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Abstract

The Masinga Reservoir located in the upper Tana River Basimyakes extremely
important in supplying country’s hydropower and protecting downstreanoggcolhe Dam
serves as the primary storage reservoir, controlling streantfimugh a series of downstream
hydro-electric reservoirs. The Masinga dam’s operation isatrucmeeting the power demands
thus contributing significantly to the country’s economy. La Ninateel prolonged droughts of
1999-2001 resulted in severe power shortages in Kenya. Therefore, &estseamflow
forecasts contingent on climate information are essentiatitoae pre-season water allocation.
Here, we utilize reservoir inflow forecasts downscaled fromntimly updated precipitation
forecasts from ECHAMA4.5 forced with constructed analogue SSTs altidhadel precipitation
forecasts developed from ENSEMBLES project to improve watecalon during April-June
(AMJ) and October-December (OND) seasons for the MasingavogseThree-month ahead
inflow forecasts developed from ECHAMA4.5, multiple GCMs and clinogfichl ensemble are
ingested into a reservoir model to allocate water for power geretsy ensuring climatological
probability of meeting the end of the season target storage edqtarmeet seasonal water
demands. Retrospective reservoir analysis shows that inflow ftsedageloped from single
GCM and multiple GCMs perform better than climatology by reay¢he spill and increasing
the allocation for hydropower during above-normal inflow years. Simjlddying below-normal
inflow years, both these forecasts could be effectively utilipechéet the end of the season
target storage by restricting releases for power generati@nmtitimodel forecasts preserves
the end of the season target storage better than the single mitmigl forecasts by reducing

uncertainty and the overconfidence of individual model forecasts.
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1.0 Introduction

Recent studies focusing on the teleconnection between Sea Siefaperature (SST)
conditions and regional/continental hydroclimatology show that interhrand interdecadal
variability in exogenous climatic indices modulate both global eeglonal scale rainfall
(Ropelewski and Halpert, 1987) and streamflow pattemg,Dettinger and Diaz, 2000;
Piechota and Dracup, 1996). Advancement in understanding the linkages betogenoas
climatic conditions such as tropical SST anomalies to locabina@gihydroclimatology offer the
scope of predicting season ahead and long-lead time (12 to 18 mdrghs)flow (Maurer and
Lettenmaier, 2003; Souza and Lall, 2003). Considerable improvement in thef silasonal
climate forecasts over the last decade has also been acusgwvgdhe slowly evolving boundary
conditions such as SSTs in the tropical oceans (Goddard et al. 2003)n&dasecasts of
streamflow could also be utilized effectively for multipurposeewatiocation and to prepare
adequate contingency measures to mitigate hydroclimatic dsafnisin et al. 2006;
Georgakakos and Graham, 2008; Golembesky et al. 2009). Hence, the iappbtatlimate
based information for water management has been shown to reisuttroved benefits over the
long term in comparison to the benefits that would be obtainable under evadts
(climatology) based operation. Still, application of climateefasts for improving water
management faces various challenges partly due to the ainteith climate forecasts (Pagano
et al. 2001; Pagano et al. 2002) as well as due to the challengremsiating probabilistic
forecasts for operational guidance (Sankarasubramanian et al. 2009).

Recent studies on operational streamflow forecasts development bhowgerasonal
streamflow forecasts downscaled from monthly updated climagedsts are quite effective in

reducing the uncertainty in intra-seasonal water allocationk¢gBasubramanian et al. 2008;



83 Sankarasubramanian et al. 2009). Efforts to reduce uncertainty iateliiorecasts have also
84 focused on combining climate forecasts from multiple climate md&ajagopalan et al. 2002;
85 Devineni and Sankarasubramanian, 2010a, 2010b). Recent studies based on multimodel
86 combination approach indicate better streamflow forecastingtekih any individual forecast
87 model as the skill of the multimodel ensembles is maximizedsisigning optimal weights to
88 each GCM (Robertson et al. 2004; Devineni et al. 2010a, 2010b). Studies ltasbais the
89 utility of multimodel streamflow forecasts derived from lowaginsional models in invoking
90 restrictions and water conservation measures during drought ((@alesmbesky et al. 2009).
91 Low dimensional models primarily employ the dominant modes of biéitain the predictors
92 (e.g., precipitation forecasts from GCMs) to explain the vargbih the predictand (e.g.,
93 precipitation/streamflow). For instance, Golembesky et al. (2008izedt probabilistic
94 multimodel streamflow forecasts to invoke water-use resiristfor improving the operation of
95 Falls Lake reservoir, Neuse basin during below normal inflow yéame important usefulness
96 of multimodel climate forecasts is in reducing the overconfideriandividual models resulting
97 in lesser false alarms and missed targets (Devineni and r@ankeamanian, 2010a; Weigel et
98 al. 2008). This has important implications since multimodel clinfiatecasts can increase the
99 confidence of stakeholders towards application of climate information for maieagement.
100 The main intent of this study is to evaluate the performahgeaobabilistic streamflow
101 forecasts developed from single General Circulation Model (G&1id)from multimodel climate
102 forecasts in improving the hydropower generation for the Tana Ba&n, Kenya. Tana River
103 basin accounts for about 57% of the total hydropower generated iraKaayour analysis is
104 focused on the Masinga Reservoir system, which accounts for aboubf6if# total storage

105 capacity in the Tana River basin. For developing the reservamirifirecasts, the study utilizes
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3-month ahead precipitation forecasts from ECHAMA4.5 General Cimuldfiodel (GCM)
forced with constructed analogue SST forecasts and the multimodatecforecasts developed
from the study of Devineni and Sankarasubramanian (2010a). The reseavn@gement model
adopted here is a simplified version of the dynamic allocatiomeveork reported by
Sankarasubramanian et al. (2009).

