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Abstract— In this paper we consider the problem of 
recovering an N-dimensional data from a subset of its observed 
entries. We provide a generalization for the smooth Shcatten-p 
rank approximation function in [1] to the N-dimensional space. 
In addition, we derive an optimization algorithm using the 
Augmented Lagrangian Multiplier in the N-dimensional space to 
solve the tensor completion problem. We compare the 
performance of our algorithm to state-of-the-art tensor 
completion algorithms using different color images and video 
sequences. Our experimental results showed that the proposed 
algorithm converges faster (approximately half the execution 
time), and at the same time it achieves comparable performance 
to state-of-the-art tensor completion algorithms. 
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I.  INTRODUCTION AND RELATED WORK  

Recovering signals from few observed samples is emerging 
as a powerful tool in a wide range of applications [2]; some 
examples are: computer vision [3], control [4] and wireless 
sensor networks [5]. Even though in several applications, such 
as computer vision, we deal with a higher dimensional space, 
we find few studies considered the N-dimensional tensor 
completion case because of the difficulties associated with 
higher dimensional space computations [6], [7]. Some 
researchers, for example in [8], applied their matrix completion 
algorithms to color images by considering each color channel 
as a separate matrix. Such algorithms don’t consider the 
correlation among the different channels. Previous algorithms 
solved the matrix and tensor completion problems based on 
minimizing the nuclear norm, which has been shown [9] to be 
the tightest approximation to the rank function [2], [6], [10]–
[13]. Some other algorithms also used a reweighted nuclear 
norm, for example in [14], to achieve better results than using 
only the truncated nuclear norm. However, minimizing the 
nuclear norm requires evaluating the computationally 
expensive SVD in each iteration. The authors in [15] proposed 
using reweighted least squares function to recover sparse 
signals for the compressed sensing problem. In [1] the authors 
proposed an extension of the work in [15] into the matrix 
completion problem and proposed computationally efficient 
algorithms for matrix completion. In this paper, we extend 
these efficient matrix completion algorithms to the N-
dimensional tensor completion problem by first providing a 

general definition for the Schatten-P function into the N-
dimensional space. We also derive a multi-dimensional 
Augmented Lagrangian Multiplier (ALM) optimization 
algorithm to solve it. 

   The rest of the paper is organized as follows: Section II 
defines the notations and briefly reviews the matrix and tensor 
completion problems. Section III provides a detailed 
description of our contributions and the derivation of the ALM 
algorithm for the smooth rank approximation tensor 
completion problem. Section IV presents the experimental 
results to evaluate the performance of our method compared to 
the previous well known algorithms. Finally in section V we 
conclude our work and the experimental results. 

II. NOTATIONS AND BACKGROUND 

Throughout this paper, matrices are denoted using capital 
letters, e.g. , and tensors by cursive capital letters, e.g. M. 
Also,  is the transpose of .  is an entry of the matrix 
∈ 	  at row 	and column ; and M …  is an entry of 

the tensor M	∈ …   at indices 	through . For a 
matrix	 ∈ 	 ,  is the sampling operator which is 
defined as: 

	 , 	 ∈ 	 	
0

 (1) 

where  represents the set of observed entries.  

For M	∈	 … 	, the .  operation over 
dimension  unfolds the -dimensional tensor into a matrix, 

. 	is the inverse of .  and it can be defined 
as: 

M M   (2) 

The inner product between two matrices is defined by: 

〈 , 〉    (3)

where .  is the trace function. 

If  is the SVD decomposition of , then the soft 
thresholding operator over  is defined as [6], [10]: 

 (4)

where 	 , 0  is the diagonal soft thresholded 



singular values matrix. 
The convex approximation to the matrix completion problem 

can be represented by:  

	‖ ‖∗ 

. .		  
(5) 

where  is the low rank matrix to be estimated,  is the 
original matrix and .  is defined in (1). 

Since the observed samples are usually contaminated with 
noise, we need to relax the equality constraint into an 
inequality constraint in order to make (5) more robust to noise 
[12]. 

	‖ ‖∗ 

. .		‖ 	 ‖  
(6) 

Tensor completion is a generalization to the matrix 
completion problem into the N-dimensional space, it can be 
represented by [7], [16]: 

X
	‖X	‖∗ 

. .		‖ X	 M ‖  
(7) 

where 	‖X	‖∗ is the nuclear norm of the tensor which is defined 
by [7], [16]: 

‖X‖∗
1

	 X
∗
 

  
(8) 

Instead of minimizing the convex nuclear norm function in 
(5), the authors in [1] suggested to use a smooth approximation 
to the rank function and they showed that it converges faster 
than minimizing the nuclear norm function; they considered the 
smooth Schatten-p function: 

 (9) 

Here, 	is the identity matrix and	γ 0. The function (9) is  
convex for 1	[1].  

So the matrix rank minimization approximation problem 
can be written as [1]: 

  

. .		   
(10) 

III. SMOOTH RANK APPROXIMATION TENSOR COMPLETION 

In this paper we are interested in using a generalized version 
of the smooth Schatten-p function to solve the tensor 
completion problem, and hence we need to redefine (9) to the 
higher dimensional space.  

