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Abstract 37 

 The Masinga Reservoir located in the upper Tana River Basin, Kenya, is extremely 38 

important in supplying country’s hydropower and protecting downstream ecology. The Dam 39 

serves as the primary storage reservoir, controlling streamflow through a series of downstream 40 

hydro-electric reservoirs. The Masinga dam’s operation is crucial in meeting the power demands 41 

thus contributing significantly to the country’s economy. La Nina related prolonged droughts of 42 

1999-2001 resulted in severe power shortages in Kenya. Therefore, seasonal streamflow 43 

forecasts contingent on climate information are essential to estimate pre-season water allocation. 44 

Here, we utilize reservoir inflow forecasts downscaled from monthly updated precipitation 45 

forecasts from ECHAM4.5 forced with constructed analogue SSTs and multimodel precipitation 46 

forecasts developed from ENSEMBLES project to improve water allocation during April-June 47 

(AMJ) and October-December (OND) seasons for the Masinga reservoir. Three-month ahead  48 

inflow forecasts developed from ECHAM4.5, multiple GCMs and climatological ensemble are 49 

ingested into a reservoir model to allocate water for power generation by ensuring climatological 50 

probability of meeting the end of the season target storage required to meet seasonal water 51 

demands. Retrospective reservoir analysis shows that inflow forecasts developed from single 52 

GCM and multiple GCMs perform better than climatology by reducing the spill and increasing 53 

the allocation for hydropower during above-normal inflow years. Similarly, during below-normal 54 

inflow years, both these forecasts could be effectively utilized to meet the end of the season 55 

target storage by restricting releases for power generation. The multimodel forecasts preserves 56 

the end of the season target storage better than the single model inflow forecasts by reducing 57 

uncertainty and the overconfidence of individual model forecasts.  58 

59 
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1.0 Introduction 60 

 Recent studies focusing on the teleconnection between Sea Surface Temperature (SST) 61 

conditions and regional/continental hydroclimatology show that interannual and interdecadal 62 

variability in exogenous climatic indices modulate both global and regional scale rainfall 63 

(Ropelewski and Halpert, 1987) and streamflow patterns (e.g.,Dettinger and Diaz, 2000; 64 

Piechota and Dracup, 1996). Advancement in understanding the linkages between exogenous 65 

climatic conditions such as tropical SST anomalies to local/regional hydroclimatology offer the 66 

scope of predicting season ahead and long-lead time (12 to 18 months) streamflow (Maurer and 67 

Lettenmaier, 2003; Souza and Lall, 2003). Considerable improvement in the skill of seasonal 68 

climate forecasts over the last decade has also been achieved using the slowly evolving boundary 69 

conditions such as SSTs in the tropical oceans (Goddard et al. 2003). Seasonal forecasts of 70 

streamflow could also be utilized effectively for multipurpose water allocation and to prepare 71 

adequate contingency measures to mitigate hydroclimatic disasters (Voisin et al. 2006; 72 

Georgakakos and Graham, 2008; Golembesky et al. 2009). Hence, the application of climate 73 

based information for water management has been shown to result in improved benefits over the 74 

long term in comparison to the benefits that would be obtainable under no-forecasts 75 

(climatology) based operation. Still, application of climate forecasts for improving water 76 

management faces various challenges partly due to the uncertainty in climate forecasts (Pagano 77 

et al. 2001; Pagano et al. 2002) as well as due to the challenges in translating probabilistic 78 

forecasts for operational guidance (Sankarasubramanian et al. 2009). 79 

Recent studies on operational streamflow forecasts development show that seasonal 80 

streamflow forecasts downscaled from monthly updated climate forecasts are quite effective in 81 

reducing the uncertainty in intra-seasonal water allocation (Sankarasubramanian et al. 2008; 82 
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Sankarasubramanian et al. 2009). Efforts to reduce uncertainty in climate forecasts have also 83 

focused on combining climate forecasts from multiple climate models (Rajagopalan et al. 2002; 84 

Devineni and Sankarasubramanian, 2010a, 2010b). Recent studies based on multimodel 85 

combination approach indicate better streamflow forecasting skill than any individual forecast 86 

model as the skill of the multimodel ensembles is maximized by assigning optimal weights to 87 

each GCM (Robertson et al. 2004; Devineni et al. 2010a, 2010b). Studies have also shown the 88 

utility of multimodel streamflow forecasts derived from low-dimensional models in invoking 89 

restrictions and water conservation measures during drought years (Golembesky et al. 2009). 90 

Low dimensional models primarily employ the dominant modes of variability in the predictors 91 

(e.g., precipitation forecasts from GCMs) to explain the variability in the predictand (e.g., 92 

precipitation/streamflow). For instance, Golembesky et al. (2009) utilized probabilistic 93 

multimodel streamflow forecasts to invoke water-use restrictions for improving the operation of 94 

Falls Lake reservoir, Neuse basin during below normal inflow years. One important usefulness 95 

of multimodel climate forecasts is in reducing the overconfidence of individual models resulting 96 

in lesser false alarms and missed targets (Devineni and Sankarasubramanian, 2010a; Weigel et 97 

al. 2008). This has important implications since multimodel climate forecasts can increase the 98 

confidence of stakeholders towards application of climate information for water management. 99 

The main intent of this study is to evaluate the performance of probabilistic streamflow 100 

forecasts developed from single General Circulation Model (GCM) and from multimodel climate 101 

forecasts in improving the hydropower generation for the Tana River basin, Kenya. Tana River 102 

basin accounts for about 57% of the total hydropower generated in Kenya and our analysis is 103 

focused on the Masinga Reservoir system, which accounts for about 67% of the total storage 104 

capacity in the Tana River basin. For developing the reservoir inflow forecasts, the study utilizes 105 
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3-month ahead precipitation forecasts from ECHAM4.5 General Circulation Model (GCM) 106 

forced with constructed analogue SST forecasts and the multimodel climate forecasts developed 107 

from the study of Devineni and Sankarasubramanian (2010a). The reservoir management model 108 

adopted here is a simplified version of the dynamic allocation framework reported by 109 

Sankarasubramanian et al. (2009).   110 

The manuscript is organized as follows: Section 2 provides baseline information on the 111 