The manuscript is organized as follows: Section 2 provides basedorenation on the
Tana River basin and its linkage to EI-Nino Southern OscillationS@Nalong with the
seasonal streamflow forecasts developed from ECHAM4.5 and fratimodel climate
forecasts. Following that, we present a brief description of theinga reservoir simulation
model and the retrospective reservoir analyses design. Sectiomgares the utility of
streamflow forecasts derived from ECHAMA4.5 and multiple clemabdels with climatology in
improving the hydropower generation from the Masinga reservoirllfgina Section 5, we

summarize the findings of the study and also give conclusions.

20 Hydroclimatology of the Tana basin and Streamflow For ecasts Development

Kenya experienced major extreme climatic events in ¢ksent past such as EI-Nifio
related floods in 1997/1998 and 2009/2010 and La Nifa related droughts in 1999/2000 and
2008/2009, which led to severe socio-economic impacts in the country. Spbcifradequate
rainfall during the prolonged 1999-2000 drought led to severe watertgcanci shortage in
electrical power supply causing serious power rationing throughoaothsry. In particular, the
estimated losses in hydropower generation and industrial produatiertodwater shortage
during the 1999/2000 drought were over 2 billion US dollars (Mongaka et al., 2008). S

enormous losses related to the extreme events underscoresdhe translate the climate based



129 streamflow forecasts information into planning, risk management dmuision-making to
130 minimize socio-economic impacts and to meet increased energy demands i faeurea

131 Kenya is highly dependent on hydropower which constitutes over 75%eofotal
132 electricity generated in the country. The bulk of this eldtgris obtained from five generating
133 plants along the Upper Tana River Basin (Figure 1a), namelinyaé40 MW), Kamburu (94.2
134 MW), Kindaruma (44 MW), Gitaru (225 MW) and Kiambere (156 MW), tatliicknown as the
135 Seven-Forks Dams (See Figure la). Kenya Electricity Generabimgp&hy Limited (KenGen) is
136 the leading electric power generation company in Kenya produdbogit a80 percent of
137 electricity from hydropower. The Masinga Dam, the uppermostuaisgecontrols the flow of
138 water through a series of downstream hydro-electric regsernvidie Masinga catchment area lies
139  between 0°Z1°15S and 36°33-37°46E and has an area of about 7,354 Kfihe reservoir has
140 a capacity of 1,560 million Pfnat Full Supply Level (FSL) with a surface area 120’ .Kithe
141  spillway for Masinga dam is 1,056.5 meters above mean sdaneioh corresponds to the FSL.
142 The minimum operating level is 1,035.0 meters above mean sea |&asla River basin
143 experiences bimodal precipitation pattern and accordingly dominant seasbns occur during
144 April — Mary—June (AMJ) and October — November — December (OND3e@ed inflows at
145 the Masinga Dam are available from 1940 to till date. InflowsnduAMJ, which are heavily
146 influenced by SST variations in the Indian Ocean (Mutai and Ward, 200®yibute more than
147 46% of the total annual inflows into the dam (Figure 1b). Inflowsnduthe OND season
148 account for 26% of the annual flows and its interannual variationsigméicantly associated
149 with ENSO variations (Mutai and Ward, 2000). The correlation betwzdb flows and JAS
150 (July-August-September) Nino3.4, a commonly used index denoting ENSO igcosdithich

151 indicate the average SSTs over 170 W-120W and 5S-5N, over the 1947-2005 period is 0.42. This
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strong association between SST and inflows indicates the potentiaking climate forecasts
for developing season-ahead inflow forecasts for the Tana River basin.

Seasonal streamflow forecasts based on exogenous climaesiedit be obtained using
both dynamical and statistical modeling approaches. The dyrnamockeling involves coupling
of a hydrological model with a Regional Climate Model (RCKattpreserves the boundary
conditions specified by the General Circulation Models (GCM)dnsitlering the topography of
a region (e.g., Leung et al., 1999; Nijssen et al., 2001). However, aintgpropagation from
the coupling of these models (Kyriakidis et al. 2001) and converting tidded
streamflow/precipitation forecasts into reservoir inflow foréxgsose serious challenges in
employing dynamical downscaling for water management apipliia On the other hand,
statistical modeling basically employs statistical modeldownscale GCM outputs to develop
streamflow forecasts at a desired location (Gangophadhyaly, €085). Studies have also
related well-known climatic modes to observed streamflow in andoeation using a variety of
statistical models ranging from simple regression (e.g., letaand Lettenmaier, 1999) to
complex methods such as linear discriminant analysis (Piechath, &1001), spatial pattern
analysis (Sicard et al., 2002), and semi-parametric resamplatgges (Souza and Lall, 2003).
Although both approaches have their advantages and limitationsjcsthtistdeling approach is
the least data intensive and is very relevant in regions suclemgaKwhere high resolution
spatial data to run regional climate and hydrologic models are not readlbbéaia
2.1  Multimodel Inflow Forecasts Development using Multimodel Climate For ecasts

The primary intent of this paper is to utilize inflow forecat#seloped using multimodel
climate forecasts and compare their performance with infloncéste developed using single

GCMs and with climatological inflows. Recent studies on redutiveguncertainty of climate
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forecasts shows that combining multiple models result in reducsgldilrms and missed targets

resulting in improved probabilistic climate forecasts (Rajagopalaal., 2002; Devineni and
Sankarasubramanian, 2010b). In this study, we utilize the multimodapipaon forecasts
developed by Devineni and Sankarasubramanian (2010b) for developing mulltimitale
forecasts for the Masinga reservoir. The multimodel precipitaforecasts for the AMJ and
OND seasons are developed by combining five coupled GCMs (CGaMsglimatology (i.e.
observed precipitation) based on the methodology described in Devineni
Sankarasubramaniam (2010b). The precipitation forecasts from muttgaels along with the
climatology are combined by analyzing the skill of the candidgatelels contingent on the
Nino3.4 state. The main advantage of combining multiple GCMs condittontde predictors’
state is that the approach assigns higher weights for clioggt@nd lower weights for the
CGCMs particularly if the skill of a candidate model is poor unE@EISO conditions. For
additional details and a complete discussion on the multimodel combimagittrodology, see
Devineni and Sankarasubramaniam (2010a, 2010b).

