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Abstract. Machine learning algorithms are widely used to annotate
biological sequences. Low-dimensional informative feature vectors can
be crucial for the performance of the algorithms. In prior work, we
have proposed the use of a community detection approach to construct
low dimensional feature sets for nucleotide sequence classification. Our
approach uses the Hamming distance between short nucleotide subse-
quences, called k-mers, to construct a network, and subsequently uses
community detection to identify groups of k-mers that appear frequently
in a set of sequences. While this approach worked well for nucleotide se-
quence classification, it could not be directly used for protein sequences,
as the Hamming distance is not a good measure for comparing short pro-
tein k-mers. To address this limitation, we extend our prior approach by
replacing the Hamming distance with substitution scores. Experimental
results in different learning scenarios show that the features generated
with the new approach are more informative than k-mers.

Keywords: community detection, feature construction, feature selec-
tion, dimensionality reduction, protein sequence classification, supervised
learning, semi-supervised learning, domain adaptation

1 Introduction

Machine learning has been extensively used to address prediction and classifica-
tion problems in the field of bioinformatics. Advancements in sequencing tech-
nologies have led to the availability of large amounts of sequential data (mostly
unlabeled), which can benefit learning algorithms. In general, most learning al-
gorithms require a vectorial representation of the data in terms of features. Rep-
resenting the data through low-dimensional informative feature sets is critical
for the performance of the algorithms, in terms of both accuracy and complexity.

However, for many biological problems it is not yet understood which features
are informative. In the absence of known informative features, it is common to
represent the sequences as the count of k -mers generated using a sliding window-
based approach. To do this, a window of a particular size, k, is traversed across
the sequence, and at each step in the traversal, the fragment of the sequence
within the window is captured. All such possible unique subsequences/fragments
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(referred to as k -mers) are used as features to represent sequences. As informa-
tive features can have variable length, the size, k, of the window is varied. How-
ever, variable length k -mers result in high-dimensional feature sets, increased
computational complexity and sometimes decreased classification accuracy.

Feature selection is one of the techniques widely used to reduce the dimen-
sionality of the input feature space, while retaining most of the informative
features. Most of the feature selection techniques use the available labeled data
to estimate feature-class dependency scores for all features. The features are then
filtered based on the corresponding feature-class dependency scores. In theory,
feature selection can be applied not only in supervised learning (large amounts of
labeled data is used in the learning process), but also in semi-supervised learning
(small amounts of labeled and large amounts of unlabeled data are used) and
domain adaptation (large amounts of labeled data from a source domain, along
with small amounts of labeled data and large amounts of unlabeled data from a
target domain are used to learn classifiers for the target data). However, in the
semi-supervised and domain adaptation, as the amount of available (target) la-
beled data is small, feature selection may not capture the feature-class dependen-
cies accurately. Furthermore, when the number of features is very large, feature
selection techniques might be computationally expensive. Therefore, alternative
methods to generate a reduced set of informative features can presumably benefit
supervised, semi-supervised and domain adaptation algorithms.

Towards this goal, in [16], we have introduced the idea of using a commu-
nity detection algorithm to generate a low-dimensional informative sequential
feature set for classifying nucleotide sequences (specifically, for the problem of
classifying exons as either alternatively spliced or constitutive). Our approach
extended TFBSGroup [15], an unsupervised approach to identify transcription
factor binding sites in a small number of nucleotide sequences, based, in turn,
on the community detection algorithm proposed in [23]. The worst case running
time of TFBSGroup is quartic in the total number of sequences and the length
of each sequence in the dataset. As a result, running TFBSGroup on large sets
of sequences has high computational cost. We proposed a fast and novel ex-
tension to TFBSGroup [16], which makes it possible to generate features for
large sets of nucleotide sequences. Our approach is based on randomly sampling
small subsets of sequences (as opposed to using all the sequences at once) and
finding informative features in each set separately. The final set of informative
features is obtained by taking the union of the individual sets found using TF-
BSGroup. Although our prior approach [16] was successfully used to identify
low-dimensional informative features (referred to as c-mers) for nucleotide se-
quences, it cannot directly be applied for protein sequences given the large size
of the protein alphabet and the short length of the informative protein k-mers.