Tana River basin and its linkage to El-Nino Southern Oscillation (ENSO) along with the 112 

seasonal streamflow forecasts developed from ECHAM4.5 and from multimodel climate 113 

forecasts. Following that, we present a brief description of the Masinga reservoir simulation 114 

model and the retrospective reservoir analyses design. Section 4 compares the utility of 115 

streamflow forecasts derived from ECHAM4.5 and multiple climate models with climatology in 116 

improving the hydropower generation from the Masinga reservoir. Finally, in Section 5, we 117 

summarize the findings of the study and also give conclusions. 118 

 119 

2.0 Hydroclimatology of the Tana basin and Streamflow Forecasts Development 120 

  Kenya experienced major extreme climatic events in the recent past such as El-Niño 121 

related floods in 1997/1998 and 2009/2010 and La Niña related droughts in 1999/2000 and 122 

2008/2009, which led to severe socio-economic impacts in the country. Specifically, inadequate 123 

rainfall during the prolonged 1999-2000 drought led to severe water scarcity and shortage in 124 

electrical power supply causing serious power rationing throughout the country. In particular, the 125 

estimated losses in hydropower generation and industrial production due to water shortage 126 

during the 1999/2000 drought were over 2 billion US dollars (Mongaka et al., 2006). Such 127 

enormous losses related to the extreme events underscores the need to translate the climate based 128 
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streamflow forecasts information into planning, risk management and decision-making to 129 

minimize socio-economic impacts and to meet increased energy demands in the near future. 130 

 Kenya is highly dependent on hydropower which constitutes over 75% of the total 131 

electricity generated in the country. The bulk of this electricity is obtained from five generating 132 

plants along the Upper Tana River Basin (Figure 1a), namely Masinga (40 MW), Kamburu (94.2 133 

MW), Kindaruma (44 MW), Gitaru (225 MW) and Kiambere (156 MW), typically known as the 134 

Seven-Forks Dams (See Figure 1a). Kenya Electricity Generating Company Limited (KenGen) is 135 

the leading electric power generation company in Kenya producing about 80 percent of 136 

electricity from hydropower. The Masinga Dam, the uppermost reservoir, controls the flow of 137 

water through a series of downstream hydro-electric reservoirs. The Masinga catchment area lies 138 

between 0°7′–1°15′S and 36°33′–37°46′E and has an area of about 7,354 km2. The reservoir has 139 

a capacity of 1,560 million m3 at Full Supply Level (FSL) with a surface area 120 km2. The 140 

spillway for Masinga dam is 1,056.5 meters above mean sea level which corresponds to the FSL. 141 

The minimum operating level is 1,035.0 meters above mean sea level.  Tana River basin 142 

experiences bimodal precipitation pattern and accordingly dominant runoff seasons occur during 143 

April – Mary–June (AMJ) and October – November – December (OND). Observed inflows at 144 

the Masinga Dam are available from 1940 to till date. Inflows during AMJ, which are heavily 145 

influenced by SST variations in the Indian Ocean (Mutai and Ward, 2000), contribute more than 146 

46% of the total annual inflows into the dam (Figure 1b). Inflows during the OND season 147 

account for 26% of the annual flows and its interannual variations are significantly associated 148 

with ENSO variations (Mutai and Ward, 2000). The correlation between OND flows and JAS 149 

(July-August-September) Nino3.4, a commonly used index denoting ENSO conditions which 150 

indicate the average SSTs over 170 W-120W and 5S-5N, over the 1947-2005 period is 0.42. This 151 
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strong association between SST and inflows indicates the potential in linking climate forecasts 152 

for developing season-ahead inflow forecasts for the Tana River basin. 153 

Seasonal streamflow forecasts based on exogenous climate indices can be obtained using 154 

both dynamical and statistical modeling approaches. The dynamical modeling involves coupling 155 

of a hydrological model with a Regional Climate Model (RCM) that preserves the boundary 156 

conditions specified by the General Circulation Models (GCM) by considering the topography of 157 

a region (e.g., Leung et al., 1999; Nijssen et al., 2001). However, uncertainty propagation from 158 

the coupling of these models (Kyriakidis et al. 2001) and converting the gridded 159 

streamflow/precipitation forecasts into reservoir inflow forecasts pose serious challenges in 160 

employing dynamical downscaling for water management applications.  On the other hand, 161 

statistical modeling basically employs statistical models to downscale GCM outputs to develop 162 

streamflow forecasts at a desired location (Gangophadhyay et al., 2005).  Studies have also 163 

related well-known climatic modes to observed streamflow in a given location using a variety of 164 

statistical models ranging from simple regression (e.g., Hamlet and Lettenmaier, 1999) to 165 

complex methods such as linear discriminant analysis (Piechota et al., 2001), spatial pattern 166 

analysis (Sicard et al., 2002), and semi-parametric resampling strategies (Souza and Lall, 2003).  167 

Although both approaches have their advantages and limitations, statistical modeling approach is 168 

the least data intensive and is very relevant in regions such as Kenya, where high resolution 169 

spatial data to run regional climate and hydrologic models are not readily available.     170 

2.1 Multimodel Inflow Forecasts Development using Multimodel Climate Forecasts 171 

The primary intent of this paper is to utilize inflow forecasts developed using multimodel 172 

climate forecasts and compare their performance with inflow forecasts developed using single  173 

GCMs and with climatological inflows. Recent studies on reducing the uncertainty of climate 174 
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forecasts shows that combining multiple models result in reduced false alarms and missed targets 175 

resulting in improved probabilistic climate forecasts (Rajagopalan et al., 2002; Devineni and 176 

Sankarasubramanian, 2010b). In this study, we utilize the multimodel precipitation forecasts 177 

developed by Devineni and Sankarasubramanian (2010b) for developing multimodel inflow 178 

forecasts for the Masinga reservoir. The multimodel precipitation forecasts for the AMJ and 179 

OND seasons are developed by combining five coupled GCMs (CGCMs) and climatology (i.e. 180 

observed precipitation) based on the methodology described in Devineni and 181 

Sankarasubramaniam (2010b). The precipitation forecasts from multiple models along with the 182 

climatology are combined by analyzing the skill of the candidate models contingent on the 183 

Nino3.4 state. The main advantage of combining multiple GCMs conditional on the predictors’ 184 

state is that the approach assigns higher weights for climatology and lower weights for the 185 

CGCMs particularly if the skill of a candidate model is poor under ENSO conditions. For 186 

additional details and a complete discussion on the multimodel combination methodology, see 187 

Devineni and Sankarasubramaniam (2010a, 2010b). 188 

Retrospective precipitation forecasts from the European Union’s ENSEMBLES project 189 