Retrospective precipitation forecasts from the European Union’'s EIBEES project
(Weisheimer et al. 2009) were used to develop the multimodel ftsemas the Masinga River
Basin. Table 1 provides details on the five CGCMs considered in t8&MBLES experiment
for developing multimodel precipitation forecasts. Seven-month ahesmbpettive climate
forecasts were developed ofl Bebruary, T May, T August and ¥ November for the period
1960-2005 using the respective months’ initial conditions. For this studyconmsidered
CGCMs’ SST forecasts and precipitation forecasts issued Gelruary (I August) to develop
multimodel precipitation forecasts. For instance, monthly pretimiteforecasts issued in™'1

February (1 August) for the period AMJ (OND) are converted into teroileetasts for each

and



198 CGCM and the tercile forecasts are combined based on the Deamgr8ankarasubramanian
199 (2008) algorithm to develop the multimodel tercile forecasts. Given the ter(txiiatpjhties,PFti'j
200 , with ‘i’ (1= below-normal, 2=normal and 3= above normal) denoting the teraitgories,j’
201 (1= AMJ and 2= OND) indicating the season andenoting the year of forecast over the period
202 1960-2005, we estimated the conditional mggnand conditional variances', of the forecast
203 using equations (1) and (2) by assuming the conditional distributiomoamal. Given
204 climatological 3% and 67" percentilesP®3* landP*" ! for a given season, we used the tercile
205 probabilities issued for a given season in a particular yearitoatés the condition mean and

206 variance by solving the simultaneous equations in (1) and (2).

207 PO - =z
t
208 (1)
0.67,j
209 PU—'Ut = Zt (2)
t

210 The standard normal variates)and z>', are obtained based on the inverse of the cumulative
211 distribution function of the standard normal distribution with the resmeatumulative
212 probabilities, CE*' = PE” and CE*' = PE" + PE? | being computed based on the tercile

213 precipitation forecasts. Once we obtain the conditional mgarand conditional variance,

214 we can generate realizations from the normal distribution. The caomalitimean of the

215 multimodel forecast over the Masinga catchment area over foupgindis (Figure 1a) and the
216 previous month streamflov):.;, were used as predictors in the principal component regression
217 to develop the inflow forecasts for the Masinga Dam. We captereote of initial land surface

218 conditions by using the previous month streamflow as a predictor idogewg streamflow
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forecasts. Filled stars in Figure la indicate the seleaiddpgints of multimodel precipitation
forecasts and open stars indicate the selected grid points of faamiforecasts from the
ECHAM4.5 GCM. We considered principal components regression, sincerieas$ts from
these four grid points were correlated. All the GCMs from EMBEES experiment and
ECHAMA4.5 atmospheric GCM were almost at the same resolution. Our previousstndined

the individual CGCMs precipitation forecasts to develop multimodel precipitatiendsis.

To compare the performance of multimodel climate forecasts, alse consider
precipitation forecasts from a single GCM — ECHAMA4.5 forced withstructed analogue SSTs.
Retrospective precipitation forecasts from ECHAMA4.5 are availal IRl for 7 months in
advance for every month beginning Januaryl957 with a resolution ofX288
(http://iridl.Ideo.columbia.edu/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecastdsd.ensemble24/.
MONTHLY/.prec/). To force the ECHAMA4.5 with SST forecasts, agrective monthly SST
forecasts were developed based on the observed SST conditions inottitat based on the
constructed analogue approach. For additional details on ECHAM4.pifaton forecasts, see

Li and Goddard (2005) hftp://iri.columbia.edu/outreach/publication/report/05-02/report05-

02.pd). The ensemble mean which is computed from 24 realizations of EIZHA
precipitation forecasts obtained based on different initial conditiaass downloaded over the
Masinga catchment area from IRI data library for the period -P@85B6. We utilize the ensemble
mean of precipitation forecasts issued at the beginning ofaing seasons (April — May — June
(AMJ) and October — November — December (OND)), Aptilhd October %, along with the
previous month streamflow (March/September) as additional predicidrough this result in
comparison of precipitation forecasts from multimodels and ECHAM4.&vo different lead

times, from the perspective of water management, the allocation de@ssonsually done at the

10



242 beginning of the season. Thus, in the context of application, the Ipgdt snodel forecast
243 available at the beginning of the season is used.

244  Principal Components Regression (PCR): Since the gridded precipitation forecasts over a

245 given region are spatially correlated, employing precipitativadasts from multiple grid points
246 as predictors would raise multicollinearity issues in developingabeession. PCR, which is a
247 commonly employed approach in Model Output Statistics (MOS)k8/Ni1995), eliminates
248 systematic errors and biases in GCM fields and also redalbti@e principal components (PCs)
249 of GCM fields to predict the hydroclimatic variable of instrasing regression analyses. In this
250 context, the predictand is the streamfl&y) (over the season (AMJ/OND) and the predictors are
251 the previous month streamflov(;) and the ensemble mean of precipitation forecasts from
252 ECHAMA4.5 GCM or the multimodel ensemble mean obtained using equdfiprend (2).
253 Using the principal components of the predictors, we developed regresktionship based on

254  equation (2):

255 In(Qt):ﬁ0+Zﬁj* PG +§& (3)
k=1

256 whereQ denotes the observed streamflow during the AMJ/OND season ift'yeRC denotes

257 the k'th PCs from the retaineK' PCs of precipitation forecasts ar,tfﬂs denote the regression

258 coefficients whose estimates are obtained by minimizing tine sl squares of error. We
259 employed step-wise regression to sel&tPCs out of the rotated grid points of precipitation for
260 developing the PCR model.