Definition 3.1: The smooth Schatten-p function for an N-
dimensional signal is given by: 

X
1

X X   (11) 

One can verify the validity of Defintion 3.1 for the 2-
dimensional Schatten-p case	 2) by observing that the 
trace of the matrix and its transpose are the same; and hence, 
(11) reduces to (9). 

Now the tensor completion problem based on a smooth 
rank approximation function can be casted as: 

X	

1
X X	  

. . X M   

(12) 

Next we derive the ALM optimization method to solve the 
tensor completion problem in (12). Using similar idea for the 
matrix case in [13], we can rewrite (12) in the tensor domain 
as: 

X	

1
X X	  

. . X E M , E 0	 

(13) 

Here, X represents the non-observed entries of the original 
tensor M. The partial augmented Lagrange function for (13) is 
given by: 

X,	E,Y, X	 X

〈Y,	 M X E	〉

2
‖ M X E‖  

(14) 

where Y  is the Lagrange multiplier tensor. 

In this section we state the solution for (14) with respect to 
each variable (X,	E and Y ) as three lemmas; the proofs are 
presented separately in appendix A. 

Lemma 3.1: The optimal solution for (14) with respect to X is 
given by: 

X M Y E	
∑ Zi

k 1

∑
  (15) 

where   is a control parameter and 	Z is given by: 

Z X	 	 	   (16) 

 is defined as: 

X X		
1 2

 (17) 

Lemma 3.2: The optimal solution for (14) with respect to E is 
given by: 



E	  M
1

Y		 X		  

E	  =0 

(18) 

Lemma 3.3: The optimal solution for (14) with respect to Y is 
given by: 

Y 	 Y		 M X		 E	  (19) 

Benefitting from the smooth Schatten-P function formula 
we used a code optimization idea in order to reduce the 
computation complexity. Since the trace of the matrix 

X		 ∈ 	  and its transpose are the same; then 
while computing 	  we used the transpose of X		  
if    and we also used the term X	 	 	 in 

order to maintain the original dimensions of the unfolded 
tensor. The proposed Smooth Rank Approximation Tensor 
Completion (SRATC) algorithm is presented in algorithm 1. 

IV. EXPERIMENTAL RESULTS 

In this section we present the results of the experiments that 
we performed to compare the performance of our SRATC 
algorithm to the Low Rank Tensor Completion (LRTC) 
algorithm in [6] and the Accelerated Proximal Gradient (APG) 
tensor completion  in [16].  

The quality of the recovered data is evaluated using the 
Peak Signal to Noise Ratio (PSNR) and the convergence rate is 
evaluated based on the time needed by the algorithm to 
converge to the final results. We ran the algorithms with 
MATLAB 2012b on the same desktop computer with a 3.3 
GHz i-5 CPU and a 4GB Memory. 

In the first application we applied the tensor completion 
algorithms to recover the house color image (size 256×256) [6] 
with rank 80 in each color channel from random 50% observed 
samples; the results are shown in Fig.1.  

From Fig.1 we see that the APG takes less execution time 
than LRTC but it converges to the lowest PSNR, while the 
LRTC takes more time to execute than APG but it achieves 
higher PSNR. Our algorithm achieves comparative PSNR to 
LRTC, but it needs the lowest execution time. 

To test the performance of the tensor completion algorithms 
under high number of missing entries, we used the algorithms 

to recover the façade image (size 256×256 and rank 80 for each 
color channel) in [6] and using only 30% observed samples; the 
results are presented in Fig.2. 

(a) (b) PSNR:26.30, Time:76.5 

(c) PSNR:25.79, Time:64.1 (d) PSNR:26.34, Time:37.8 
Fig.1. (a) The original house image, (b-d) Recovered images with the 

corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, (c) 
APG, (d)  SRATC 

 

(a) (b) PSNR:21.34,Time: 90.7 

(c) PSNR:20.41,Time:75.5 (d) PSNR: 21.27,Time:49.5 
Fig.2. (a) The original façade image, (b-d) Recovered images with the 
corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, 

(c) APG, (d)  SRATC 

Again, Fig.2 shows that APG achieves the lowest PSNR 
measure but converges faster than LRTC, while the proposed 
SRATC algorithm converges the fastest with almost the same 
performance as LRTC. LRTC converges the slowest but it 
achieves a good PSNR value. 

Fig.3 shows the effect of changing the rank on the 
performance of the tensor completion algorithms. In this 
experiment we used the color lena image (size 256×256) with 
50% observed samples.  

Algorithm 1:                     SRATC 
Input: 0, ∈ ,	 M  
  Steps: 1: initialize X		 =PΩ M , Y		 =E		 0 

2: while  Not converged 
  Do:  For each dimension  
                  Evaluate  using (17)     
                  Evaluate 	Z  using (16) 
          End For 
          Evaluate   X		  using (15) 
          Evaluate   E 	  using (18) 
          Evaluate   Y 	  using (19)     
 
   End While 

Output: X ,  E 



Fig.3. Peak Signal to Noise Ratio versus the rank of the matrix using lena 
colored image with 50% observed samples. 