(Weisheimer et al. 2009) were used to develop the multimodel forecasts over the Masinga River 190 

Basin. Table 1 provides details on the five CGCMs considered in the ENSEMBLES experiment 191 

for developing multimodel precipitation forecasts. Seven-month ahead retrospective climate 192 

forecasts were developed on 1st February, 1st May, 1st August and 1st November for the period 193 

1960-2005 using the respective months’ initial conditions. For this study, we considered 194 

CGCMs’ SST forecasts and precipitation forecasts issued on 1st February (1st August) to develop 195 

multimodel precipitation forecasts. For instance, monthly precipitation forecasts issued in 1st 196 

February (1st August) for the period AMJ (OND) are converted into tercile forecasts for each 197 
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CGCM and the tercile forecasts are combined based on the Devineni and Sankarasubramanian 198 

(2008) algorithm to develop the multimodel tercile forecasts. Given the tercile probabilities, PFt
i,j 199 

, with ‘i’ (1= below-normal, 2=normal and 3= above normal) denoting the tercile categories, ‘j’ 200 

(1= AMJ and 2= OND) indicating the season and ‘t’ denoting the year of forecast over the period 201 

1960-2005,  we estimated the conditional mean, µj
t, and conditional variance, σj

t,  of the forecast 202 

using equations (1) and (2) by assuming the conditional distribution as normal. Given 203 

climatological 33rd and 67th percentiles, P0.33, j and P0.67, j, for a given season, we used the tercile 204 

probabilities issued for a given season in a particular year to estimate the condition mean and 205 

variance by solving the simultaneous equations in (1) and (2).     206 
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j j

jt
tj
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j j
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The standard normal variates,1, j
tz and 2, j

tz , are obtained based on the inverse of the cumulative 210 

distribution function of the standard normal distribution with the respective cumulative 211 

probabilities, 1, 1,j j
t tCF PF= and 2, 1, 2,j j j

t t tCF PF PF= + , being computed based on the tercile 212 

precipitation forecasts. Once we obtain the conditional mean, µj
t, and conditional variance, σj

t, 213 

we can generate realizations from the normal distribution. The conditional mean of the 214 

multimodel forecast over the Masinga catchment area over four grid points (Figure 1a) and the 215 

previous month streamflow, Qt-1, were used as predictors in the principal component regression 216 

to develop the inflow forecasts for the Masinga Dam. We capture the role of initial land surface 217 

conditions by using the previous month streamflow as a predictor in developing streamflow 218 



10 
 

forecasts. Filled stars in Figure 1a indicate the selected grid points of multimodel precipitation 219 

forecasts and open stars indicate the selected grid points of precipitation forecasts from the 220 

ECHAM4.5 GCM. We considered principal components regression, since the forecasts from 221 

these four grid points were correlated. All the GCMs from ENSEMBLES experiment and 222 

ECHAM4.5 atmospheric GCM were almost at the same resolution. Our previous study combined 223 

the individual CGCMs precipitation forecasts to develop multimodel precipitation forecasts.  224 

To compare the performance of multimodel climate forecasts, we also consider 225 

precipitation forecasts from a single GCM – ECHAM4.5 forced with constructed analogue SSTs.  226 

Retrospective precipitation forecasts from ECHAM4.5 are available at IRI for 7 months in 227 

advance for every month beginning January1957 with a resolution of 2.8°X2.8° 228 

(http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/ca_sst/.ensemble24/.229 

MONTHLY/.prec/). To force the ECHAM4.5 with SST forecasts, retrospective monthly SST 230 

forecasts were developed based on the observed SST conditions in that month based on the 231 

constructed analogue approach. For additional details on ECHAM4.5 precipitation forecasts, see 232 

Li and Goddard (2005) (http://iri.columbia.edu/outreach/publication/report/05-02/report05-233 

02.pdf).  The ensemble mean which is computed from 24 realizations of ECHAM4.5 234 

precipitation forecasts obtained based on different initial conditions was downloaded over the 235 

Masinga catchment area from IRI data library for the period 1957-2005. We utilize the ensemble 236 

mean of precipitation forecasts issued at the beginning of two rainy seasons (April – May – June 237 

(AMJ) and October – November – December (OND)), April 1st and October 1st, along with the 238 

previous month streamflow (March/September) as additional predictor.   Though this result in 239 

comparison of precipitation forecasts from multimodels and ECHAM4.5 at two different lead 240 

times, from the perspective of water management, the allocation decisions are usually done at the 241 
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beginning of the season. Thus, in the context of application, the best single model forecast 242 

available at the beginning of the season is used. 243 

Principal Components Regression (PCR): Since the gridded precipitation forecasts over a 244 

given region are spatially correlated, employing precipitation forecasts from multiple grid points 245 

as predictors would raise multicollinearity issues in developing the regression. PCR, which is a 246 

commonly employed approach in Model Output Statistics (MOS) (Wilks, 1995), eliminates 247 

systematic errors and biases in GCM fields and also recalibrates the principal components (PCs) 248 

of GCM fields to predict the hydroclimatic variable of interest using regression analyses. In this 249 

context, the predictand is the streamflow (Qt) over the season (AMJ/OND) and the predictors are 250 

the previous month streamflow (Qt-1) and the ensemble mean of precipitation forecasts from 251 

ECHAM4.5 GCM or the multimodel ensemble mean obtained using equations (1) and (2).  252 

Using the principal components of the predictors, we developed regression relationship based on 253 

equation (2): 254 

0
1

ˆ ˆ ˆ( ) *
K

k
t j t t

k

ln Q PCβ β ε
=

= + +∑                                                                                      (3) 255 

where tQ denotes the observed streamflow during the AMJ/OND season in year ‘t’, k
tPC denotes 256 

the ‘k’th PCs from the retained ‘K’ PCs of precipitation forecasts and β̂ s denote the regression 257 

coefficients whose estimates are obtained by minimizing the sum of squares of error. We 258 

employed step-wise regression to select ‘K’ PCs out of the rotated grid points of precipitation for 259 

developing the PCR model.  260 

Using principal components regression (PCR), we developed single model (SM) inflow 261 

forecasts and multimodel (MM) inflow forecasts to obtain the leave-one-out cross-validated 262 

mean seasonal (conditional mean) streamflow forecasts for the AMJ (OND) season. Using the 263 
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point forecast error obtained from the PCR, we obtained the conditional variance of the seasonal 264 

streamflows to develop the probabilistic reservoir inflow forecasts. Residual analyses of the PCR 265 

based on the quantile plots and skewness test on the residuals showed that the normality 266 

assumption is valid. This indicates that the seasonal flows during the AMJ and OND season 267 

could be assumed as a log-normal distribution. Based on this assumption, we developed 500 268 

ensembles of the seasonal streamflows in log-space using the conditional mean and the point 269 

forecast error obtained from the PCR. These ensembles are eventually transformed back to the 270 

original space for developing the probabilistic inflow forecasts that could be forced with the 271 