To address this limitation, in this paper, we further extend the approach in
[16] to protein sequences by making use of amino acid substitution scores in place
of the Hamming distance, under the assumption that the substitution scores are
better than the Hamming distance when comparing short protein subsequences.
We have applied the proposed approach to the problem of classifying protein
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sequences based on their localization. To evaluate the predictive power of c-
mers in classifying protein sequences, we have conducted experiments in three
different learning scenarios: supervised, semi-supervised and domain adaptation.
Experimental results in all three learning scenarios suggest that the features
generated with the community detection approach are more informative than
k-mers in classifying protein sequences.

The rest of the paper is organized as follows: The related work on applications
that have used k -mers, feature selection and community detection approaches is
described in Section 2. The proposed approach of using a community detection
algorithm to generate features for biological sequences is discussed in Section 3.
Section 4 lists the research questions that we are addressing through this work,
along with details about the set of experiments conducted, and the datasets used.
The results of the experiments conducted are presented in Section 5, followed
by conclusions in Section 6.

2 Related Work

In bioinformatics, and especially biological sequence classification, the sliding
window approach is frequently used, sometimes together with feature selection
or a different dimensionality reduction method, to generate k-mers and represent
biological sequences as vectors of k -mers [1–3]. As an alternative to feature selec-
tion, we propose to use community detection to select a small set of informative
features (specifically, k-mers that appear frequently in a set of sequences).

To find communities, Grivan and Newman [8, 22] proposed a hierarchical
divisive algorithm, that iteratively removes edges between nodes based on their
“betweenness”, until the modularity of a partition reaches the maximum. The
“betweenness” measure defines the total number of shortest paths between any
two nodes that pass through an edge. The authors estimated the modularity
of a partition, referred to as the Newman-Girvan modularity, by comparison
with a null model (random graph). Their algorithm is believed to be the first of
modern day community detection approaches. Clauset et al. [4] proposed a fast
community detection approach that uses the Newman-Girvan modularity gain.
Their approach starts with a set of isolated nodes, and the nodes are iteratively
grouped based on the modularity gain. While some techniques use exhaustive
optimization to better estimate the final maximum modularity, at the expense
of computational cost [9–12], more efficient techniques have also been proposed
to identify communities from large complex networks [23–27].

In bioinformatics, community detection has been mainly used in the context
of protein-protein interaction networks and prediction of functional families [18–
21]. Jia et al. [15] used community detection to identify transcription factor
binding sites in a small set of nucleotide sequences (approach referred to as TFB-
SGroup). In [16], we have extended TFBSGroup to construct sequential features
for classifying large sets of nucleotide sequences. To the best of our knowledge,
community detection algorithms have not been used to construct sequential fea-
tures for classifying protein sequences in a machine learning framework.
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3 Feature Construction Using Community Detection

3.1 Community Detection Algorithm

Complex network analysis has gained a lot of attention among researchers inter-
ested in identifying hidden structural and relational properties within a large sys-
tem. A network, similar to a graph, comprises of a set of V nodes, {n1, n2, · · · , nV },
along with a set of E edges, {(ni, nj) | 1 ≤ i 6= j ≤ V }. Many complex systems
can be represented using a network, with nodes being the elementary components
of the system and the relationship between the components being the links.

A community is a sub-network whose nodes are highly connected with each
other, as compared to other nodes outside the community. Thus, a community
reflects a group of closely related nodes. Identifying communities can uncover
structural properties of a network. From the methods available to identify com-
munities, we use a technique based on modularity, proposed by Blondel et al. [23].

The modularity of a network (denoted by Q) measures the structure of a
network by defining the strength of the network when divided into modules
(sub-networks or communities). High modularity suggests that the nodes within
each community are densely connected when compared to other nodes. The
algorithm proposed in [23] identifies communities by optimizing the modularity
gain. It is a fast and efficient approach to identify high modularity partitions in
a large network, which can be seen as a two-phase iterative process.

In the first phase, each node is assigned to a different community. Then, for
each node, ni, the algorithm computes the gain in modularity, ∆Q, achieved by
removing ni from its community and placing it in the community of nj , where
nj is a neighboring node of ni. It then assigns ni to the community of that nj ,
for which the maximum modularity gain is obtained. In the second phase, a new
network is constructed, with the nodes being the communities identified in the
first phase. The weights of the edges between the new nodes are computed as
the sum of the weights of the edges between nodes of the corresponding two
communities. Edges among nodes of the same community form self-loops in the
new network. These two phases are iterated until there is no further improvement
in the modularity gain, and, then, the final set of communities is returned.