From Fig.3 we see that when the rank of the data is very 
low, SRATC achieves the highest PSNR. While when the rank 
starts to increase, the SRATC and LRTC algorithms both have 
approximately the same PSNR measure. From this experiment, 
we also noticed that the computation time remains 
approximately constant as we change the rank. 

 To give an accurate performance evaluation for the tensor 
completion algorithms, we apply the algorithms to recover a set 
of 10 different color images1 (size 256×256 and rank 60 for 
each color channel) from (70, 50 and 30)% observed entries; 
then we average the PSNR and the execution time; the results 
are shown in Table 1. We notice that regardless of the number 
of observed entries, the SRATC algorithm achieves the lowest 
execution time while LRTC and APG require significantly 
longer time to converge because of using the SVD 
decomposition in each iteration. 

Missing 
(%) 

Method 
PSNR  
(dB) 

Time  
(Second) 

30 
LRTC 32.84 63.5 
APG 30.51 57.6 

SRATC 33.85 28.7 

50 
LRTC 26.59 77.3 
APG 24.93 57.1 

SRATC 26.74 31.5 

70 
LRTC 21.54 77.3 
APG 19.39 70.0 

SRATC 21.46 40.3 
Table 1: Average execution time and PSNR comparison for tensor 
completion algorithms using a set of 10 colored images. 

 
(a) (b) Time:751.8 

 
(c) Time:631.4 (d) Time:395.9 

Fig.4. (a) The masked façade image, (b-d) Recovered images with the 
corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, (c) 

APG, (d)  SRATC 

Another application for testing the tensor completion 
algorithms is blocks image inpainting. We used the façade 
image of size 318×861 [6]. In this application we are trying to 
recover the missing parts of the façade image texture by 
inpainting missing blocks of the image. The results are shown 
in Fig. 4. The results presented in Fig. 4 show that our 
algorithm also converges faster than state-of-the-art tensor 
completion algorithms. For this particular simulation, we don’t 
have the original image for evaluating the PSNR values; 
however, by observing the visual quality of the different 
results, one can observe that the proposed SRATC algorithm 
provides a visual quality similar to the LRTC algorithm while 
converging with about one-half of the time required by LRTC.  

To show the applicability of our SRATC algorithm for 
higher dimensional data and non-square tensors, we show in 
Fig. 5 the result of recovering a video sequence of the tomato 
video [6]; we used 20 frames with each frame of size 242×320 
pixels. We also compared the SRATC result to LRTC and 
APG. As shown in Fig. 5, our SRATC algorithm saves about 4 
minutes when compared to the APG algorithm in addition to 
the higher PSNR and the visually better recovered frames. 
Compared to LRTC, our algorithm saves approximately 10 
minutes execution time and achieves the same PSNR value. 

(a) (b) PSNR: 22.82, Time: 1892.6 

(c) PSNR:21.01, Time:1530.8 (d) PSNR: 22.86, Time: 1311.4 
Fig.5. (a) The original tomato frame (number 6), (b-d) Recovered frames 
with the corresponding PSNR (dB) and execution time (Sec.) using (b) 

LRTC, (c) APG, (d)  SRATC 

V. CONCLUSIONS  

In this paper, we developed a generalization to the Schatten-
P function into the N-dimensional space to provide a less 
computational complexity algorithm for tensor completion. 
The experimental results that we presented showed that the 
proposed SRATC algorithm achieves similar or slightly higher 
PSNR values than what can be achieved using the powerful 
tensor completion algorithms that are based on the 
computational complex SVD decomposition; meanwhile 
SRATC requires significantly less computation time to 
converge to the same PSNR value. 
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1 The images set is downloaded from http://web.eecs.utk.edu/~gonzalez/



APPINDIX A 

Proof of Lemma 3.1: 

From (14) we complete the sum of squares: 

X,	E,Y, 

∑ X	 X	

M X E Y	 ‖Y	‖   

(A1) 

Deriving and solving (A1) for X : 

∑
X	

X	 X	
M 

X E Y	 0  
(A2) 

For simplicity, we assume  is given by (17). Then the 
solution for X  is: 

X	 M E
1

Y	  

1∑ 	 	 X	

∑
 

(A3) 

For further simplification, we assume 	Z  as presented in 
(16) and hence X	  is reduced to (15). 

Proof of Lemma 3.2: 

We start from (A1) and derive for E. But here we need to 
include another constraint to force the entries of E at the 
observed samples entries to be zero. 

M X E Y	 0  

. . E =0  
(A4) 

Now solving for E: 

E M X Y	  

E  =0  
(A5) 

Or we can rewrite (A4) as in (18). 

Proof of Lemma 3.3: 

Also starting from (A1), we derive for Y : 

M X E Y Y	 0  (A6) 

Solving for Y : 

Y Y M X E   (A7) 

Which is the same result shown in (19). 
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