
Implementing a MATLAB-based Self-Configurable
Software Defined Radio Transceiver

Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and
Miriam Leeser

Department of Electrical and Computer Engineering, Northeastern University,
360 Huntington Ave, Boston, MA 02115

{bdrozdenko@coe.neu.edu, rsubramanian@coe.neu.edu,
krc@ece.neu.edu, mel@coe.neu.edu}

Abstract. Software defined radio (SDR) transitions the communication signal
processing chain from a rigid hardware platform to a user-controlled paradigm,
allowing unprecedented levels of flexibility in parameter settings. However,
programming and operating such SDRs have typically required deep knowledge
of the operating environment and intricate tuning of existing code, which adds
delay and overhead to the network design. In this work, we describe a bi-
directional transceiver implemented in MATLAB that runs on the USRP
platform and allows automated, optimal selection of the parameters of the
various processing blocks associated with a DBPSK physical layer. Further, we
provide detailed information on how to create a real-time multi-threaded design
wherein the same SDR switches between transmitter and receiver functions,
using standard tools like the MATLAB Coder and MEX to speed up the
processing steps. Our results reveal that link latency and packet reception
accuracy are greatly improved through our approach, making it a viable first
step towards protocol design within an easily accessible MATLAB
environment.

Keywords. Software defined radio; DBPSK; MATLAB; MATLAB Coder;
MEX; Reconfigurable Computing.

1 Introduction

Software Defined Radio (SDR) is a means of making radio programmable and
multimodal. It’s a fundamental building block of dynamic spectrum access, in which
the radio can sense unused spectrum and dynamically alter its transmission
parameters to leverage this spectrum [1]. Apart from tunability in frequency, an SDR
may also alter its transmission power, modulation, specific algorithms for channel
estimation and packet decoding, among others, to best adapt to the changing
environment, thereby giving it a “cognitive” ability [6].

mailto:rsubramanian@coe.neu.edu,
mailto:krc@ece.neu.edu,
mailto:mel@coe.neu.edu

2 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and Miriam
Leeser

In addition, timing is an important concern that needs to be addressed. To properly
facilitate communications among nodes, a wireless system must be able to perform
operations in a specific amount of time, a multiple of some small time unit. For this
reason, we rely upon a construct that can send and receive a packet in a fixed slot
time.

In this paper, we propose a design approach that allows a user to solve the
following problems associated with SDRs.
 Complete knowledge of the processing chain: Instead of demanding a deep user-

knowledge in all aspects of signal processing (frequency compensation, automatic
gain control) and communication (modulation/demodulation, bit scrambling, error
detection), we allow the user to only insert a subset of parameters in MATLAB
based on need and comfort level. We set up an optimization program that is
executed in the initialization state, allowing an exhaustive search and detection of
the optimal settings for the remaining parameters.

 SDR processing latency: A general problem in SDRs is that software processing
is typically slow, as compared to hardware-executed instructions. Thus, not only
must a pair of data exchanging SDRs exhibit minimal packet errors (or be able to
recover from them), but also be able to complete the processing steps in real time.
This constraint introduces complex design tradeoffs where each block of the
transceiver needs to be optimized for minimum computational time at both ends.
Our design incorporates time optimizations enabled by MATLAB Coder and MEX
file generation, which considerably lowers processing time.

 Bi-directional communication challenges: Bi-directional data communication,
which is our goal, requires precise time synchronization in a SDR environment,
such that the transmitter is ready to receive incoming acknowledgements
immediately on completing its one-way data transfer. While the link layer accounts
for complete data frames, our design prefers a smaller USRP frame length to
process smaller chunks at a time. Thus, the link layer countdown timers must be
carefully set to allow for the additional lag in lower layer processing of the SDR.

Fig. 1. System Architecture

Implementing a MATLAB-based Self-Configurable Software Defined Radio
Transceiver 3

1.1 Design Overview

Our system architecture and operational steps are shown in Fig. 1. In the initialization
step, the system allows the user to set a set number of parameters for the entire
transceiver chain. We next begin a parameter exploration stage in a simulation-only
environment. The transmitter and receiver codes are executed with the user-supplied
parameters as constants, and all other possible variations (both in terms of the settings
of processing blocks as well as entire algorithms themselves) are considered. From
this a feasible set of parameter options are presented that give 99% accuracy in the
packet reception rate at the receiver. Note that this is a ‘best case’ scenario, as the
actual wireless channel will introduce further channel outages. Once the user selects
one of the possible feasible configurations returned by the search, the code is
transferred to the actual USRP radios for over-the-air experiments.