Masinga reservoir model. 272 

 Figure 2a (2b) show the conditional mean of the SM and MM seasonal streamflow 273 

forecasts for the period 1991 – 2005 developed based on the ECHAM4.5 and multimodel 274 

precipitation forecasts for the AMJ (OND) seasons. All the forecasts for the single model 275 

(multimodel) in Figure 2 are obtained in a leave-one-out cross-validated mode using the 276 

observed flows and the predictors for the period 1961-2005 (1961 – 2005).  Since the multimodel 277 

climate forecasts from ENSEMBLES project are available only up to 2005, we have evaluated 278 

the skill of the multimodel inflow forecasts only up to 2005. The inset in Figure 2 shows the 279 

verification statistics for the multimodel (single model) inflow forecasts based on correlation 280 

coefficient and root mean square error computed between the ensemble mean of the forecasted 281 

streamflow and the observed streamflow over the period 1961-2005 (1961-2005). From Figure 2, 282 

we observe that the multimodel streamflow forecasts slightly perform better than the single 283 

model forecasts in predicting the conditional mean. It is important to note that the single model 284 

inflow forecasts for the AMJ and OND seasons were developed using 3-month ahead 285 

ECHAM4.5 precipitation forecasts issued at the beginning of April and October respectively. On 286 
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the other hand, the multimodel precipitation forecasts issued at the beginning of 1st February and 287 

1st August were employed in developing the AMJ and OND inflow forecasts, which results in a 288 

lead time of two months for both seasons. We ingest these leave-one-out cross-validated 289 

probabilistic streamflow forecasts available to the probabilistic reservoir simulation model over 290 

the period 1991 – 2005  for evaluating the utility of streamflow forecasts developed from single 291 

model and multimodel precipitation forecasts in improving the water and energy management for 292 

the Masinga Reservoir.  293 

 294 

3.0 Masinga Reservoir Simulation Model 295 

The reservoir simulation model used here is a simplified version of the detailed dynamic 296 

water allocation framework presented in Sankarasubramaniam et al. (2009). Given seasonal (T-297 

month lead) streamflow forecasts (as ensembles) k
tq and initial reservoir storage, 1−tS , at the 298 

beginning of the allocation period, the reservoir simulation model determines the seasonal 299 

release h w
t tR  and  R for hydropower generation and city of Nairobi water supply respectively. 300 

Here, t =1, 2, . . . , N denotes the forecast years (N=total number of years of retrospective 301 

forecasts; 1991-2005 for multimodel forecasts and 1991-2005 for  ECHAM4.5 downscaling), 302 

and k =1, 2,..., K index represents a particular realization within the ensemble. In addition, the 303 

water allocation model incorporates an end of the season target storage, *
TS  (T denoting the 304 

forecast lead time in months) that is associated with a failure probability ps. For instance, in the 305 

case of Masinga reservoir *TS  corresponds to the target storage of 1572 MCM (1560 MCM) at 306 

the end of June (December) for meeting the demand during the months with low rainfall. Figure 307 

3a shows the operational rule curves for the Masinga Dam. Using the basic continuity equation, 308 

the seasonal storage equations for each ensemble member k are updated for the forecasting year t 309 
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, 1, ,
k k k h ws
T t t k t t t t k tS S q E R R SP−= + − − − −       … (4) 310 

where seasonal storage equations are constrained so that the storage is between the minimum and 311 

maximum possible storage, Smin and Smax, respectively  312 

),max(),,min( min,max,, , SSSSSS k
tT

kk
tT

k
tT tT ==      … (5) 313 

tkSP,  is the spill which occurs if k
tTS ,  > Smax, and could be obtained  based on the 314 

constraints from equations (4)  and (5). The release for hydropower hydro
tR  is converted into net 315 

hydropower HPt generated from the turbines based on the elevation storage relationship of the 316 

reservoir. Evaporation, k
tE  is also computed as a function of average storage during the season 317 

using the water spread area and storage information of the reservoir specified in equation (6). 318 

2)2/)(( ,,11
δδψ k

kTktt
k
t SSE += −          … (6)  319 

where ψt = seasonal evaporation rate and δ1 and δ2 = coefficients describing the area–storage 320 

relationship. We employed spline interpolation technique for obtaining the water spread area 321 

corresponding to the average season storage computed for each ensemble. It is important to note 322 

that the evaporation is evaluated implicitly for each realization in the ensemble. The estimated 323 

average evaporation rate (ψj) = 0.402 mm and 0.502 mm for the AMJ and OND seasons 324 

respectively. 325 

The objective is to determineh
tR , such that the probability of having the end of the season 326 

storage, tTS , , less than the target storage, *TS , is small which is represented by its failure 327 

probability (Prob), ps, using  328 

Prob sTT pSS ≤≤ )( *          … (7) 329 

Given the water supply release is very small (35 MCM) compared to the hydropower release, we 330 

considered climatological probability for ps (= 0.5) which implies that the target storage could be 331 
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violated 50% of the time under the retrospective forecast-based analysis.  Reducing ps will result 332 

in reduced releases for hydropower resulting in increased spill from the reservoir.  333 

Prior to performing the retrospective reservoir analyses using the streamflow forecasts, 334 

we performed model verification from 1991 to 2005 by comparing the reservoir model’s ability 335 

to simulate the observed end of June storages. The simulations were performed by forcing the 336 

model with the observed flows during AMJ and initial storages in April to determine the end of 337 

the June storages by allocating the reported releases for water hydropower generation. Figure 3b 338 

shows the observed and model predicted stages at the end of June—the end of the season stage. 339 