261 Using principal components regression (PCR), we developed simaglel (SM) inflow
262 forecasts and multimodel (MM) inflow forecasts to obtain the lemeout cross-validated

263 mean seasonal (conditional mean) streamflow forecasts foANtde(OND) season. Using the

11
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point forecast error obtained from the PCR, we obtained the conditianahce of the seasonal
streamflows to develop the probabilistic reservoir inflow forecd@esidual analyses of the PCR
based on the quantile plots and skewness test on the residuals show#te thatmality
assumption is valid. This indicates that the seasonal flows dure@\MJ and OND season
could be assumed as a log-normal distribution. Based on this assynyeiateveloped 500
ensembles of the seasonal streamflows in log-space usingrbéi@nal mean and the point
forecast error obtained from the PCR. These ensembles are eyemtaredformed back to the
original space for developing the probabilistic inflow forecakts tould be forced with the
Masinga reservoir model.

Figure 2a (2b) show the conditional mean of the SM and MM sebstreamflow
forecasts for the period 1991 — 2005 developed based on the ECHAM4.5 and multimodel
precipitation forecasts for the AMJ (OND) seasons. All thectsts for the single model
(multimodel) in Figure 2 are obtained in a leave-one-out crosdatali mode using the
observed flows and the predictors for the period 1961-2005 (1961 — 2005). Since the multimodel
climate forecasts from ENSEMBLES project are available aplyfo 2005, we have evaluated
the skill of the multimodel inflow forecasts only up to 2005. Thetimsd-igure 2 shows the
verification statistics for the multimodel (single model) inflderecasts based on correlation
coefficient and root mean square error computed between the enseadrieof the forecasted
streamflow and the observed streamflow over the period 1961-2005 (1961-2005).iducer2f
we observe that the multimodel streamflow forecasts slighgljorm better than the single
model forecasts in predicting the conditional mean. It is impottanbte that the single model
inflow forecasts for the AMJ and OND seasons were developed @Bimgnth ahead

ECHAMA4.5 precipitation forecasts issued at the beginning oil Apd October respectively. On

12



287 the other hand, the multimodel precipitation forecasts issued betfiening of I February and

288 1% August were employed in developing the AMJ and OND inflow fastscavhich results in a
289 lead time of two months for both seasons. We ingest these deaveut cross-validated
290 probabilistic streamflow forecasts available to the probabilisservoir simulation model over
291 the period 1991 — 2005 for evaluating the utility of streamflow foteasveloped from single
292 model and multimodel precipitation forecasts in improving the water and enenggement for

293 the Masinga Reservoir.

294

295 3.0 MasingaReservoir Simulation Model

296 The reservoir simulation model used here is a simplified versitimeodetailed dynamic

297 water allocation framework presented in Sankarasubramaniam(20@9). Given seasonal-(
298 month lead) streamflow forecasts (as ensembtgsind initial reservoir storags,,, at the
299 beginning of the allocation period, the reservoir simulation modelrrdigtes the seasonal
300 releaseR" and Rfor hydropower generation and city of Nairobi water supply resmdyt
301 Here,t =1, 2, . .. N denotes the forecast yeamd=(otal number of years of retrospective

302 forecasts; 1991-2005 for multimodel forecasts and 1991-2005 for ECHAMA4.5 dowg)cal

303 andk =1, 2,...,K index represents a particular realization within the ensembladdition, the
304 water allocation model incorporates an end of the season targegestSfa(T denoting the
305 forecast lead time in months) that is associated with aréagrobabilityps. For instance, in the
306 case of Masinga reservo8; corresponds to the target storage of 1572 MCM (1560 MCM) at

307 the end of June (December) for meeting the demand during the mottiHewvrainfall. Figure
308 3a shows the operational rule curves for the Masinga Dam. ltrgnigasic continuity equation,

309 the seasonal storage equations for each ensemble miearbarpdated for the forecasting year

13



310 §,=8,*+d- E- R- R- SF . (4)
311 where seasonal storage equations are constrained so that the storageers thetwenimum and

312 maximum possible storag&mn andSyax respectively

313 S, =min(S{,,Sw), St =max(Sf,,S,n) ... (5)
314 SR, is the spill which occurs ifSf, > Snax and could be obtained based on the

315 constraints from equations (4) and (5). The release for hydropB&t is converted into net

316 hydropowerHP; generated from the turbines based on the elevation storagiensig of the

317 reservoir. EvaporationE* is also computed as a function of average storage during the season
318 using the water spread area and storage information of the reservoir specifjedtiare(6).

319 E =¢,0,((Sux +Sri)/2)* .. (6)

320 wherey; = seasonal evaporation rate aidand d, = coefficients describing the area—storage
321 relationship. We employed spline interpolation technique for obtainingvétter spread area

322 corresponding to the average season storage computed for each enkeminigportant to note

323 that the evaporation is evaluated implicitly for each realizatiothe ensemble. The estimated

324 average evaporation ratg;X = 0.402 mm and 0.502 mm for the AMJ and OND seasons

325 respectively.

326 The objective is to determii®, such that the probability of having the end of the season
327 storageS;,, less than the target storag§,, is small which is represented by its failure
328 probability (Prob)ps, using

329 Prob(S, <S;)<p, (7)

330 Given the water supply release is very small (35 MCM) compar#te hydropower release, we

331 considered climatological probability fog = 0.5) which implies that the target storage could be
14
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violated 50% of the time under the retrospective forecast-basdybes. Reducinggwill result
in reduced releases for hydropower resulting in increased spill froragbevoir.