Our approach involves first designing a number of (i) state diagrams to reflect the
logical and time-dependent operational steps of our system and (ii) block diagrams to
reflect the sequential order of operations. Furthermore, we structure the MATLAB
code in a way that enables slot time-synchronized operations. For the eventual
implementation, we use MATLAB Coder to generate C code. Finally, we compiled
the C code into MEX executables that could be called directly from MATLAB on an
Ubuntu 64-bit platform that serves as the host computer for the USRPs.

2 Background and Related Work

2.1 Prior and Existing SDR programming tools

An SDR-based test-bed that implements a full-duplex OFDM physical layer and a
CSMA link layer along with some strategies for establishing bidirectional
communications is described [5]. It involves MATLAB R2013a, MATLAB Coder on
USRP-N210 and USRP2 hardware. The PHY layer, based on 802.11a, incorporates
timing recovery, frequency recovery, frequency equalization, and error checking. The
CSMA link layer involves carrier sensing based on energy detection and stop-and-
wait ARQ. However, this approach requires additional development efforts for
improving speed and enabling full-duplex.

2.2 IEEE 802.11 and 802.11b

We adopt the IEEE 802.11b physical and medium access control (MAC) layer
frame structure specifications in our implementation [9], with some modifications. In
MAC header information, we incorporate the Frame Control, Duration/ID, Address 1
and 2 (at 16 bits instead of 32), and Sequence Control. This approach maintains all
the MAC header information within 64 bits, which for us is one USRP frame.

4 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and Miriam
Leeser

2.3 Differential Binary Phase Shift Keying (DBPSK):

We use DBPSK as the differential component enables us to recover a binary sequence
from the phase angles of the received signal at any phase offset, without
compensating for phase. In addition, DBPSK requires only coarse frequency offset
compensation, without any close-loop techniques. If residual frequency offset is less
than DBPSK symbol rate, then the bit error rate (BER) approaches theoretical values.

3 Detailed System Design

To clearly identify the transmitting and receiving node for a given SDR pair, we use
the terms designated transmitter (DTx) and designated receiver (DRx). This avoids
ambiguity in describing a bi-directional communication link, where the transmitter
must complete its packet transfer and then switch to a receiver role to get the
acknowledgement (ACK). Thus, in the subsequent discussion, the DTx transitions
between transmitter and receiver functions alternatively, and vice versa happens for
the DRx.

3.1 State Diagrams

In implementing the CSMA/CA-based protocol at the intersection of the link and
physical layers, we identify 4 main states (Fig. 2) at the DTx.
1. Energy Detection State: At START, a new packet arrives, and gets stored in a

transmit buffer. The DTx begins sensing energy in the channel. The DTx decides
to move either to a backoff state or to a transmit state depending on whether the
channel is busy or not. A random amount of time is chosen uniformly from a
progressively increasing time interval. DTx continually senses the channel and
only when the channel is free, it decrements the backoff time, or freezes it
otherwise. When the backoff time counts down to zero, the DTx attempts to
transmit.

2. Transmit (Tx) state: In the transmit state, two possibilities exist. The transmission
is successful (with the reception of an ACK), or transmission is not successful due
to collision with transmissions (with no reception of ACK).

3. Receive (Rx) state: As soon as the transmission is completed, the DTx moves to Rx
state, searching and decoding the PLCP header in the received ACK. The DTx then
progresses to transmit a new frame and this continues till the last frame is
successfully transmitted. On the other hand, if no ACK is received, the DTx enters
the backoff state with an increased backoff time and re-attempts transmission.

4. End of transmission state: When transmission is successful, the DTx reaches the
end of transmission (EOT) state. Now, the DTx might remain idle or progress to
transmit another packet. In the latter case, the DTx re-sets its backoff time and
moves into the backoff state for that duration.

Implementing a MATLAB-based Self-Configurable Software Defined Radio
Transceiver 5

Fig. 2. State Chart for the Designated Transmitter (DTx)

Likewise, for the DRx we identified 3 main states.Unlike the DTx, the DRx does not
perform energy detection.