The observed and modeled storages obtained from the reservoir model were converted into 340 

stages using the available stage–storage relationship for the Masinga Reservoir. From Figure 3b, 341 

we understand that the developed model is quite reasonable in predicting the observed June 342 

storages upon simulation with observed flows and the reported hydropower and water supply 343 

releases. This gives the confidence in employing the simulation model presented here for further 344 

analyses that utilize the seasonal streamflow forecasts from two models for improving water and 345 

energy management. 346 

In this study, we consider three inflow forecasting schemes (a) streamflow developed 347 

using ECHAM4.5 precipitation forecasts, (b) multimodel precipitation forecasts obtained by 348 

combining five GCMs from the ENSEMBLES project and (c) climatological ensemble. Each 349 

scheme provides 500 members/realizations for a given season indicating the conditional 350 

distribution of the inflows into the Masinga Dam. The climatological ensemble for each season is 351 

obtained by leaving out the particular year’s observation from the observed inflow (1940-2005) 352 

with the remaining 70 years having equal chances of getting selected in the ensemble. This is 353 

reasonable, since the lag-1 correlation on the seasonal flows is almost zero. For each of the 354 
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forecasting schemes, we first obtain the ps. Based on the end of the season target storage 355 

probabilities estimated from climatological forecasts (accepted climatological risks), we explore 356 

the possibilities of modifying the releases from current releases to increase the power generated 357 

during above normal storage conditions and impose restrictions during below normal storage 358 

conditions. For instance, if the climate-information based forecasts (i.e., schemes (a) and (b)) 359 

suggests lower (higher) probability of *
T TS S≤ is lesser than 0.5, then we increase (decrease) the 360 

releases such that ps =0.5.  Thus, we obtain revised releases for the single model and multimodel 361 

inflow forecasts as well as for the climatological ensemble by ensuring ps = 0.5 for each year 362 

during 1991-2005. Using the revised releases for each of the three forecasting schemes, we run 363 

the reservoir model with the observed inflows to obtain the end of the season target storages. The 364 

basis for comparing the performance of the three forecasting schemes is based on the end of the 365 

season target storages, spill and generated hydropower by combining the releases that ensures 366 

ps=0.5 under the three forecasting schemes with the observed inflows for the period 1991-2005.  367 

This retrospective analysis similar to our previous studies (Golembesky et al., 2009; 368 

Sankarasubramanian et al., 2009) provides us an understanding on what would have happened if 369 

the candidate inflow forecasts were applied over the period 1991-2005. 370 

 371 

4.0 Results and Analysis 372 

This section presents the retrospective analyses for understanding the utility of single 373 

model and multimodel inflow forecasts in improving the hydropower generation for the Masinga 374 

Dam utilizing the three candidate forecasting schemes. Since the multimodel forecasts are 375 

available only up to 2005, all the results presented in this section consider the period 1991-2005 376 
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for multimodel forecasts, whereas results for single model forecasts and climatological ensemble 377 

are presented for the period 1991-2005. 378 

4.1 End of the Season Target Storage Probabilities 379 

To begin with, we first evaluate the ability of the three candidate forecasting schemes in 380 

estimating the probability of meeting the June and December storage for the reported seasonal 381 

releases from Masinga over the period 1991-2005 without constraining the releases being ps=0.5. 382 

Given that most of the reservoirs can hold water for more than the seasonal demand, the entire 383 

demand could be met with 100% reliability. However, we can modify the reservoir releases by 384 

comparing the ability of the three forecasting schemes in estimating probability of meeting the 385 

end of the season target storage (Prob )( *
TT SS < ).  386 

Figure 4 shows the estimates of Prob )( *
TT SS <  for the three forecasting schemes where 387 

*
TS =1560 MCM and *

TS =1572 MCM for AMJ (Figure 4a) and OND (Figure 4b) seasons 388 

respectively. The probability estimates shown were obtained from each streamflow forecasting 389 

model and from climatological ensembles. Figure 4 also shows the observed streamflows (Qt )in 390 

each year suggesting their tercile category  (Qt < 0.33 percentile – Below-Normal (Obs_BN); Qt 391 

< 0.66 percentile — Above-normal (Obs_AN); otherwise — Normal (Obs)). Both Figures 4(a) 392 

(AMJ releases) and Figure 4(b) (OND releases) demonstrate that the estimates of Prob )( *
TT SS <  393 

vary depending on the forecasted streamflow potential by each model. Since all the three inflow 394 

forecasts were run with the same initial conditions recorded at the beginning of the season in the 395 

Masinga Dam, any difference in estimating the Prob )( *
TT SS <  among the forecasts should be 396 

primarily due to the skill of the inflow forecasts. 397 
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Figures 4a and 4b show clearly that the estimates of Prob )( *
TT SS <  from streamflow 398 

forecasts are above (lower) the estimates of Prob )( *
TT SS <  from climatological ensembles 399 

during below-normal (above-normal) inflow conditions, which indicates the skill of the inflow 400 

forecasts in predicting the observed inflows during the AMJ and OND seasons.  This is expected 401 

as the probability of attaining the end of the season target storage will be low (high) during 402 

below-normal (above-normal) inflow conditions.  We also observe that the estimates of 403 

Prob )( *
TT SS <  in Figures 4a and 4b differ for each streamflow forecast, as each forecasts exhibit 404 

different skill. During normal years (empty circles on the secondary Y axis), the difference 405 

between the estimates of Prob )( *
TT SS <   is very small indicating all the inflow forecasts from 406 

three schemes contain similar probabilistic information in predicting the season-ahead inflows. 407 

The only exceptions are during AMJ 1995 and AMJ 1997 under which the multimodel forecasts 408 

estimate Prob )( *
TT SS <  are very different from that of ECHAM4.5 based inflow forecasts and 409 

climatological ensemble.  410 

Comparing the performance of multimodel inflow forecasts with inflow forecasts 411 

developed using ECHAM4.5 precipitation forecasts, we infer that multimodel forecasts forecasts 412 

perform more consistently in indicating below-normal inflow storage conditions.   For instance, 413 

multimodel forecasts correctly estimate the Prob )( *
TT SS < in comparison to the climatological 414 

estimates of Prob )( *
TT SS < in year 1993, 1996 for the AMJ season and in year 2001 for the OND 415 

season in predicting the below-normal inflow season. Further, Prob )( *
TT SS < estimated using 416 

single model inflow forecasts are shown to be significantly higher (Figure 4) than that of 417 

multimodel estimate of Prob )( *
TT SS <  during above-normal and below-normal conditions. This 418 

is primarily due to the overconfidence of single model in predicting below-normal and above-419 



19 
 

normal conditions as reported by previous studies (Weigel et al., 2008; Devineni and 420 