Prior to performing the retrospective reservoir analyses ubmgtreamflow forecasts,
we performed model verification from 1991 to 2005 by comparing thevaesenodel’s ability
to simulate the observed end of June storages. The simulations werenpd by forcing the
model with the observed flows during AMJ and initial storagesprilAo determine the end of
the June storages by allocating the reported releases far hyatropower generation. Figure 3b
shows the observed and model predicted stages at the end of June—théherskason stage.
The observed and modeled storages obtained from the reservoir modetongested into
stages using the available stage—storage relationship for thegsld&eservoir. From Figure 3b,
we understand that the developed model is quite reasonable in predietindpserved June
storages upon simulation with observed flows and the reported hydropodewater supply
releases. This gives the confidence in employing the simulataziel presented here for further
analyses that utilize the seasonal streamflow forecaststivormodels for improving water and
energy management.

In this study, we consider three inflow forecasting schemest{@amflow developed
using ECHAMA4.5 precipitation forecasts, (b) multimodel precipitatioredasts obtained by
combining five GCMs from the ENSEMBLES project and (c) cliohagical ensemble. Each
scheme provides 500 members/realizations for a given season mglich& conditional
distribution of the inflows into the Masinga Dam. The climatological ensembladébr season is
obtained by leaving out the particular year’'s observation from thenadas inflow (1940-2005)
with the remaining 70 years having equal chances of gettingtaglen the ensemble. This is

reasonable, since the lag-1 correlation on the seasonal floWsastazero. For each of the

15



355 forecasting schemes, we first obtain the Based on the end of the season target storage
356 probabilities estimated from climatological forecasts (a@kptimatological risks), we explore
357 the possibilities of modifying the releases from current selgdo increase the power generated
358 during above normal storage conditions and impose restrictions during heloval storage

359 conditions. For instance, if the climate-information based fore¢asts schemes (a) and (b))
360 suggests lower (higher) probability & < Sis lesser than 0.5, then we increase (decrease) the

361 releases such that §0.5. Thus, we obtain revised releases for the single model atichadel
362 inflow forecasts as well as for the climatological ensenlyieensuring p= 0.5 for each year
363 during 1991-2005. Using the revised releases for each of the theeagting schemes, we run
364 the reservoir model with the observed inflows to obtain the end oé#s®s target storages. The
365 basis for comparing the performance of the three forecastivegres is based on the end of the
366 season target storages, spill and generated hydropower by combiniredetiees that ensures
367 p<=0.5 under the three forecasting schemes with the observed irifiowe period 1991-2005.
368 This retrospective analysis similar to our previous studies (@mdsky et al., 2009;
369 Sankarasubramanian et al., 2009) provides us an understanding on what wotldppered if
370 the candidate inflow forecasts were applied over the period 1991-2005.

371

372 4.0 Resaultsand Analysis

373 This section presents the retrospective analyses for understahdingility of single
374 model and multimodel inflow forecasts in improving the hydropower géinerfor the Masinga
375 Dam utilizing the three candidate forecasting schemes. Sincentittmodel forecasts are

376 available only up to 2005, all the results presented in this sectiomeoitise period 1991-2005
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for multimodel forecasts, whereas results for single modetéste and climatological ensemble
are presented for the period 1991-2005.
4.1  End of the Season Target Storage Probabilities

To begin with, we first evaluate the ability of the three candiflatecasting schemes in
estimating the probability of meeting the June and Decembexgstdor the reported seasonal
releases from Masinga over the period 1991-2005 without constrainingléases beings$0.5.
Given that most of the reservoirs can hold water for more tharetsmisal demand, the entire
demand could be met with 100% reliability. However, we can modifyabkervoir releases by

comparing the ability of the three forecasting schemes ima&tstg probability of meeting the

end of the season target storage (R&b<S; ). )
Figure 4 shows the estimates of P{8p< S; fo) the three forecasting schemes where

S;=1560 MCM and S;=1572 MCM for AMJ (Figure 4a) and OND (Figure 4b) seasons

respectively. The probability estimates shown were obtaireed €ach streamflow forecasting
model and from climatological ensembles. Figure 4 also shows teeveldsstreamflowsd; )in
each year suggesting their tercile categofy <(0.33 percentile — Below-Normal (Obs_BN);

< 0.66 percentile — Above-normal (Obs_AN); otherwise — Normal (OB®}h Figures 4(a)
(AMJ releases) and Figure 4(b) (OND releases) demonstitéhe estimates of Pr¢®, <S; )

vary depending on the forecasted streamflow potential by eadkInSince all the three inflow

forecasts were run with the same initial conditions recordétedteginning of the season in the
Masinga Dam, any difference in estimating the R®b< S. anjong the forecasts should be

primarily due to the skill of the inflow forecasts.
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Figures 4a and 4b show clearly that the estimates of(BrobS, fron) streamflow

forecasts are above (lower) the estimates of ok S, froin climatological ensembles

during below-normal (above-normal) inflow conditions, which indicatesskie of the inflow
forecasts in predicting the observed inflows during the AMJ and @&#3ons. This is expected
as the probability of attaining the end of the season tatgetige will be low (high) during

below-normal (above-normal) inflow conditions. We also observe timat estimates of
Prob(S; < S, ) in Figures 4a and 4b differ for each streamflow forecast, as eadasts exhibit
different skill. During normal years (empty circles on theoselary Y axis), the difference
between the estimates of P& < S, i$ very small indicating all the inflow forecasts from

three schemes contain similar probabilistic information in predjdine season-ahead inflows.