Fig. 3. State Chart for the Designated Receiver (DRx)

1. Receive (Rx) state: When the DRx succeeds in detecting the preamble, it decodes
the PHY and MAC header and then progresses to extract the payload. When
extracting the last set of payload bits, FCS is obtained and checked.

2. Tx ACK: The DRx sends out an ACK to the DRx when all the payload bits have
been successfully received.

3. DIFS: The DRx waits for a fixed interval of time before moving to the reception of
a new frame.

6 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and Miriam
Leeser

3.2 System Blocks

Within each of the substates in the state diagrams (Figs. 2 and 3), there are sequential
operations that need to be performed. In order to simplify the logic of which
operations must be performed in each state, we define a number of “blocks” to
comprise the most common operations:

Table 1. Common Combinations of Operations for a Substate

RFFE Radio Frequency Front End: Automatic Gain
Control (AGC), frequency offset estimation
and compensation, and raised cosine receive
filter (RCRF)

PD Preamble Detection: Find SYNC in received
USRP frames

DDD Despreading, Demodulation, and Descrambling
SMSRC Scrambling, Modulation, Spreading, and

Raised Cosine Transmit Filter (RCTF)
In each substate of DTx state 2 (Tx) and DRx state 2 (Tx ACK), SMSRC is

performed prior to each transceiver (send and receive operation). In DTx substate 3.1
and DRx substate 1.1, RFFE and PD are performed after each transceive. In DTx
substate 3.2 and DRx substates 1.2 to 1.5, RFFE and DDD are performed after each
transceive.

4. Algorithms for System Blocks

4.1 RFFE System Block Algorithms

The components of this block recover a signal prior to preamble detection. These
include the automatic gain control (AGC), frequency offset estimation and
compensation, and raised cosine filtering. The ordering of these components is an
important consideration, and through exhaustive simulations, we found the preceding
order to be ideal. The AGC algorithm counters attenuation by raising the envelope of
the received signal to the desired level. We chose to use a logarithmic loop method,
as described in equations 1, 2, and 3: [4]

y(n) = eg(n)x(n) . (1)

e(n) = ln(A) – ln(z(m)) . (2)

g(n + 1) = g(n) + K e(n) . (3)

where x is the input, y is the AGC output, z is the detector output, and K is the AGC
step size. We use a rectifier detector method, as described in equation 4: [4]

Implementing a MATLAB-based Self-Configurable Software Defined Radio
Transceiver 7

z(m) = (1/N) ∑n=mN |y(n)| (4)

where N is the AGC update rate.
To accurately estimate the frequency offset between the receiver and the

transmitter, we chose to use an FFT-based method that finds the frequency that
maximizes the FFT of the squared signal:

foffset = argmaxf ℱ{x2} (5)

where ℱ denotes the Fast Fourier Transform (FFT).

Fig. 4. The Three Stages of Preamble Detection: Coarse, Demodulated & SFD

4.2 PD System Block Algorithms

Preamble detection (PD) is performed in three stages, and we introduce a novel
method that results in high accuracy. In the first stage, we perform a cross-correlation
of the received complex data after raised cosine filtering to get an estimate of where
the preamble starts, to give the so called synchronization delay. In the second stage,
we compare the expected scrambled preamble to the demodulated bit stream. If they
are not equal, we correlate a window of demodulated bit stream samples to the left
and right of the maximum correlation index to fine-tune the synchronization delay.
Finally, in stage three, we look for the Start Frame Delimiter (SFD) immediately after
the preamble in the descrambled bit stream. If it is not in the expected place, we
correlate a window of descrambled frame samples to the left and right to further fine-
tune the synchronization delay (Fig. 4). Having multiple correlation stages ensures

St
ag

e
1

St
ag

e
2

St
ag

e
3

8 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and Miriam
Leeser

that we are able to find the preamble, and hence the start of the PLCP header
information, as accurately as possible. However, this accuracy involves a tradeoff in
the computational time.

4.2 Parameter Choices

There are a number of design parameters that must be carefully chosen (see Table 2),
which are obtained through the initialization step described in section 1.