Sankarasubramanian, 2010a). On the other hand, estimates of Prob )( *
TT SS < from multimodel 421 

forecasts are much closer to the climatological estimates of Prob )( *
TT SS <  since multimodel 422 

forecasts reduce the overconfidence of individual models resulting in reduced false alarms. Both 423 

multimodel and single model forecasts incorrectly estimate Prob )( *
TT SS <  for AMJ 2003 – an 424 

above-normal inflow season – with the model-based target storage probabilities being higher 425 

than climatological counterpart.  In general, having inflow forecasts from multiple models 426 

provides more confidence in developing appropriate scenarios for application.  We present in the 427 

next section a more detailed comparison on the performance of ECHAM4.5-based inflow 428 

forecasts and multimodel in improving the energy management. 429 

4.2 Hydropower generation for Masinga Reservoir utilizing Multimodel forecasts 430 

Though results showed in Figure 4 did not ensure ps = 0.5 for each forecasting scheme, 431 

the estimates of Prob )( *
TT SS <  obtained from the three models show their ability to change 432 

according to the nature of inflow conditions. For the next set of analysis, we ensure ps = 0.5 such 433 

that releases from the reservoir could be adjusted so that the desired end of the season target 434 

storage probability is maintained. The basis behind this analysis is that the user accepts risk of 435 

meeting the target storage based on climatological inflows derived using observed inflows. The 436 

idea is that releases (Figure 5) are adjusted by ensuring the ps = 0.5 for both forecasted and 437 

climatological inflows and then those releases are validated by estimating the actual hydropower 438 

generation (Figure 6), spill (Figure 7) and the end of the season storage (Figure 8) that could 439 

have occurred based on the the actual inflows during the season.  440 

Given that ps = 0.5 for each season in a given year, we utilize the three forecasting 441 

schemes to modify the reservoir releases to increase (reduce) hydropower generation if the 442 
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inflow forecasts suggest above normal (below normal) conditions. For instance in AMJ 1998 443 

(above normal inflow year), in Figure 4, estimates of Prob )( *
TT SS <  are almost zero for both 444 

single model and multimodel forecasts indicating that the probability of attaining the target 445 

storage is very high. Hence, given that the accepted risk in meeting the target storage (ps) is 0.5, 446 

one can increase the water releases (determined from the reservoir simulation model) for 447 

hydropower generation to meet the target storage constraint. Similarly, during AMJ 2000 (below 448 

normal inflow year), since both forecast models suggest that the probability of meeting the target 449 

storage is very low, we can enforce restrictions on the releases for hydropower to ensure ps =0.5. 450 

Such information on reduced potential of generating hydropower could be utilized for increasing 451 

the firm power generation from other systems. 452 

 The main intent of this study is to understand the utility of multimodel streamflow 453 

forecasts in improving the water allocation for hydropower generation. For this purpose, the 454 

AMJ /OND multimodel inflow forecasts are utilized to modify the releases for hydropower 455 

generation over the three month period in the season during 1991-2005 by enforcing the end of 456 

the season storage constraint to be equal to 0.5. We used the observed storage on March 31 457 

(September 30) of each year during 1991 – 2005 as the initial storage (St-1) for AMJ (OND) 458 

season. By combining the streamflow forecasts,(qtk), issued in March (September) with the 459 

observed storage at the end of March (September), we obtain releases for hydropower use, Rh
t, 460 

by constraining ps = 0.5 in equation (7). The revised releases that constraints ps= 0.5 are 461 

combined with the observed inflows to infer what could have happened on the generated 462 

hydropower and in meeting the target storage if the forecast-suggested inflows were used as the 463 

allocation policy for the season. 464 
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 Figure 5 shows the estimated difference in the releases obtained using climatological 465 

ensemble (forecasting scheme c) to the releases suggested by the single model and multimodel 466 

forecasts for improving hydropower generation for AMJ (Figure 5a) and OND (Figure 5b) 467 

seasons over the period 1991 – 2005. The releases for all the three forecasting schemes are 468 

obtained by ensuring ps= 0.5. The figure also shows the actual observed inflow during the period 469 

as below normal, normal or above normal condition on the secondary Y-axis. A positive 470 

(negative) change indicates that the model suggests higher probability of not meeting the target 471 

storage resulting in reduced (increased) release from the climatological ensembles predicted 472 

releases. From figure 5, we observe that single model and multimodel forecasts suggest an 473 

increase (decrease) in releases compared to during above normal (below normal) inflow years. 474 

Further, we can also see that the multimodel forecasts suggest more water release during above 475 

normal years compared to single model forecasts. Similarly, during below normal years, the 476 

multimodel forecasts suggest more reduction in release from the actual observed release 477 

compared to SM forecasts. 478 

 Given that the Masinga reservoir is primarily operated for hydropower generation, we 479 

also estimated the amount of hydropower (in GWH) that results each year from operating the 480 

reservoir based on the seasonal forecasts. In other words, we combine the model determined 481 

releases with observed inflows to simulate to actual amount of hydropower that is generated 482 

based on the storage – elevation relationship of the reservoir. Figure 6 shows the estimated 483 

change in generated hydropower from the reservoir from both the forecasts. Analogous to Figure 484 

5, we can observe from Figure 6 that the forecasts suggest an increase (decrease) in generated 485 

hydropower during above normal (below normal) inflow years. It is important to note that the 486 

increase in hydropower generated during the above normal years results from an increased 487 
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allocation of water for power generation. This also in turn results in a reduced spill from the 488 

reservoir during above normal inflow years. The estimated spill each year for both the seasons is 489 

shown in Figure 7. We observe that for most of the years the spill obtained from the forecast 490 

models is lesser than the spill suggested by the climatological ensemble. This indicates that the 491 

model is actually releasing additional water for hydropower generation during above-normal 492 

years.  493 

 We can always increase the allocation for any use by allocating additional water. But, 494 

such an increase should not come at the cost of failing to meet the target storage. To evaluate 495 

whether the changes in releases do not result in increased/decreased storage at the end of the 496 

season, we show the simulated end of season (June (Figure 8a) and December (Figure 8b)) 497 

storages from 1991 -2005 by combining the forecast-suggested releases from both the models 498 

with the observed flows. We observe that during below normal years the simulated end of season 499 

storage is lesser than the target storage (ST*). From Figure 8, it is clear that the multimodel 500 

forecasts suggested releases keep the storages very close to the target storage in comparison to 501 

the storages obtained using the single model forecasts and the climatological ensemble. The only 502 

exceptions are during AMJ 2004 and AMJ 2005 where the multimodel forecasts suggest an 503 

increased release resulting in a storage that is lesser than the target storage. This is a clear case of 504 

multimodel forecasts failing to estimate the target storage. During the rest of the years on both 505 

seasons, multimodel forecasts estimate the storages closer to the target storage.  506 

