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Abstract. Software defined radio (SDR) transitions the communication signal 
processing chain from a rigid hardware platform to a user-controlled paradigm, 
allowing unprecedented levels of flexibility in parameter settings. However, 
programming and operating such SDRs have typically required deep knowledge 
of the operating environment and intricate tuning of existing code, which adds 
delay and overhead to the network design. In this work, we describe a bi-
directional transceiver implemented in MATLAB that runs on the USRP 
platform and allows automated, optimal selection of the parameters of the 
various processing blocks associated with a DBPSK physical layer. Further, we 
provide detailed information on how to create a real-time multi-threaded design 
wherein the same SDR switches between transmitter and receiver functions, 
using standard tools like the MATLAB Coder and MEX to speed up the 
processing steps. Our results reveal that link latency and packet reception 
accuracy are greatly improved through our approach, making it a viable first 
step towards protocol design within an easily accessible MATLAB 
environment.  

Keywords. Software defined radio; DBPSK; MATLAB; MATLAB Coder; 
MEX; Reconfigurable Computing.  

1   Introduction 

Software Defined Radio (SDR) is a means of making radio programmable and 
multimodal. It’s a fundamental building block of dynamic spectrum access, in which 
the radio can sense unused spectrum and dynamically alter its transmission 
parameters to leverage this spectrum [1]. Apart from tunability in frequency, an SDR 
may also alter its transmission power, modulation, specific algorithms for channel 
estimation and packet decoding, among others, to best adapt to the changing 
environment, thereby giving it a “cognitive” ability [6].  
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In addition, timing is an important concern that needs to be addressed. To properly 
facilitate communications among nodes, a wireless system must be able to perform 
operations in a specific amount of time, a multiple of some small time unit. For this 
reason, we rely upon a construct that can send and receive a packet in a fixed slot 
time. 

In this paper, we propose a design approach that allows a user to solve the 
following problems associated with SDRs. 
  Complete knowledge of the processing chain: Instead of demanding a deep user-

knowledge in all aspects of signal processing (frequency compensation, automatic 
gain control) and communication (modulation/demodulation, bit scrambling, error 
detection), we allow the user to only insert a subset of parameters in MATLAB 
based on need and comfort level. We set up an optimization program that is 
executed in the initialization state, allowing an exhaustive search and detection of 
the optimal settings for the remaining parameters.  

  SDR processing latency: A general problem in SDRs is that software processing 
is typically slow, as compared to hardware-executed instructions. Thus, not only 
must a pair of data exchanging SDRs exhibit minimal packet errors (or be able to 
recover from them), but also be able to complete the processing steps in real time. 
This constraint introduces complex design tradeoffs where each block of the 
transceiver needs to be optimized for minimum computational time at both ends. 
Our design incorporates time optimizations enabled by MATLAB Coder and MEX 
file generation, which considerably lowers processing time. 

  Bi-directional communication challenges: Bi-directional data communication, 
which is our goal, requires precise time synchronization in a SDR environment, 
such that the transmitter is ready to receive incoming acknowledgements 
immediately on completing its one-way data transfer. While the link layer accounts 
for complete data frames, our design prefers a smaller USRP frame length to 
process smaller chunks at a time. Thus, the link layer countdown timers must be 
carefully set to allow for the additional lag in lower layer processing of the SDR.  

 

 
Fig. 1. System Architecture 
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1.1   Design Overview 

Our system architecture and operational steps are shown in Fig. 1. In the initialization 
step, the system allows the user to set a set number of parameters for the entire 
transceiver chain. We next begin a parameter exploration stage in a simulation-only 
environment. The transmitter and receiver codes are executed with the user-supplied 
parameters as constants, and all other possible variations (both in terms of the settings 
of processing blocks as well as entire algorithms themselves) are considered. From 
this a feasible set of parameter options are presented that give 99% accuracy in the 
packet reception rate at the receiver. Note that this is a ‘best case’ scenario, as the 
actual wireless channel will introduce further channel outages. Once the user selects 
one of the possible feasible configurations returned by the search, the code is 
transferred to the actual USRP radios for over-the-air experiments.  