3.2 Identifying Motifs Using Community Detection

Jia et al. [15] introduced the idea of using community detection to identify
transcription factor binding sites (a.k.a., motifs) in a set of nucleotide sequences.
A motif is a pattern that is widespread across different sequences, and potentially
has biological significance. Consequently, a motif can be obtained by aligning a
set of subsequences that occur across different sequences (called motif instances),
which are highly correlated to each other. The motif is also referred to as the
consensus of its motif instances. The approach proposed by Jia et al. [15], called
TFBSGroup, aims at identifying motifs under the ZOMOPS constraint (Zero,
One or Multiple Occurrences of a motif Per Sequence). The motifs identified
have length k, and there are at most d mismatches between motif instances
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and the motif consensus. For a set of N sequences of maximum length L, the
TFBSGroup approach also works in three phases/steps.

(Step 1) The first step deals with the construction of an N -partite net-
work and detection of communities in that network. The nodes of the network
represent all possible k-mers (subsequences of length k) of the input sequences.
Therefore, for a set of N sequences, each of length L, there are (N ∗ (L− k+ 1))
nodes. Two nodes are connected by an edge only if the Hamming distance be-
tween the k-mers corresponding to the two nodes is no more than x (a parameter
that the TFBSGroup algorithms takes). Given that the maximum Hamming dis-
tance allowed between a motif instance and the motif consensus is d (another
TFBSGroup parameter), it follows that the maximum Hamming distance be-
tween any two motif instances is 2d. Therefore, while constructing the network,
the maximum value that x can be given is 2d. We should note that there is no
edge between nodes (k -mers) belonging to the same sequence, which means that
a set of N sequences results in an N -partite network.

(Step 2) After constructing the network, all possible communities of size at
least q (another parameter) are identified. Then, from each community, a motif
consensus is generated by aligning all k-mers from that particular community.

(Step 3) Finally, each motif consensus is greedily refined towards a final
motif, and a significance score is calculated for it. The top t motifs (default t=10)
are then selected based on the significance score (see [15] for more details).

According to [15], the worst-case time complexity of the TFBSGroup al-
gorithm is quartic in terms of the total number of input sequences, N , and the
length of the sequences, L: O(p(k, x)2×N4×L4), where p(k, x) is the probability
of two random k-mers having Hamming distance at most x. Although TFBS-
Group can successfully identify transcription factor binding sites in a small set
of sequences, it cannot be applied for generating features for classification prob-
lems, due to the large number of sequences involved. To address this problem, in
[16], we proposed an approach for scaling up TFBSGroup, as described below.

3.3 Feature Construction for Large Nucleotide Sequence Datasets

To extend TFBSGroup to generate features for sequence classification problems,
in [16], we proposed to run TFBSGroup on a set of randomly selected R samples,
each of S sequences, from the available data consisting of N sequences, where S
� N . The time complexity of running TFBSGroup on R samples reduced to:

O(p(k, x)2 × S4 × L4 ×R) � O(p(k, x)2 ×N4 × L4), when (R× S4)� N4.
We choose R and S that satisfy the condition above to achieve scalability. Fur-
thermore, when generating the R samples, we allow overlap between samples, but
there is no overlap between sequences within a sample. The reason for this is that
we are interested in finding patterns/motifs that are frequent across sequences,
but not necessarily within a sequence. By allowing samples to overlap, we can
essentially link subsequences in different samples, and get higher coverage.

We run TFBSGroup on each individual sample and select the top t motifs
from each sample. All the resulting motifs are merged together to form the final
set of motifs. As a result, the final set of motifs contains a total of t×R motifs
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(for a particular length of the motif, k). The frequency count representation
of all unique motif instances present in the final set of motifs is then used to
represent sequences for classification. We refer to the set of motif instances as
the set of c-mers given that they are identified based on community detection.
This approach has been successfully used to construct informative features for
learning classifiers from large sets of nucleotide sequences [16]. However, it cannot
be directly used to construct features for protein sequences, as the Hamming
distance does not capture well differences between short protein k-mers.