The retrospective reservoir analysis presented in this study can be utilized to determine 507 

the appropriate seasonal releases in conjunction with the future streamflow potential. If the 508 

forecasts suggest an above normal inflow year, then the Prob )( *
TT SS <  will be lower than its 509 

climatological probability, forecasts based allocation would facilitate the opportunity to relax the 510 
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restrictions and thereby release more water for hydropower generation and reduce downstream 511 

flood risk. In other words, the reservoir operators can consider additional releases such that the 512 

forecasts based estimates of Prob )( *
TT SS <  are equal to its climatological probability of ps=0.5. 513 

Similarly, during below normal years, one can consider the options of enforcing restrictions on 514 

the releases to ensure the end of season target storage is met with a probability equal to 515 

climatological probability. By suggesting a reduction in hydropower generation during below 516 

normal inflow years, the system’s resilience in rebounding to normal operation is improved by 517 

hedging additional water to meet future demand. 518 

Discussion: 519 

 Results from the multimodel climate forecasts improve the forecast skill by reducing the 520 

overconfidence of individual models (Weigel et al. 2008; Devineni et al. 20010ab). The intent of 521 

this study is to utilize them in applying them for improving reservoir management. For this 522 

purpose, we considered multimodel precipitation forecasts developed by Devineni et al. (2010b) 523 

for developing seasonal inflow forecasts into Masinga Reservoir in the Tana River basin, Kenya.  524 

Inflow forecasts developed from multimodel and ECHAM4.5 clearly show that multimodel 525 

forecasts have improved skill in predicting the observed flows (Figure 3). Utilizing analyses 526 

presented in Figure 4 clearly show that multimodel forecasts reduces the overconfidence of 527 

individual model forecasts and also reduces false alarms (e.g., year 1996 in Figure 4a). Except 528 

very few instances (OND 1991 in Figure 4b), multimodel forecasts perform better than 529 

ECHAM4.5 model-based inflow forecasts in many years (e.g.,  OND 1995 in Figure 4b) 530 

compared to individual model forecasts. It is important to note that for both seasons, AMJ and 531 

OND, multimodel forecasts are developed two months (February for AMJ and August for OND) 532 

ahead of individual model forecasts, which are issued at the beginning of the season. Another 533 
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advantage in using multiple models for analyzing the storage probabilities is during normal 534 

years. It is very clear from our analysis that the storage probabilities are around a smaller range 535 

indicating that a normal or business-as-usual operation could be pursued.   536 

 Analyses in Figures 5-7 show that inflow forecasts from climate models could be 537 

adjusted to meet the climatological probability of meeting the target storage (ps = 0.5). However, 538 

our modeling framework facilitates target-storage probability based on stakeholder’s choice of 539 

interest. However, for such selected probabilities, inflow forecasts should be carefully analyzed 540 

to ensure the forecasts being well-calibrated indicating a good correspondence between forecast 541 

probabilities and their observed relative frequencies (Devineni et al. 2008). Such careful analyses 542 

on inflow forecasts based on user-selected target-storage probabilities would reduce 543 

apprehensions on utilizing climate-information based streamflow forecasts for improving water 544 

and energy management.  Our analyses from Figure 8 also show that forecasts-based allocation 545 

ensures meeting the target storages in both seasons. Since Figure 8 is obtained by combining 546 

forecasts-based releases with the observed inflows, it is a validation of the performance of inflow 547 

forecasts in meeting the target storage as well as improving the hydropower generation. The 548 

lessons from this study also have potential applications for basins in the Southeast US. This is 549 

primarily because both regions (GHA and Southeast) are semi-arid and the river basins are 550 

predominantly belonging to rainfall-runoff regime. From hydroclimate perspectives too, 551 

Southeast experiences dry and warm winter during La Nino conditions as like the Tana River 552 

basin. Our hydroclimatology research group in collaboration with the State Climate Office of NC 553 

has developed an online portal (http://www.nc-climate.ncsu.edu/inflowforecast) for 554 

disseminating both the inflow forecasts from multiple models and the storage forecasts for the 555 

user-specified releases. Our hope is that as multiple climate models are analyzed in developing 556 
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seasonal forecasts, providing online access to both inflow and storage forecast scenarios will 557 

result in real-time evaluation and application of climate-information based streamflow forecasts 558 

for improving reservoir operations in regions that are significantly impacted by climate 559 

variability. 560 

 561 

5.0 Summary and Conclusions 562 

A reservoir simulation model that uses ensembles of streamflow forecasts is presented 563 

and applied for improving the water allocation and thereby the energy management for the 564 

Masinga Reservoir in Tana River basin in Kenya. The Masinga Reservoir located in the upper 565 

Tana River Basin is extremely important in supplying the power requirements of the country as 566 

well as in protecting the downstream ecology of the Tana River System. The Dam serves as the 567 

primary storage reservoir, controlling streamflow through a series of downstream hydro-electric 568 

reservoirs. Prolonged droughts of 1999-2001 in the Tana River basin due to La Nina related 569 

conditions resulted in power shortages and prolonged power rationing in Kenya. In this study, we 570 

utilize reservoir inflow forecasts downscaled from monthly updated precipitation forecasts from 571 

ECHAM4.5 forced with constructed analogue SSTs and multimodel precipitation forecasts 572 

developed from ENSEMBLES project to improve the seasonal water allocation during April-573 

June (AMJ) and October-December (OND) seasons for the Masinga reservoir in Kenya. Three-574 

month ahead  inflow forecasts developed from ECHAM4.5, multiple General Circulation Models 575 

(GCMs) and climatological ensemble are forced into a reservoir simulation model to allocate 576 

water for power generation by ensuring climatological probability of meeting the end of the 577 

season target storage that is required to meet the water demands during non-rainy seasons. The 578 

forecasts based releases are then combined with observed inflows to estimate storages, spill and 579 
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generated hydropower from the system. Retrospective reservoir analysis shows that inflow 580 

forecasts developed from single GCM and multiple GCMs perform better than climatology 581 

reduce the spill considerably by increasing the allocation for hydropower during above-normal 582 

inflow years. Similarly, during below-normal inflow years, both these forecasts could be 583 

effectively utilized to meet the end of the season target storage by restricting the releases of 584 

water for power generation uses. Comparing the performance of inflow forecasts developed from 585 

multimodels with the inflow forecasts developed using ECHAM4.5 alone, we infer that the 586 

multimodel forecasts preserves the end of the season target storage better in comparison to the 587 

single model forecasts by reducing the overconfidence of individual model forecasts. Thus, 588 

considering multiple models for seasonal water allocation reduces the uncertainty related to a 589 

single model and provides the inflow forecasts with reduced model uncertainty for improving 590 

water and energy allocation.  591 
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List of Figures 705 