Our approach involves first designing a number of (i) state diagrams to reflect the 
logical and time-dependent operational steps of our system and (ii) block diagrams to 
reflect the sequential order of operations. Furthermore, we structure the MATLAB 
code in a way that enables slot time-synchronized operations. For the eventual 
implementation, we use MATLAB Coder to generate C code. Finally, we compiled 
the C code into MEX executables that could be called directly from MATLAB on an 
Ubuntu 64-bit platform that serves as the host computer for the USRPs.  

2   Background and Related Work 

2.1   Prior and Existing SDR programming tools 

An SDR-based test-bed that implements a full-duplex OFDM physical layer and a 
CSMA link layer along with some strategies for establishing bidirectional 
communications is described [5]. It involves MATLAB R2013a, MATLAB Coder on 
USRP-N210 and USRP2 hardware. The PHY layer, based on 802.11a, incorporates 
timing recovery, frequency recovery, frequency equalization, and error checking. The 
CSMA link layer involves carrier sensing based on energy detection and stop-and-
wait ARQ. However, this approach requires additional development efforts for 
improving speed and enabling full-duplex.  

2.2   IEEE 802.11 and 802.11b 

We adopt the IEEE 802.11b physical and medium access control (MAC) layer 
frame structure specifications in our implementation [9], with some modifications. In 
MAC header information, we incorporate the Frame Control, Duration/ID, Address 1 
and 2 (at 16 bits instead of 32), and Sequence Control.  This approach maintains all 
the MAC header information within 64 bits, which for us is one USRP frame. 
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2.3   Differential Binary Phase Shift Keying (DBPSK):  

We use DBPSK as the differential component enables us to recover a binary sequence 
from the phase angles of the received signal at any phase offset, without 
compensating for phase. In addition, DBPSK requires only coarse frequency offset 
compensation, without any close-loop techniques.  If residual frequency offset is less 
than DBPSK symbol rate, then the bit error rate (BER) approaches theoretical values.   

3   Detailed System Design 

To clearly identify the transmitting and receiving node for a given SDR pair, we use 
the terms designated transmitter (DTx) and designated receiver (DRx). This avoids 
ambiguity in describing a bi-directional communication link, where the transmitter 
must complete its packet transfer and then switch to a receiver role to get the 
acknowledgement (ACK). Thus, in the subsequent discussion, the DTx transitions 
between transmitter and receiver functions alternatively, and vice versa happens for 
the DRx.  

3.1   State Diagrams 

In implementing the CSMA/CA-based protocol at the intersection of the link and 
physical layers, we identify 4 main states (Fig. 2) at the DTx. 
1. Energy Detection State: At START, a new packet arrives, and gets stored in a 

transmit buffer. The DTx begins sensing energy in the channel. The DTx decides 
to move either to a backoff state or to a transmit state depending on whether the 
channel is busy or not. A random amount of time is chosen uniformly from a 
progressively increasing time interval. DTx continually senses the channel and 
only when the channel is free, it decrements the backoff time, or freezes it 
otherwise. When the backoff time counts down to zero, the DTx attempts to 
transmit.  

2. Transmit (Tx) state: In the transmit state, two possibilities exist. The transmission 
is successful (with the reception of an ACK), or transmission is not successful due 
to collision with transmissions (with no reception of ACK).  

3. Receive (Rx) state: As soon as the transmission is completed, the DTx moves to Rx 
state, searching and decoding the PLCP header in the received ACK. The DTx then 
progresses to transmit a new frame and this continues till the last frame is 
successfully transmitted. On the other hand, if no ACK is received, the DTx enters 
the backoff state with an increased backoff time and re-attempts transmission.  

4. End of transmission state: When transmission is successful, the DTx reaches the 
end of transmission (EOT) state. Now, the DTx might remain idle or progress to 
transmit another packet. In the latter case, the DTx re-sets its backoff time and 
moves into the backoff state for that duration. 
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Fig. 2. State Chart for the Designated Transmitter (DTx) 

Likewise, for the DRx we identified 3 main states.Unlike the DTx, the DRx does not 
perform energy detection.  
 