3.4 Feature Construction for Large Protein Sequence Datasets

For protein sequences, motifs of shorter length carry better information than
motifs of longer length [2]. When the length of the motif is small (e.g., k = 1,
2 or 3), the probability of two protein k-mers having Hamming distance less
than a particular threshold, x, is high, as x ≈ k, and thereby the resulting
network in very dense. For longer k-mers (e.g., k = 6, 7 or 8), usually the
desired threshold x is smaller than k. In such cases, given the large alphabet
size of protein sequences, the probability of having an edge between two nodes is
very low, thereby resulting in a very sparse network. Therefore, when Hamming
distance is used to construct a network of protein subsequences, the resulting
network is either too sparse or too dense. To address this issue, we propose to use
substitution scores when constructing sequential features for protein sequences.
Substitution scores are computed using substitution matrices for amino acids,
which take into account the divergence time as well as the substitution rate
for each possible alignment of amino acids. Based on the default parameters for
BLAST, in this work, we used PAM30 matrix [5, 13] to compute the substitution
scores for pairs of k-mers.

Similar to the Hamming distance, the substitution score for a pair of k -
mers is computed based on the alignment of the amino acids at the respective
positions of the k -mers. However, when using substitution matrices, as opposed
to the Hamming distance, the score of an alignment at a particular position
is affected not only by the match/mismatch of the respective amino acids, but
also by the degree of match/mismatch as captured by the substitution matrix.
For example, consider two pairs of 3 -mers: {JQK,LZK} and {PGD,RGD}.
For pair 1, the Hamming distance is 2 and the substitution score is 19, and
for pair 2, the Hamming distance is 1 and the substitution score is 10 (where
substitution scores are computed using PAM30 matrix [5]). We should note that
the substitution scores represent similarity scores, as opposed to distances. The
higher the substitution score values, the more similar the sequences. Thus, based
on the Hamming distance, the k -mers of pair 2 are more similar than the k -mers
of pair 1. Contrarily, based on substitution scores, the k -mers of pair 1 are more
similar when compared to pair 2. Given the fact that substitution scores capture
the degree of match/mismatch, they are preferable to the Hamming distance
when interested in identifying similar protein sequences.

In this work, we find protein motifs with the property that the substitution
score between any motif instance and the corresponding motif consensus is at
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least s (a parameter of the algorithm). When constructing the subsequence net-
work, a pair of nodes (protein subsequences of length k) are connected by an
edge only if the substitution score of the two k -mers is greater than a particular
threshold p (to avoid spurious edges, in our experiments, we chose p = s/2).
After constructing the network, all possible communities of size at least q are
identified in the network using the community detection algorithm, and the k -
mers corresponding to each community are aligned to form the motif consensus.
Subsequently, each motif consensus is greedily refined towards the final motif
for that community, using the substitution scores, and, for each community, the
refined motif along with the motif instances are returned, together with a nor-
malized substitution score. The above process is repeated for all communities
identified by the algorithm. The top t motifs (default t=10) from all the resulting
motifs are then selected based on the normalized substitution scores. The unique
motif instances belonging to the final motifs are used as classification features
and will be denoted by c-mers, similar to how the community detection-based
features for nucleotide sequences are denoted in our previous work.

4 Experimental Setup

In Section 4.1, we present the research questions addressed through our work.
The datasets used are described in Section 4.2, and the details about the exper-
imental setup are presented in Section 4.3.

4.1 Research Questions

We addressed the following research questions:

1. How does the number of c-mers compare to the number of all possible k-mers?
The set of c-mers generated using the community detection algorithm satisfy
the ZOMOPS constraint (Zero, One or Multiple Occurrences of the motifs
Per Sequence). Therefore, we expect the dimensionality of the set of c-mers
to be very small when compared to the dimensionality of the set of all k -mers.

2. How does the predictive power of c-mers compare to that of k-mers? To
investigate the predictive power of c-mers, we compare the performance of
the classifiers learned from sequences represented using c-mers with that
of the classifiers learned from sequences represented using an equal number
of k -mers (obtained via feature selection from the total number of k-mers).
Given that the community detection approach used to generate c-mers is not
supervised (i.e., does not make use of sequence labels), we have conducted
experiments in three different learning scenarios: supervised, semi-supervised
and domain adaptation. While larger amounts of data are possibly available
in the supervised learning scenario, the assumption in the semi-supervised
and domain adaptation scenarios is that only small amounts of labeled data
are available for the domain of interest. Therefore, we expect the features
obtained using community detection to be more informative than the k-
mers, at least in these scenarios, as feature-class dependencies may not be
well captured by feature selection when the amount of labeled data is limited.
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4.2 Datasets

In this work, we targeted the problem of classifying protein sequences based on
their respective localization. We used four different protein sequence datasets:

– PSORTb datasets [7]: The Gram-negative (GN) dataset consists of 1444
sequences belonging to one of the five classes: cytoplasm (278), cytoplasmic
membrane (309), periplasm (276), outer membrane (391) and extracellular
(190). The Gram-positive (GP) dataset consists of 541 sequences belonging
to one of the four classes: cytoplasm (194), cytoplasmic membrane (103),
cellwall (61) and extracellular (183).

