n2

n3

n1
n2

n3

Fig. 4: t-SVD under the t-product

the t-SVD can be computed using the Fast Fourier Transform
(fft) using Algorithm 1 [2]. In the algorithm fft(X, [ ], 3)
denotes the fft along the 3rd dimension and ifft(X, [ ], 3)
denotes the inverse fft along the third dimension.

The component tensors U and V obey the orthogonality
conditions U> ? U = I, V> ? V = I with the following
definitions for tensor transpose (·)> and and identity tensor I
(of appropriate dimensions).

Definition II.1. Tensor Transpose. Let X be a tensor of size
n1×n2×n3, then X> is the n2×n1×n3 tensor obtained by
transposing each of the frontal slices and then reversing the
order of the transposed frontal slices 2 through n3.

Definition II.2. Identity Tensor. The identity tensor I ∈
Rn×n×n3 is a tensor whose first frontal slice is the n × n
identity matrix and all other frontal slices are zero.

Note: This construction can be generalized considerably as
recently shown in [11], but in this paper we restrict ourselves
to using circular convolution to define t-SVD.

Algorithm 1 tSVD

Input: X ∈ Rn1×n2×n3

X̂← fft(X, [ ], 3);
for i = 1 to n3 do

[Û, Ŝ, V̂] = SVD(X̂(:, :, i))

Û
(i)

= Û; Ŝ
(i)

= Ŝ; V̂
(i)

= V̂;
end for
U← ifft(Û, [ ], 3); S← ifft(Ŝ, [ ], 3);
V← ifft(V̂, [ ], 3);

III. MANIFOLD STRUCTURE OF FIXED RANK TENSORS

It has been shown that tensors of fixed multi-rank under
HOSVD, and H-Tucker decompositions form a smooth mani-
fold. Using this several algorithms have been considered in the
literature [12], [13], [14] for numerically efficient inferencing
using optimization on smooth manifolds. Similarly, under the
t-SVD and using the notion of tubal-rank as defined below,
we see that the 3-D tensors of fixed tubal-rank also form a
smooth manifold. First we introduce the notion of tubal-rank
under the t-SVD.

Tensor tubal-rank - Under the t-SVD, a useful notion
of rank is tubal-rank defined to be the number of non-zero
singular tubes in S.

Product manifold structure - In this paper we want to
restrict ourselves to real manifolds.

But since the t-product uses Fourier domain computation,
we first lift a tensor X ∈ Rn1×n2×n3 to an even tensor Xe ∈



Rn1×n2×2n3−1 by adding dummy frontal slices so that the
tensor Xe has tubes that are even, i.e. Xe(i, j, n3 +(k−1)) =
X(i, j, n3 − (k − 2)), ∀(i, j) , 2 ≤ k ≤ n3.

In this case, by construction the set of even 3-D tensors
Xe of fixed tubal-rank, form a smooth embedded manifold M
of Rn for some n. In particular, the smooth manifold can be
realized as a real product manifold of rank r matrices in the
Fourier domain,

X̂e ∈M = Mr × · · · ×Mr︸ ︷︷ ︸
2n3−1

.

This is because the fft of a real and even signal is real and
even. Note that we are not enforcing the symmetry (even)
condition in this embedding.

This allows us to rapidly adapt optimization methods on real
matrix manifolds with computationally efficient Reimannian
gradient and retraction computations under various geometries
[15]. In this paper we employ MANOPT MATLAB toolbox
[16] with its inbuilt manifold factory for fixed rank tensors
that uses the Reimannian geometry for fixed rank matrices
described in [3]. Note that using the product structure the
gradient and retraction can be done independently across the
manifolds and can even be parallelized.

IV. TENSOR COMPLETION FROM MISSING ENTRIES

We consider the problem of tensor completion from missing
entries assuming that the tensor has low tensor tubal-rank.
Specifically given a sampling set Ω the problem is to find
a tensor X of tubal-rank r that closely approximates the
observations. We consider two cases.

A. Tubal-sampling

The first sampling method that we consider is the tubal-
sampling. For example, such scenarios typically arise in seis-
mics where at a given location one typically records a temporal
signal of certain length [14], [10]. In this case one is given ob-
servations X(i, j, :) at indices (i, j) ∈ Ω, i ∈ {1, 2, ..., n1}, j ∈
{1, 2, ..., n2}, where Ω denotes the sampling set. Let PΩ

denote the corresponding (linear) sampling operator.
First note that the problem can be equivalently converted

to recovering the even tensor Xe. Now note that for tubal-
sampling, the optimization problem can be solved in the
Fourier domain where it separates out slice by slice. That is,
the slices X̂e(:, :, i) can be recovered independently by solving
for,

min
X̂

(i)
e ∈Mr

‖P̂
(i)

e,Ω(X̂
(i)

e − Ŷ
(i)

e )‖2F . (1)

Note that all the P̂
(i)

e,Ω are the same and hence the problem re-
duces to individual matrix completion problems in the Fourier
domain.