 
Fig. 3. State Chart for the Designated Receiver (DRx) 

1. Receive (Rx) state: When the DRx succeeds in detecting the preamble, it decodes 
the PHY and MAC header and then progresses to extract the payload. When 
extracting the last set of payload bits, FCS is obtained and checked. 

2. Tx ACK: The DRx sends out an ACK to the DRx when all the payload bits have 
been successfully received.  

3. DIFS: The DRx waits for a fixed interval of time before moving to the reception of 
a new frame.  
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3.2   System Blocks 

Within each of the substates in the state diagrams (Figs. 2 and 3), there are sequential 
operations that need to be performed.  In order to simplify the logic of which 
operations must be performed in each state, we define a number of “blocks” to 
comprise the most common operations:  

Table 1. Common Combinations of Operations for a Substate 

RFFE Radio Frequency Front End: Automatic Gain 
Control (AGC), frequency offset estimation 
and compensation, and raised cosine receive 
filter (RCRF) 

PD Preamble Detection: Find SYNC in received 
USRP frames 

DDD Despreading, Demodulation, and Descrambling 
SMSRC Scrambling, Modulation, Spreading, and 

Raised Cosine Transmit Filter (RCTF) 
In each substate of DTx state 2 (Tx) and DRx state 2 (Tx ACK), SMSRC is 

performed prior to each transceiver (send and receive operation).  In DTx substate 3.1 
and DRx substate 1.1, RFFE and PD are performed after each transceive.  In DTx 
substate 3.2 and DRx substates 1.2 to 1.5, RFFE and DDD are performed after each 
transceive.  

4.   Algorithms for System Blocks 

4.1   RFFE System Block Algorithms 

The components of this block recover a signal prior to preamble detection. These 
include the automatic gain control (AGC), frequency offset estimation and 
compensation, and raised cosine filtering. The ordering of these components is an 
important consideration, and through exhaustive simulations, we found the preceding 
order to be ideal. The AGC algorithm counters attenuation by raising the envelope of 
the received signal to the desired level.  We chose to use a logarithmic loop method, 
as described in equations 1, 2, and 3: [4]  

y(n) = eg(n)x(n) . (1) 

e(n) = ln(A) – ln(z(m)) . (2) 

g(n + 1) = g(n) + K e(n) . (3) 

where x is the input, y is the AGC output, z is the detector output, and K is the AGC 
step size. We use a rectifier detector method, as described in equation 4: [4]  
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z(m) = (1/N) ∑n=mN |y(n)| (4) 

where N is the AGC update rate.  
To accurately estimate the frequency offset between the receiver and the 

transmitter, we chose to use an FFT-based method that finds the frequency that 
maximizes the FFT of the squared signal:  

foffset = argmaxf ℱ{x2} (5) 

where ℱ denotes the Fast Fourier Transform (FFT).  
 

 
Fig. 4. The Three Stages of Preamble Detection: Coarse, Demodulated & SFD 

4.2   PD System Block Algorithms 

Preamble detection (PD) is performed in three stages, and we introduce a novel 
method that results in high accuracy.  In the first stage, we perform a cross-correlation 
of the received complex data after raised cosine filtering to get an estimate of where 
the preamble starts, to give the so called synchronization delay. In the second stage, 
we compare the expected scrambled preamble to the demodulated bit stream.  If they 
are not equal, we correlate a window of demodulated bit stream samples to the left 
and right of the maximum correlation index to fine-tune the synchronization delay.  
Finally, in stage three, we look for the Start Frame Delimiter (SFD) immediately after 
the preamble in the descrambled bit stream. If it is not in the expected place, we 
correlate a window of descrambled frame samples to the left and right to further fine-
tune the synchronization delay (Fig. 4). Having multiple correlation stages ensures 
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that we are able to find the preamble, and hence the start of the PLCP header 
information, as accurately as possible. However, this accuracy involves a tradeoff in 
the computational time.  