– TargetP datasets [6]: The plant (P) dataset consists of 940 sequences be-
longing to one of the four classes: chloroplast (141), mitochondrial (368),
secretory pathway/signal peptide (269) and other (consisting of 54 proteins
labeled nuclear and 108 proteins labeled cytosolic). The non-plant (NP)
dataset consists of 2738 sequences belonging to one of the three classes:
mitochondrial (361), secretory pathway/signal peptide (715) and other (con-
sisting of 1224 proteins labeled nuclear and 438 proteins labeled cytosolic).

4.3 Experiments

As mentioned above, we conducted experiments in three different scenarios: su-
pervised, semi-supervised, and domain adaptation. We used the näıve Bayes
multinomial (NBM) classifier for the supervised scenario; the co-training iterative-
based algorithm, with NBM as the base classifier, for the semi-supervised sce-
nario; and the algorithm proposed in [14], derived from the NBM classifier,
for the domain adaptation scenario. All experiments are conducted using 5-fold
cross-validation, with four folds used for training and the remaining fold for
testing. In the supervised scenario, all the training data was assumed to be la-
beled and was used to learn the classifiers. In the semi-supervised scenario, we
assumed 20% of the training data to be labeled and up to 80% to be unlabeled
(specifically, we experimented with 20%, 40%, 60%, and 80% of the training data
as unlabeled). Finally, for the domain adaptation scenario, we assumed a source
domain with labeled data to be available, in addition to the target domain la-
beled and unlabeled data. We conducted experiments with the following pairs
of source→target domains: GP → GN , GN → GP , P → NP and NP → P ,
respectively. Only the overlapping classes within a pair of domains were used in
the domain adaptation scenario (i.e., cytoplasm, cytoplasmic membrane and ex-
tracellular for the GP/GN pairs, and mitochondrial, secretory pathway/signal
peptide and others for P/NP pairs). For each run, we used all the data from
the source domain, and we split the training target data into 20% as labeled and
up to 80% as unlabeled (i.e., 20%, 40%, 60%, and 80%).

We evaluated the performance of the classifiers using the area under the re-
ceiver operating characteristic curve (AUC), as the class distribution is relatively
balanced for all data sets. We report the average AUC over the five runs.

Our goal is to compare two feature representations, c-mers and k-mers. The
details of how these sets of features were generated are provided below:
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– For c-mers, we invoke the proposed approach (Section 3.4) with the following
parameter values: length of the motif k ∈ {2, 3, 4}, minimum community
size q = 5, minimum substitution score s = 15, number of samples R = 50,
sample size S = 10, and number of motifs selected t = 10. The algorithm
returns the set of c-mers. We denote the number of c-mers by Nc−mers.
We should note that the total number of unique sequences from all the R
samples, NRS , can be smaller than the total number of all the sequences in
the dataset N , as the samples generated can have overlapping sequences.

– For k-mers, we use the sliding window approach. To make a fair compar-
ison between c-mers and k-mers, we generate k-mers of the same length
k ∈ {2, 3, 4}, on the same set of training sequences, NRS . In addition, when
comparing the performance, we apply feature selection on k-mers, using the
labeled data only, to select top k-mers, such that the number of k-mers used,
Nk−mers, is the same as the number of, c-mers, Nc−mers. For feature selec-
tion, we use Entropy based Category Coverage Difference (ECCD), proposed
in [17], as this measure makes use of both the distribution of the sequences
containing the features and the frequency of the occurrence of a feature value
within the sequence, to compute the feature-class dependency scores.

5 Results

Following are the total number of features (#c-mers, #k-mers) generated, aver-
aged over five folds for all four datasets: GP (1976, 74203), GN (1823, 83060), P
(1684, 77091) and NP (1751, 102815). As can be seen, the total number of c-mers
is much smaller than the total number of k-mers. As the set of c-mers repre-
sents a reduced set of k -mers (c-mers ⊂ k -mers), this means that our proposed
approach can be seen as a dimensionality reduction technique for k -mers.