Figure 1: (a) Location of the Upper Tana River Basin in Kenya with letters representing the 706 

following dams: A – Kiambere, B – Kindaruma, C – Gitaru, D – Kamburu, and E - Masinga, and 707 

(b) Seasonal variation of the AMJ and OND total inflows into Masinga Dam (1947 – 2005). 708 

Figure 2: Comparison between the observed and predicted inflows into Masinga Dam using 709 

Single (SM) and Multimodel (MM) for (a): AMJ and (b) OND seasons. 710 

Figure 3: (a) Masinga Operational Rule Curves, and (b) Comparison between observed (Obs) 711 

and simulated (Sim) June end storage.  712 

Figure 4: Comparison between climatology and inflow-forecast based estimates of failure 713 

probabilities in meeting (a) June (Jun) end storage and (b) December (Dec) end storage for single 714 

model (SM) and Multimodel (MM). Empty circles denote observed inflows during normal years 715 

(Obs), gray filled circles show inflows during below normal years (Obs_BN, less than 33rd 716 

percentile), and black filled circles show inflows during above normal years (Obs_AN, greater 717 

than 67th percentile). 718 

Figure 5: Estimated differences in releases suggested by the climatological ensembles to the 719 

releases obtained based on single model (SM) and multimodel (MM) forecasts for improving the 720 

hydropower generation at Masinga Dam during the (a) AMJ and (b) OND seasons. Empty circles 721 

denote observed inflows during normal years (Obs), gray filled circles show inflows during 722 

below normal years (Obs_BN, less than 33rd percentile), and black filled circles show inflows 723 

during above normal years (Obs_AN, greater than 67th percentile).  724 

Figure 6: Estimated change in electrical power generation at Masinga Dam during the (a) AMJ 725 

and (b) OND season using Single Model (SM) and Multimodel (MM). Empty circles denote 726 

observed inflows during normal years (Obs), gray filled circles show inflows during below 727 
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normal years (Obs_BN, less than 33rd percentile), and black filled circles show inflows during 728 

above normal years (Obs_AN, greater than 67th percentile).  729 

Figure 7: Comparison between the observed and predicted spill for the (a) AMJ and (b) OND 730 

seasons Dam using Single Model (SM) and Multimodel (MM). 731 

Figure 8: Comparison between the (a) June end and (b) December end storage for Single Model 732 

(SM) and Multimodel (MM). Empty circles denote observed inflows during normal years (Obs), 733 

gray filled circles show inflows during below normal years (Obs_BN, less than 33rd percentile), 734 

and black filled circles show inflows during above normal years (Obs_AN, greater than 67th 735 

percentile).  736 

737 
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Table 1: Details of CGCMs considered from the ENSEMBLES project for developing 738 
multimodel forecasts for this study. 739 
 740 

Ocean Model Atmospheric Model Institution Reference 

HOPE IFS CY31R1 ECMWF Balmaseda et al. (2008) 

HadGEM2-O HadGEM2-A UKMO Collins et al. (2008) 
OPA8.2 ARPEGE4.6 

 
MF Daget et al. (2009) 

MPI-OMI ECHAM5 IFM-GEOMAR Keenlyside et al. (2005) 
OPA8.2 ECHAM5 CMCC-INGV Weisheimer et al. (2009) 

 741 
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Figure 1: (a) Location of the Upper Tana River Basin in Kenya with letters representing the 

following dams: A – Kiambere, B – Kindaruma, C – Gitaru, D – Kamburu, and E - Masinga, and 

(b) Seasonal variation of the AMJ and OND total inflows into Masinga Dam (1947 – 2005). 

Filled stars in Figure 1a indicate the selected grid points of multimodel forecasts and open stars 

indicate the selected grid points of ECHAM4.5 GCM. 
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Figure 2: Comparison between the observed and predicted inflows into Masinga Dam using 

Single (SM) and Multimodel (MM) for (a): AMJ and (b) OND seasons. 
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Figure 3: (a) Masinga Operational Rule Curves, and (b) Comparison between observed (Obs) 

and simulated (Sim) June end storage  
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Figure 4: Comparison between climatology and forecast estimates of failure probabilities in 

meeting (a) June (Jun) end storage and (b) December (Dec) end storage for single model (SM) 

and Multimodel (MM). Empty circles denote observed inflows during normal years (Obs), gray 

filled circles show inflows during below normal years (Obs_BN, less than 33
rd

 percentile), and 

black filled circles show inflows during above normal years (Obs_AN, greater than 67
th

 

percentile)  
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Figure 5: Estimated changes in water releases for power generation at Masinga Dam during the 

(a) AMJ and (b) OND seasons using single model (SM) and multimodel (MM). Empty circles 

denote observed inflows during normal years (Obs), gray filled circles show inflows during 

below normal years (Obs_BN, less than 33
rd

 percentile), and black filled circles show inflows 

during above normal years (Obs_AN, greater than 67
th

 percentile)  
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Figure 6: Estimated change in electrical power generation at Masinga Dam during the (a) AMJ 

and (b) OND season using Single Model (SM) and Multimodel (MM). Empty circles denote 

observed inflows during normal years (Obs), gray filled circles show inflows during below 

normal years (Obs_BN, less than 33
rd

 percentile), and black filled circles show inflows during 

above normal years (Obs_AN, greater than 67
th

 percentile)  
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Figure 7: Comparison between the observed and predicted spill for (a) AMJ and (b) OND 

seasons using Single Model (SM) and Multimodel (MM).  
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Figure 8: Comparison between the (a) June end and (b) December end storage for Single Model 

(SM) and Multimodel (MM). Empty circles denote observed inflows during normal years (Obs), 

gray filled circles show inflows during below normal years (Obs_BN, less than 33
rd

 percentile), 

and black filled circles show inflows during above normal years (Obs_AN, greater than 67
th

 

percentile).  
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