Table 2. Parameter Choices

Param Block Description Value/
Range

Fixed/
Tunable

Ri, Rd USRP USRP Interpolation /
Decimation Factor 500 Fixed

Lf USRP USRP Frame Length 64 bits Fixed

Lp Frame #Octets per 802.11b
Frame Payload

2012
octets Fixed

K RFFE AGC Step Size 0.1 – 10 Tunable

N RFFE AGC Update Period 128 –
1408 Tunable

Δf RFFE Frequency
Resolution

1 – 16
Hz Tunable

4.2.1 Constant Parameters for USRP & 802.11b Frame
We recognize several parameters as being fixed because they cannot change during
the course of a transception. The USRP N210 analog-to-digital converter (ADC)
operates at a fixed rate of 100 MHz. The USRP interpolation-decimation rates
control the factor by which we would like to slow down the rate of transmitting and
receiveing frames. For example, setting Ri and Rd to 500 ensures that a sample is
processed every 500/100x106=5 μs. The USRP frame length should be minimized to
make quick decisions with a small number of samples or bits. The number of octets
per 802.11b frame payload should be maximized to decrease the header overhead.

4.2.2 Tunable Parameters for RFFE Block
Tunable parameters can be changed during the course of a transception. One example
is the AGC step size, given by K in equation (3), which should be set to higher values
for higher levels of attenuation or set low for lower attenuations. Another example is
the AGC update period, which controls how quickly a received signal’s envelope is
able to converge to the desired level. Finally, the frequency offset estimation
component’s Frequency Resolution setting is an important design consideration.
Since it is inversely proportional to the FFT length, a lower frequency resolution
gives more accurate offset estimates, but also takes longer to compute.

Implementing a MATLAB-based Self-Configurable Software Defined Radio
Transceiver 9

4.3 Code Structure

Any 802.11-style wireless transceiver implementation must have the availability to
perform operations based on some slot-based timing. We define this capability as time
slot-synchronized operations. For example, before sending a data frame, a station
must be able to wait for a backoff (BO) period. Interpreted MATLAB alone lacks the
ability to perform time-sensitive operations in this manner, even with actively
waiting. For this reason, we rely solely on the USRP for our timing. Our transceive
function performs two actions: it gets a frame from, and puts a frame into the USRP
buffers at fixed time intervals. Using the value for USRP interpolation/decimation
defined in Section 4.2, we can calculate the slot time. Then, we can write our main
program while loop so that it calls the transceive function once per loop, running
helper functions to prepare data to transmit or process received data based on the
active state, as shown in the following program code:

while ~endOfTransmission
 if (state==Tx)
 data2Tx = processData2Tx();
 end
 dataRxd = transceive(data2Tx);
 if (state==Rx)
 processRxdData(dataRxd);
 end
end

A slot time is defined as the smallest possible unit of time in which our SDR can
make a decision. Our system sends or receives a data frame every slot time. The
functions we define for processing the received data frame or preparing a new data
frame to transmit must complete in less than a slot time to ensure timing accuracy.

5 Experiments

We use the USRP N210 platform as it allows us to define the parameters listed in
Section 4.2, connect to a PC host using a gigabit Ethernet cable, and to use MATLAB
[2]. We use the Ubuntu OS set with maximum send and receive buffer sizes for
queues. This action ensures that there is enough kernel memory set aside for the
network Rx/Tx buffers. We also set the maximum real-time priority for the usrp
group to give high thread scheduling priority. The overall setup is given in Fig 5.

Fig. 5. Transceiver Hardware Setup

10 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and
Miriam Leeser

5.1 Communications System Toolbox USRP Support Package

We chose to use Communications System Toolbox System objects for the large part
of our design [4]. The comm.AGC System object provides two Detector methods and
two Loop methods whose functionality can be contrasted for received signals with
varying attenuations. In addition, the PSK coarse frequency offset estimator allows us
to shift between FFT-based options. These System objects facilitate easy generation of
C code using MATLAB Coder. Here, the comm.SDRuTransmitter System object puts
a frame on the USRP transmit buffer, and comm.SDRuReceiver gets a frame from the
USRP receive buffer. However, this approach has some disadvantages; e.g., the
frame length must now become fixed. Another issue is that running the step methods
for these System objects is that they’re single-threaded, whereas the USRP N210 is
multi-threaded. On a single clock cycle, this allows to get a frame from the receive
buffer or put a frame on the transmit buffer, but not both. Therefore, attempting to
write MATLAB code that runs a put and get sequentially will result in an
exponentially increasing delay, and eventually result in an overflow of the USRP
buffer. To avoid this delay, we plan to explore parallelism and make the transceive
function described in section 4.3 operate in a multi-threaded manner. We first
generate C code from the MATLAB function using MATLAB Coder.