The only exceptions are during AMJ 1995 and AMJ 1997 under which the multifooslsasts
estimate ProfS, <S; )are very different from that of ECHAM4.5 based inflow forecastd

climatological ensemble.
Comparing the performance of multimodel inflow forecasts witflow forecasts
developed using ECHAMA4.5 precipitation forecasts, we infer thaimmdel forecasts forecasts

perform more consistently in indicating below-normal inflow steragnditions. For instance,
multimodel forecasts correctly estimate the R&b< S, in gomparison to the climatological
estimates of ProfB, <S. i) year 1993, 1996 for the AMJ season and in year 2001 for the OND
season in predicting the below-normal inflow season. Further,(8rebS; estimjated using
single model inflow forecasts are shown to be significantly migkeure 4) than that of
multimodel estimate of Prd$, <S; during above-normal and below-normal conditions. This

is primarily due to the overconfidence of single model in predjckielow-normal and above-
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420 normal conditions as reported by previous studies (Weigel et al., 208@nebi and

421 Sankarasubramanian, 2010a). On the other hand, estimates ¢6Ps08, from multimodel

422 forecasts are much closer to the climatological estimatéra¥(S, < S; ) since multimodel
423 forecasts reduce the overconfidence of individual models resultinguceaé false alarms. Both
424 multimodel and single model forecasts incorrectly estimate (Sob S;) for AMJ 2003 — an

425 above-normal inflow season — with the model-based target storagebiit@sabeing higher
426 than climatological counterpart. In general, having inflow forecastism multiple models
427 provides more confidence in developing appropriate scenarios for ajgplicadVe present in the
428 next section a more detailed comparison on the performance of E@IBAMsed inflow
429 forecasts and multimodel in improving the energy management.

430 4.2  Hydropower generation for Masinga Reservoir utilizing Multimodel forecasts

431 Though results showed in Figure 4 did not ensyre @.5 for each forecasting scheme,

432 the estimates of Prql, <S; @btained from the three models show their ability to change

433 according to the nature of inflow conditions. For the next set dfsisawe ensuregs= 0.5 such
434 that releases from the reservoir could be adjusted so that tmeddesd of the season target
435 storage probability is maintained. The basis behind this analytiatishe user accepts risk of
436 meeting the target storage based on climatological inflows densiead observed inflows. The
437 idea is that releases (Figure 5) are adjusted by ensuringstle0.5 for both forecasted and
438 climatological inflows and then those releases are validatestioyjating the actual hydropower
439 generation (Figure 6), spill (Figure 7) and the end of the seasmayst(Figure 8) that could
440 have occurred based on the the actual inflows during the season.

441 Given thatps = 0.5 for each season in a given year, we utilize the tmeeasting

442 schemes to modify the reservoir releases to increase (redwde)power generation if the
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inflow forecasts suggest above normal (below normal) conditions.nStance in AMJ 1998
(above normal inflow year), in Figure 4, estimates of P8 S, are almost zero for both

single model and multimodel forecasts indicating that the probalufi attaining the target
storage is very high. Hence, given that the accepted risk inngehé target storagegfps 0.5,
one can increase the water releases (determined from skevoie simulation model) for
hydropower generation to meet the target storage constrainta@®ymauring AMJ 2000 (below
normal inflow year), since both forecast models suggest thardhability of meeting the target
storage is very low, we can enforce restrictions on the raldas@ydropower to ensurg $0.5.
Such information on reduced potential of generating hydropower couldlizedufor increasing
the firm power generation from other systems.

The main intent of this study is to understand the utility of imoldel streamflow
forecasts in improving the water allocation for hydropower gemerattor this purpose, the
AMJ /OND multimodel inflow forecasts are utilized to modityetreleases for hydropower
generation over the three month period in the season during 1991-2005 byngritoecend of
the season storage constraint to be equal to 0.5. We used the obserage sh March 31
(September 30) of each year during 1991 — 2005 as the initial st@aydor AMJ (OND)
season. By combining the streamflow forecagt$,(issued in March (September) with the
observed storage at the end of March (September), we obtaaseelor hydropower usi’},
by constrainingps = 0.5 in equation (7). The revised releases that constrpmt®.5 are
combined with the observed inflows to infer what could have happened on rikeatgel
hydropower and in meeting the target storage if the forecggested inflows were used as the

allocation policy for the season.
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Figure 5 shows the estimated difference in the releasemedbtasing climatological
ensemble (forecasting scheme c) to the releases suggedtssl 9iIggle model and multimodel
forecasts for improving hydropower generation for AMJ (Figure && OND (Figure 5b)
seasons over the period 1991 — 2005. The releases for all the treeasfimg schemes are
obtained by ensurings= 0.5. The figure also shows the actual observed inflow during the period
as below normal, normal or above normal condition on the secondary .YAaxmsitive
(negative) change indicates that the model suggests higher prybaforiot meeting the target
storage resulting in reduced (increased) release from tmatclogical ensembles predicted
releases. From figure 5, we observe that single model and multifardeasts suggest an
increase (decrease) in releases compared to during above nioetoal tormal) inflow years.
Further, we can also see that the multimodel forecasts suggestwater release during above
normal years compared to single model forecasts. Similddgng below normal years, the
multimodel forecasts suggest more reduction in release fromacheal observed release
compared to SM forecasts.

Given that the Masinga reservoir is primarily operated farépower generation, we
also estimated the amount of hydropower (in GWH) that resuits year from operating the
reservoir based on the seasonal forecasts. In other words, weneothh®imodel determined
releases with observed inflows to simulate to actual amount dsbpgwer that is generated
based on the storage — elevation relationship of the reservoir. Figshews the estimated
change in generated hydropower from the reservoir from both the$tseénalogous to Figure
5, we can observe from Figure 6 that the forecasts suggestraase (decrease) in generated
hydropower during above normal (below normal) inflow years. itnigortant to note that the

increase in hydropower generated during the above normal years rigeait an increased
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allocation of water for power generation. This also in turn results reduced spill from the
reservoir during above normal inflow years. The estimatedesul year for both the seasons is
shown in Figure 7. We observe that for most of the years the smlhelltfrom the forecast
models is lesser than the spill suggested by the climatolagis&imble. This indicates that the
model is actually releasing additional water for hydropower gaorrauring above-normal
years.