4.2   Parameter Choices 

There are a number of design parameters that must be carefully chosen (see Table 2), 
which are obtained through the initialization step described in section 1.   

Table 2. Parameter Choices 

Param Block Description Value/ 
Range 

Fixed/ 
Tunable 

Ri, Rd USRP USRP Interpolation / 
Decimation Factor 500 Fixed 

Lf USRP USRP Frame Length 64 bits Fixed 

Lp Frame #Octets per 802.11b 
Frame Payload 

2012 
octets Fixed 

K RFFE AGC Step Size 0.1 – 10 Tunable 

N RFFE AGC Update Period 128 –
1408 Tunable 

Δf RFFE Frequency 
Resolution 

1 – 16 
Hz Tunable 

4.2.1   Constant Parameters for USRP & 802.11b Frame 
We recognize several parameters as being fixed because they cannot change during 
the course of a transception.  The USRP N210 analog-to-digital converter (ADC) 
operates at a fixed rate of 100 MHz.  The USRP interpolation-decimation rates 
control the factor by which we would like to slow down the rate of transmitting and 
receiveing frames.  For example, setting Ri and Rd to 500 ensures that a sample is 
processed every 500/100x106=5 μs. The USRP frame length should be minimized to 
make quick decisions with a small number of samples or bits. The number of octets 
per 802.11b frame payload should be maximized to decrease the header overhead.  

4.2.2   Tunable Parameters for RFFE Block 
Tunable parameters can be changed during the course of a transception.  One example 
is the AGC step size, given by K in equation (3), which should be set to higher values 
for higher levels of attenuation or set low for lower attenuations.  Another example is 
the AGC update period, which controls how quickly a received signal’s envelope is 
able to converge to the desired level. Finally, the frequency offset estimation 
component’s Frequency Resolution setting is an important design consideration.  
Since it is inversely proportional to the FFT length, a lower frequency resolution 
gives more accurate offset estimates, but also takes longer to compute.  
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4.3   Code Structure 

Any 802.11-style wireless transceiver implementation must have the availability to 
perform operations based on some slot-based timing. We define this capability as time 
slot-synchronized operations.  For example, before sending a data frame, a station 
must be able to wait for a backoff (BO) period.  Interpreted MATLAB alone lacks the 
ability to perform time-sensitive operations in this manner, even with actively 
waiting.  For this reason, we rely solely on the USRP for our timing.  Our transceive 
function performs two actions: it gets a frame from, and puts a frame into the USRP 
buffers at fixed time intervals. Using the value for USRP interpolation/decimation 
defined in Section 4.2, we can calculate the slot time. Then, we can write our main 
program while loop so that it calls the transceive function once per loop, running 
helper functions to prepare data to transmit or process received data based on the 
active state, as shown in the following program code:  

while ~endOfTransmission 
  if (state==Tx) 
    data2Tx = processData2Tx(); 
  end 
  dataRxd = transceive(data2Tx); 
  if (state==Rx) 
    processRxdData(dataRxd); 
  end 
end 

A slot time is defined as the smallest possible unit of time in which our SDR can 
make a decision.  Our system sends or receives a data frame every slot time.  The 
functions we define for processing the received data frame or preparing a new data 
frame to transmit must complete in less than a slot time to ensure timing accuracy.  

5   Experiments 

We use the USRP N210 platform as it allows us to define the parameters listed in 
Section 4.2, connect to a PC host using a gigabit Ethernet cable, and to use MATLAB 
[2]. We use the Ubuntu OS set with maximum send and receive buffer sizes for 
queues. This action ensures that there is enough kernel memory set aside for the 
network Rx/Tx buffers. We also set the maximum real-time priority for the usrp 
group to give high thread scheduling priority. The overall setup is given in Fig 5. 