5.2 MATLAB Coder

MATLAB Coder is used for generating C code. In order to make the MATLAB code
acceptable for C code generation, a number of actions must be taken beforehand. All
variables are given a static size and type (including real or complex) that does not
change in the course of the program. Since System objects cannot be passed into MEX
functions, all System objects are declared as persistent variables. The first call to each
function, tests whether the persistent variable is empty, and initializes each System
object if true. The function code for the transceive, RFFE, DDD, and SMSRC blocks
are all prepared in this same manner. We then compile the C code for each major
block into a MATLAB executable (MEX) file, which can be called directly from
MATLAB.

6 Results

The transceive function is at the core of our system design, since its ability to
simultaneously receive and transmit a USRP frame at a near-constant time interval is
key to our goal of slot time-synchronized operations. To compare its accuracy, we ran
2,000 time trials to see how long the transceive function takes from start to finish, and
how this time difference changes over the course of a longer data bitstream. The
timing using a transceive function in interpreted MATLAB and using C code
compiled into a MEX are compared in Fig. 6. The timing exhibits some deviation:
The function initially overshoots the expected time per USRP frame; on every
subsequent iteration it then undershoots to make up for the time difference. Note that

Implementing a MATLAB-based Self-Configurable Software Defined Radio
Transceiver 11

less undershooting is needed to compensate for initial overshoots, because the
overshoot amounts have reduced significantly. The reason for this is that the
MATLAB executable has more control over its timing.

Fig. 6. Transceive function timing for interpreted MATLAB vs. MEX

The timing of the RFFE block for various values of the frequency resolution
parameter in interpreted MATLAB and C code compiled into a MEX is shown in Fig.
7. We see that there is a general decrease in the average execution time for the RFFE
block with increase in frequency resolution. For low frequency resolution values, the
average execution time using MEX is longer than using interpreted MATLAB
because it needs to use very large FFT lengths. However, in all cases, the standard
deviation is always significantly less. Thus, MEX is a better option for the purpose of
enforcing consistent RFFE execution times, which is required for slot time-
synchronized operations.

Fig. 7. RFFE block timing using interpreted MATLAB and MEX

12 Benjamin Drozdenko, Ramanathan Subramanian, Kaushik Chowdhury, and
Miriam Leeser

Whereas the change to the frequency resolution parameter affects timing directly,
the AGC parameters control how well a signal can be recovered under various
attenuation levels. By performing a parameter sweep with different values for these
parameters, we determined that a step size of 1 and an update period of 1408
minimizes frame misdetection.

7 Conclusion

We conclude that building our design around the concept of slot time-synchronized
operations results in a system that adheres to our desired frame time and is able to
reconfigure parameter values as needed. Using MEX is essential for realizing timing
with little deviation from this frame time. In addition, using MEX is beneficial for
improving the speed consistency of our system blocks, most notably RFFE, which can
vary its frequency resolution parameter. As part of future work, we will continue
towards the complete design of the MAC functions as well as implement our
transceiver system design on the Xilinx Zynq-7000 All-Programmable System-on-
Chip (APSoC).

Acknowledgments

This work is supported by MathWorks under the Development-Collaboration
Research Grant A#: 1-945815398. We would like to thank Mike McLernon and
Ethem Sozer for their continued support on this project.

References

1 I. F. Akyildiz, S. Mohanty, M. C. Vuran, and V. Won-Yeol, “NeXt generation/dynamic
spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, vol.
500, no. 13, Sept. 2006.

2 Ettus Research, Inc. [Online]. “USRP N200/N210 Networked Series.”
3 IEEE Std 802.11-2009, “Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications.”
4 MathWorks Documentation. [Online] . “Communications System Toolbox Documentation.”

“USRP Support Package from Communications System Toolbox.”
5 Travis Collins, “Multi-Node Software Defined Radio TestBed”, NEWSDR 2014.
6 J. Mitola III and G. Q. Maguire, Jr., "Cognitive radio: making software radios more

personal," IEEE Personal Communications Magazine, vol. 6, nr. 4, pp. 13–18, Aug. 1999.
7 M. Luise and R. Reggiannini, "Carrier frequency recovery in all-digital modems for burst-

mode transmissions", IEEE Trans. Commun., vol. 43, no. 3, pp.1169 -1178 1995.