B. Element-wise Sampling

In element-wise sampling, indices (i, j, k) ∈ Ω, i ∈
{1, ..., n1}, j ∈ {1, ..., n2}, k ∈ {1, ..., n3} are given as obser-
vations. Let PΩ denote the corresponding (linear) sampling

operator. Now note that unlike the tubal-sampling, in the
Fourier domain one cannot separate the optimization problem
slice-wise. Here we explicitly need to use the product manifold
structure together with explicit characterization of the linear
operator P̂Ω as given by Equation (3) in the Appendix.

In particular, using the lifting to first estimate the even tensor
Xe, we solve for the following optimization problem,

min
X̂e∈M

‖P̂e,Ω(X̂e − Ŷe)‖2F where M ∈Mr × · · · ×Mr︸ ︷︷ ︸
2n3−1

. (2)

We now compare the performance of these two types of
sampling on some real data sets.

V. NUMERICAL EXPERIMENTS

We will employ random sampling for both the tubal and
element-wise sampling. The test data that we use here is
footage from a still camera view of a traffic intersection.
This data is prime for testing because the consistency of
the background throughout the scope allows for similarities
between frames. This property also holds in panning videos,
as there is still consistency from frame to frame although the
content is still changing. This property does not hold with
zooming videos, as the zooming property removes the standard
background data that is constant from frame to frame.

We compared the results of recovery at different sampling
ratios for both of the methods. The results are shown in Figure
5. We note that the for this data tubal sampling is worse
compared to random sampling but has reasonable performance
as the sampling rate increases. While it may be intuitively
obvious that random sampling should be better compared to
tubal-sampling, the result of tensor completion on panning
video can give comparable performance for the same sampling
rates, see [17] for such an example (we omit the manifold
results for panning video here due to lack of space).

VI. CONCLUSIONS

While both methods seemed to do relatively well, the com-
pletion using element-wise sampling performed better than the
tubal-sampling. It seems as though the individual frames are
overall clearer and that there is more interpolation happening
with the completely random sampling. There are spots in the
tubal sampling where it seems as though there is no inference
whatsoever and some of the points that were originally not
sampled remain with values of all zeros in the output tensor.
One possible reason for this could be that since the algorithm
never had any knowledge of the data at that point, there was
nothing that it could base any inference off of. The completely
random sampling, on the other hand, would have had data for
every pixel location for at least one point in time and could
then infer the previous or future time’s values based on this
information.

In the future we would like to continue by testing this on
larger, more diverse datasets. The manifold based optimization
can also be made online in that one can update as the data is
received in real time. Finally, it would be interesting to see if
there is a way to apply this type of algorithm to tensors of
higher order. One approach is to use a recursive construction
of product manifold of product manifolds.



Fig. 5: Original frame and examples of recovery from a video
sequence of size 117×160×10 with tubal-rank fixed at 60 for
50% and 80% sampling rates for random tubal-sampling (Left
figures) and random element-wise sampling (Right figures).

VII. APPENDIX

A. Circular convolution and Fourier transforms

Circular Convolution: For two vectors ~x, ~y ∈ Rn, the
circular convolution denoted by ? is defined as ~x?~y = ~z ∈ Rn

where ~z[j] =
n∑

k=1

~x[k] ? ~y[(j − k)modn].

Property 1: ~x ? ~y = ifft(fft(~x) ◦ fft(~y)) where ◦
denotes the Hadamard product or the element-wise multipli-
cation.

Observation: We can also write ~z = ~x ? ~y in the matrix
vector product form:

~z[1]
~z[2]

...
~z[n]

 =


~x[1] ~x[n] . . . ~x[2]
~x[2] ~x[1] . . . ~x[3]

...
...

. . .
...

~x[n] ~x[n− 1] . . . ~x[1]


︸ ︷︷ ︸

bcirc(~x)


~y[1]
~y[2]

...
~y[n]



where the central matrix dealing with the ~x is the block
circulant matrix, bcirc(~x), formed from ~x.

Property 2: Multiplication in the time domain is equivalent
to convolution in the Fourier domain. Thus we see, as before,
that fft(~x ◦ ~y) = fft(~x) ? fft(~y). Let us denote by ~̂x the
fft of ~x, then we have in simplified terms, fft(~x◦~y) = ~̂x?~̂y

Now if we sample in the time domain in a totally random
manner (i.e. not a tubal manner but element wise randomly),
then each tube of the tensor is .∗ by a random (0, 1) vector. To
explain further, let Xij ≡ X(i, j, :) denote the i, jth tube of X.
Then the sampled data Yij is given by Yij = Xij ◦Pij where
P is the sampling matrix. Thus we see that Pij is tube of

zeros and ones. Now using Property 1 above, we see that this
becomes Ŷij = fft(Xij) ? fft(Pij). Now we can rewrite
this using our observation:

Ŷij = bcirc(P̂ij) X̂ij .

Therefore, over all i = 1, 2, . . . , n2 and j = 1, 2, . . . , n3:

Ŷ(:) =


bcirc(P̂11) . . . 0

0 . . . 0
...

. . .
...

0 . . . bcirc(P̂n2n3)

 X̂(:) (3)
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