Table 1 shows the AUC values for the supervised, semi-supervised, and do-
main adaptation scenarios, respectively. As can be seen, the AUC values are
higher when using c-mers as compared to k-mers in all scenarios, for most ex-
periments, specifically, in 3 out of 4 cases for the supervised scenario, and 15
out of 16 cases for the semi-supervised scenario as well as for the domain adap-
tation scenario. In semi-supervised/domain adaptation learning scenarios, given
that the amount of available labeled data is small, feature selection may not
estimate the feature-class dependencies accurately, thereby selecting a set of
possibly uninformative features, while filtering out informative features. Thus,
in cases when the amount of available labeled data is small, c-mers are expected
to outperform k -mers selected using feature selection. Surprisingly, we observed
a similar behavior also in the supervised learning scenario, the scenario where we
presumably have sufficient labeled data to estimate the feature-class dependen-
cies accurately. The reason for this might be that feature selection can still leave
out informative features, as the size of the final set is limited by the number of c-
mers, and it possibly includes some uninformative features. On the other hand,
the set of c-mers, having the same size as the set of selected k-mers, capture
much better features that carry information about classes.
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Table 1: AUC values on the four datasets: Gram-positive (GP), Gram-negative
(GN), plant (P), and non-plant (NP). For the semi-supervised and domain adap-
tation scenarios, the amount of labeled data is fixed to 20%, while the amount
of unlabeled data is varied from 20% to 80%. For domain adaptation, the source
and target domains are indicated as source→target. Note that for each scenario,
in most cases, the classifiers had higher AUCs when using c-mers.

Supervised learning scenario

Unlabeled
GP GN P NP

c-mers k-mers c-mers k-mers c-mers k-mers c-mers k-mers

0 0.925 0.869 0.929 0.915 0.837 0.754 0.834 0.874

Semi-supervised learning scenario

Unlabeled
GP GN P NP

c-mers k-mers c-mers k-mers c-mers k-mers c-mers k-mers

20 0.847 0.746 0.877 0.793 0.72 0.663 0.825 0.787

40 0.831 0.748 0.882 0.793 0.705 0.656 0.793 0.788

60 0.852 0.742 0.87 0.783 0.698 0.655 0.773 0.774

80 0.822 0.749 0.851 0.788 0.705 0.659 0.773 0.77

Domain adaptation scenario

Unlabeled
GN→GP GP→GN NP→P P→NP

c-mers k -mers c-mers k -mers c-mers k -mers c-mers k -mers

20 0.877 0.785 0.911 0.899 0.802 0.78 0.829 0.763

40 0.856 0.755 0.91 0.893 0.748 0.728 0.821 0.777

60 0.852 0.731 0.902 0.896 0.739 0.728 0.777 0.73

80 0.839 0.741 0.892 0.895 0.734 0.727 0.803 0.744

Together, the small dimensionality of the set of c-mers and the performance
results in Table 1 suggest that our approach is successful in retaining informa-
tive/predictive features, while reducing the dimensionality by a large extent in
all learning scenarios considered.

6 Conclusion

We have investigated the predictive power of the features generated using a
community detection approach, for classifying proteins based on their respec-
tive localizations. As the original approach of using Hamming distance [15, 16]
to generate nucleotide features does not work for sequences of a large alphabet
size (such as proteins), we proposed a novel idea of using substitution scores
as a similarity metric between two protein k-mers in the process of construct-
ing the protein subsequence network. The resulting c-mers are associated with
a set of motifs which represent groups of similar subsequences that occur fre-
quently in the set of sequences. As opposed to that, the set of k -mers generated
with a sliding window take into account all possible subsequences of a certain
length occurring in the sequences. Both approaches are unsupervised, as they
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do not make use of class labels. To evaluate the predictive power of the fea-
tures generated using our proposed approach (specifically, the predictive power
of c-mers), we have conducted experiments in supervised, semi-supervised and
domain adaptation learning scenarios. The results of the experiments show that
our proposed approach generated low-dimensional informative features in su-
pervised, semi-supervised and domain adaptation scenarios. Furthermore, those
features have resulted in improved performance as opposed to k-mers selected
based on feature-class dependency scores, even in the supervised scenario, where
presumably there is enough labeled data to accurately estimate the scores.
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