We can always increase the allocation for any use byasithgcadditional water. But,
such an increase should not come at the cost of failing to met&trgje¢ storage. To evaluate
whether the changes in releases do not result in increasedggecstarage at the end of the
season, we show the simulated end of season (June (Figure 8a) ambBre¢Figure 8b))
storages from 1991 -2005 by combining the forecast-suggested refi@asdsoth the models
with the observed flows. We observe that during below normal yeassnindated end of season
storage is lesser than the target storag®).($rom Figure 8, it is clear that the multimodel
forecasts suggested releases keep the storages very clbsgdoget storage in comparison to
the storages obtained using the single model forecasts and tholdgital ensemble. The only
exceptions are during AMJ 2004 and AMJ 2005 where the multimodel ftsesaggest an
increased release resulting in a storage that is lessehth&arget storage. This is a clear case of
multimodel forecasts failing to estimate the target storBgeing the rest of the years on both
seasons, multimodel forecasts estimate the storages closer to the taaget st

The retrospective reservoir analysis presented in this samlye utilized to determine

the appropriate seasonal releases in conjunction with the futesmsélow potential. If the
forecasts suggest an above normal inflow year, then the(®rebS; will e lower than its

climatological probability, forecasts based allocation woutilifate the opportunity to relax the
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restrictions and thereby release more water for hydropgesmeration and reduce downstream

flood risk. In other words, the reservoir operators can consider adtlitedeases such that the
forecasts based estimates of Rigb< S, ar¢ equal to its climatological probability afp.5.

Similarly, during below normal years, one can consider the optiorsfofcing restrictions on
the releases to ensure the end of season target storage witmet probability equal to
climatological probability. By suggesting a reduction in hydropogemeration during below
normal inflow years, the system’s resilience in rebounding to noopexation is improved by
hedging additional water to meet future demand.

Discussion:

Results from the multimodel climate forecasts improve thecésteskill by reducing the
overconfidence of individual models (Weigel et al. 2008; Devineni eD8lL@ab). The intent of
this study is to utilize them in applying them for improvingergsir management. For this
purpose, we considered multimodel precipitation forecasts develgpedvineni et al. (2010b)
for developing seasonal inflow forecasts into Masinga Reservtiieiiana River basin, Kenya.
Inflow forecasts developed from multimodel and ECHAMA4.5 clearly shioa multimodel
forecasts have improved skill in predicting the observed flows (Ei@lr Utilizing analyses
presented in Figure 4 clearly show that multimodel forecashsces the overconfidence of
individual model forecasts and also reduces false alarms (eag.1986 in Figure 4a). Except
very few instances (OND 1991 in Figure 4b), multimodel forecastforpe better than
ECHAM4.5 model-based inflow forecasts in many years (e.g., QN86 in Figure 4b)
compared to individual model forecasts. It is important to note thdidibr seasons, AMJ and
OND, multimodel forecasts are developed two months (FebruaryMdrakd August for OND)

ahead of individual model forecasts, which are issued at the begininihg season. Another
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advantage in using multiple models for analyzing the storage prdiesbis during normal
years. It is very clear from our analysis that the storagleahilities are around a smaller range
indicating that a normal or business-as-usual operation could be pursued.

Analyses in Figures 5-7 show that inflow forecasts from até@mmodels could be
adjusted to meet the climatological probability of meeting tigetastorage = 0.5). However,
our modeling framework facilitates target-storage probaliédged on stakeholder’s choice of
interest. However, for such selected probabilities, inflow fatscshould be carefully analyzed
to ensure the forecasts being well-calibrated indicating a gooespondence between forecast
probabilities and their observed relative frequencies (Devinehi 2008). Such careful analyses
on inflow forecasts based on user-selected target-storage it@sabwould reduce
apprehensions on utilizing climate-information based streamflovedste for improving water
and energy management. Our analyses from Figure 8 also shdarétatsts-based allocation
ensures meeting the target storages in both seasons. Since &iguobtained by combining
forecasts-based releases with the observed inflows, it isdatrah of the performance of inflow
forecasts in meeting the target storage as well as imprakendnydropower generation. The
lessons from this study also have potential applications for basthe iSoutheast US. This is
primarily because both regions (GHA and Southeast) are semaagidthe river basins are
predominantly belonging to rainfall-runoff regime. From hydroelien perspectives too,
Southeast experiences dry and warm winter during La Nino conditioliseahe Tana River
basin. Our hydroclimatology research group in collaboration with e Siimate Office of NC

has developed an online portalhttp://www.nc-climate.ncsu.edu/inflowforecgst for

disseminating both the inflow forecasts from multiple models andtibrage forecasts for the

user-specified releases. Our hope is that as multiple climatkels are analyzed in developing
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seasonal forecasts, providing online access to both inflow and storagast scenarios will
result in real-time evaluation and application of climate-infoiomabased streamflow forecasts
for improving reservoir operations in regions that are significantipacted by climate

variability.