 

 
Fig. 5. Transceiver Hardware Setup 
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5.1   Communications System Toolbox USRP Support Package 

We chose to use Communications System Toolbox System objects for the large part 
of our design [4]. The comm.AGC System object provides two Detector methods and 
two Loop methods whose functionality can be contrasted for received signals with 
varying attenuations. In addition, the PSK coarse frequency offset estimator allows us 
to shift between FFT-based options. These System objects facilitate easy generation of 
C code using MATLAB Coder. Here, the comm.SDRuTransmitter System object puts 
a frame on the USRP transmit buffer, and comm.SDRuReceiver gets a frame from the 
USRP receive buffer.  However, this approach has some disadvantages; e.g., the 
frame length must now become fixed. Another issue is that running the step methods 
for these System objects is that they’re single-threaded, whereas the USRP N210 is 
multi-threaded. On a single clock cycle, this allows to get a frame from the receive 
buffer or put a frame on the transmit buffer, but not both. Therefore, attempting to 
write MATLAB code that runs a put and get sequentially will result in an 
exponentially increasing delay, and eventually result in an overflow of the USRP 
buffer. To avoid this delay, we plan to explore parallelism and make the transceive 
function described in section 4.3 operate in a multi-threaded manner.  We first 
generate C code from the MATLAB function using MATLAB Coder.  

5.2   MATLAB Coder 

MATLAB Coder is used for generating C code. In order to make the MATLAB code 
acceptable for C code generation, a number of actions must be taken beforehand.  All 
variables are given a static size and type (including real or complex) that does not 
change in the course of the program. Since System objects cannot be passed into MEX 
functions, all System objects are declared as persistent variables.  The first call to each 
function, tests whether the persistent variable is empty, and initializes each System 
object if true.  The function code for the transceive, RFFE, DDD, and SMSRC blocks 
are all prepared in this same manner. We then compile the C code for each major 
block into a MATLAB executable (MEX) file, which can be called directly from 
MATLAB.   

6   Results 

The transceive function is at the core of our system design, since its ability to 
simultaneously receive and transmit a USRP frame at a near-constant time interval is 
key to our goal of slot time-synchronized operations. To compare its accuracy, we ran 
2,000 time trials to see how long the transceive function takes from start to finish, and 
how this time difference changes over the course of a longer data bitstream.  The 
timing using a transceive function in interpreted MATLAB and using C code 
compiled into a MEX are compared in Fig. 6. The timing exhibits some deviation: 
The function initially overshoots the expected time per USRP frame; on every 
subsequent iteration it then undershoots to make up for the time difference. Note that 
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less undershooting is needed to compensate for initial overshoots, because the 
overshoot amounts have reduced significantly. The reason for this is that the 
MATLAB executable has more control over its timing.  
 

 
Fig. 6. Transceive function timing for interpreted MATLAB vs. MEX 

The timing of the RFFE block for various values of the frequency resolution 
parameter in interpreted MATLAB and C code compiled into a MEX is shown in Fig. 
7.  We see that there is a general decrease in the average execution time for the RFFE 
block with increase in frequency resolution.  For low frequency resolution values, the 
average execution time using MEX is longer than using interpreted MATLAB 
because it needs to use very large FFT lengths. However, in all cases, the standard 
deviation is always significantly less.  Thus, MEX is a better option for the purpose of 
enforcing consistent RFFE execution times, which is required for slot time-
synchronized operations.   
 

 
Fig. 7. RFFE block timing using interpreted MATLAB and MEX 
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Whereas the change to the frequency resolution parameter affects timing directly, 
the AGC parameters control how well a signal can be recovered under various 
attenuation levels. By performing a parameter sweep with different values for these 
parameters, we determined that a step size of 1 and an update period of 1408 
minimizes frame misdetection.  

7   Conclusion 

We conclude that building our design around the concept of slot time-synchronized 
operations results in a system that adheres to our desired frame time and is able to 
reconfigure parameter values as needed. Using MEX is essential for realizing timing 
with little deviation from this frame time.  In addition, using MEX is beneficial for 
improving the speed consistency of our system blocks, most notably RFFE, which can 
vary its frequency resolution parameter.  As part of future work, we will continue 
towards the complete design of the MAC functions as well as implement our 
transceiver system design on the Xilinx Zynq-7000 All-Programmable System-on-
Chip (APSoC).  
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