50 Summary and Conclusions

A reservoir simulation model that uses ensembles of streamfimedsts is presented
and applied for improving the water allocation and thereby the eneagyagement for the
Masinga Reservoir in Tana River basin in Kenya. The MasinganRa@sécated in the upper
Tana River Basin is extremely important in supplying the poeguirements of the country as
well as in protecting the downstream ecology of the Tana Riyge®. The Dam serves as the
primary storage reservoir, controlling streamflow through a sefi@ownstream hydro-electric
reservoirs. Prolonged droughts of 1999-2001 in the Tana River basin dueNmd aelated
conditions resulted in power shortages and prolonged power rationing in Kenya. In thisvstud
utilize reservoir inflow forecasts downscaled from monthly updateditation forecasts from
ECHAMA4.5 forced with constructed analogue SSTs and multimodeippegon forecasts
developed from ENSEMBLES project to improve the seasonal wdtemaabn during April-
June (AMJ) and October-December (OND) seasons for the Masiegevoir in Kenya. Three-
month ahead inflow forecasts developed from ECHAMA4.5, multiple General Cioculodels
(GCMs) and climatological ensemble are forced into a regesumiulation model to allocate
water for power generation by ensuring climatological proldgbdf meeting the end of the
season target storage that is required to meet the water deduaimgdg non-rainy seasons. The

forecasts based releases are then combined with observed itdflestsmate storages, spill and
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580 generated hydropower from the system. Retrospective reservdysianahows that inflow
581 forecasts developed from single GCM and multiple GCMs perfoettetbthan climatology
582 reduce the spill considerably by increasing the allocation ydrapower during above-normal
583 inflow years. Similarly, during below-normal inflow years, bothesé forecasts could be
584 effectively utilized to meet the end of the season targeageoby restricting the releases of
585 water for power generation uses. Comparing the performanoélaf iforecasts developed from
586 multimodels with the inflow forecasts developed using ECHAMA4.5 aloreenfer that the
587 multimodel forecasts preserves the end of the season targefesbatber in comparison to the
588 single model forecasts by reducing the overconfidence of individaalehforecasts. Thus,
589 considering multiple models for seasonal water allocation rediheesincertainty related to a
590 single model and provides the inflow forecasts with reduced modefrtamty for improving
591 water and energy allocation.
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Figure 1: (a) Location of the Upper Tana River Basin in Kenya witkete representing the
following dams: A — Kiambere, B — Kindaruma, C — Gitaru, D — Kamburd,E&- Masinga, and
(b) Seasonal variation of the AMJ and OND total inflows into Masinga Dam (1947 — 2005).
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(Obs), gray filled circles show inflows during below normal geé®bs BN, less than %3
percentile), and black filled circles show inflows during above nogmats (Obs_AN, greater
than 67" percentile).

Figure 5: Estimated differences in releases suggested by thmatoliogical ensembles to the
releases obtained based on single model (SM) and multimodel {d&tasts for improving the
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Figure 6. Estimated change in electrical power generation at Masingaddaing the (a) AMJ
and (b) OND season using Single Model (SM) and Multimodel (MM). Enoptles denote
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738 Table 1. Details of CGCMs considered from the ENSEMBLES project developing
739 multimodel forecasts for this study.

740
Ocean Model | Atmospheric Model Institution Reference
HOPE IFS CY31R1 ECMWF Balmaseda et al. (2008)
HadGEM2-O HadGEM2-A UKMO Collins et al. (2008)
OPA8.2 ARPEGE4.6 MF Daget et al. (2009)
MPI-OMI ECHAMbS IFM-GEOMAR | Keenlyside et al. (2005
OPA8.2 ECHAMS CMCC-INGV | Weisheimer et al. (2009)
741
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Figure 1: (a) Location of the Upper Tana River Basin in Kenya with letters representing the
following dams: A — Kiambere, B — Kindaruma, C — Gitaru, D — Kamburu, and E - Masinga, and
(b) Seasonal variation of the AMJ and OND total inflows into Masinga Dam (1947 — 2005).

Filled stars in Figure 1a indicate the selected grid points of multimodel forecasts and open stars
indicate the selected grid points of ECHAMA4.5 GCM.
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Figure 2: Comparison between the observed and predicted inflows into Masinga Dam using
Single (SM) and Multimodel (MM) for (a): AMJ and (b) OND seasons.
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Figure 3: (a) Masinga Operational Rule Curves, and (b) Comparison between observed (Obs)

and simulated (Sim) June end storage
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Figure 4. Comparison between climatology and forecast estimates of failure probabilities in
meeting (a) June (Jun) end storage and (b) December (Dec) end storage for single model (SM)
and Multimodel (MM). Empty circles denote observed inflows during normaldyears (Obs), gray
filled circles show inflows during below normal years (Obs_BN, less than 33" percentile), and
black filled circles show inflows during above normal years (Obs_AN, greater than 67"
percentile)
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Figure 5: Estimated changes in water releases for power generation at Masinga Dam during the
(a) AMJ and (b) OND seasons using single model (SM) and multimodel (MM). Empty circles
denote observed inflows during normal years (Obs), gray filled circles show inflows during
below normal years (Obs_BN, less than 33" percentile), and black filled circles show inflows
during above normal years (Obs_AN, greater than 67" percentile)
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Figure 6: Estimated change in electrical power generation at Masinga Dam during the (a) AMJ
and (b) OND season using Single Model (SM) and Multimodel (MM). Empty circles denote
observed inflows during normal years (Obs), gray filled circles show inflows during below
normal years (Obs_BN, less than 33" percentile), and black filled circles show inflows during
above normal years (Obs_AN, greater than 67" percentile)
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Figure 7: Comparison between the observed and predicted spill for (a) AMJ and (b) OND

seasons using Single Model (SM) and Multimodel (MM).
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Figure 8: Comparison between the (a) June end and (b) December end storage for Single Model
(SM) and Multimodel (MM). Empty circles denote observed inflows during normal years (Obs),
gray filled circles show inflows during below normal years (Obs_BN, less than 33" percentile),
and black filled circles show inflows during above normal years (Obs_AN, greater than 67"
percentile).



