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Abstract— In this work we investigate cooperative inference
in multi-agent systems where uncertainty is modeled by the
grid structured pairwise Markov random field. A framework
is proposed, which we term the multi-agent Markov random
field, that decomposes the global inference problem into inter-
agent belief exchanges over a hypertree topology and local intra-
agent inference problems. Due to the exponential complexity of
exact inference, we propose a loopy belief propagation algorithm
for approximate inference over appropriately formed local
generalized cluster graphs. Both synchronous and intelligent
message passing are considered and a grid scale-invariant
scheme based on the notion of regions of influence in a
cluster graph is presented. The algorithms are simulated over
a grid workspace with a team of virtual Autonomous Surface
Vehicles (ASVs), with the goal of spatial plume detection in
oceanographic data captured from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument. We show that
while the exact method produces predictably accurate and
smooth grid maps, the approximate method competes well in
terms of plume detection rate with the region of influence
message passing scheme excelling over large tasks due to a
lack of dependence on grid size.

I. INTRODUCTION

Probabilistic networks are an elegant framework for mod-
eling and managing uncertainty in a single-agent setting.
Well-studied algorithms exist for inference and learning in
probabilistic networks and many real-world implementations
have been proven highly effective [1]–[3]. Extending prob-
abilistic networks to multi-agent systems (MASs) is particu-
larly attractive as such systems can afford significant gains
in computational efficiency through concurrency, enhanced
scale by spatiotemporal distribution, and robustness to failure
via redundancy. The extension of the directed Bayesian
network (BN) to MASs is most common in the literature,
with applications ranging from coordinated tracking and
surveillance [4] to distributed fault detection [5].

While BNs share some commonality with undirected
Markov random fields (MRFs) in the probability distribu-
tions that they can represent, there exist certain classes of
distributions that cannot be modeled by a BN structure (e.g.
distributions that are characterized by cyclical dependencies).
For this reason, we study the representation of probabilistic
uncertainty and the inference process in MRFs over MASs,
which we term multi-agent Markov random fields (MAM-
RFs). In the MAMRF framework, each agent maintains and
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exchanges its beliefs over a subset of domain variables
with neighboring agents, where the agent communication
topology is defined by a hypertree graph structure over the
system. Local and global evidence obtained via inter-agent
communication is used to perform intra-agent inference in
order to answer queries and perform actions (see [6] for
closely related work).

The central example for this paper will be the widely rel-
evant pairwise MRF with grid structure. One of the primary
strengths of this formulation of MRF is its simplicity in
modeling localized spatial interactions amongst variables in
complex domains. In practice, such interactions are prevalent,
with applications including image segmentation [7], spatial
mapping [8], and object classification [9]. A partitioning of
the grid structured MRF over multiple agents will be defined
in the context of the MAMRF framework and a presentation
of inference therein will be given. The intractability of exact
inference over the grid structured MRF motivates an approx-
imate approach based on loopy belief propagation (LBP)
in generalized cluster graphs. To encourage grid scale-
invariance, an intelligent message passing scheme based
on regions of influence (ROIs) in a cluster graph will be
contrasted to a synchronous approach in the application of
loopy belief propagation.

The proposed inference algorithms are simulated over a
spatial grid with the goal of plume detection in oceano-
graphic data by virtual Autonomous Surface Vehicles
(ASVs). The test data are captured from the satellite-based
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument (see [10] for related work). It is shown that while
the exact method produces predictably accurate and smooth
grid maps, the method’s exponentially rising cost renders it
intractable over large workspaces. The approximate method
is shown to compete well in terms of plume detection rate
with the ROI message passing scheme enabling increased di-
mensionality due to its scale-invariance. Additionally, when
compared to other plume detection and tracking approaches
(e.g. [11]–[13]), our methods generate probabilistic outputs
rather than hard decisions or controls, do not require pro-
cess or environmental gradients, and fully leverage global
observations to generate solutions.

The outline of the paper is as follows. The proposed
MAMRF framework is presented in Section II. In Section III
we analyze the grid structured MAMRF, including network
representation, an algorithm for approximate inference, and a
discussion of LBP message passing schemes. Simulation re-
sults are provided in Section IV. Finally, concluding remarks
as well as directions for future work are stated in Section V.



II. THE MULTI-AGENT MARKOV RANDOM FIELD

A Markov random field is a tripletM = (X ,H, P ), where
X = {X1, ..., XN} is a set of N domain variables, H =
(X , E , φ) is an undirected graph with nodes labeled by X ,
edges E , and potentials φ, and P is a probability distribution
over X . The graphH encodes a set of independencies present
in P over X . In an MAMRF, a set of K agents A =
{A1, ..., AK} each maintains belief over a subset of domain
variables Xi ⊂ X represented locally as a Markov subnet
Mi = (Xi,Hi, Pi). The set of independencies implied by H
are then present as a partitioning H = {H1 ∪ H2... ∪ HK}
across the local graph structures. This partitioning allows
each agent to reason over their subset of domain variables
and exchange local belief over only a shared set of domain
variables with neighboring agents. In this way, agents must
cooperate via structured communication to reason over the
global distribution P .

In order to ensure valid probabilistic inference over an
MAMRF, the local subnets along with the subnet topology
must obey certain conditions. Specifically, let H be parti-
tioned into subgraphs Hi = (Xi, Ei, φi). Let the subgraphs
be organized into a tree Ψ = (H,L) where each node in
Ψ, called a hypernode, is labeled by Hi and each edge in
L, called a hyperlink, is labeled with the interface Xi ∩ Xj

between Hi and Hj . Agent Aj is considered a neighbor of
agent Ai if lij ∈ L, and the set of neighbors of agent Ai is
denoted by Nbi. Assume also that Ψ satisfies the running
intersection property, that is for each pair of hypernodes Hi

and Hj , Xi ∩Xj is contained in each hypernode on the path
from Hi to Hj . The tree Ψ is called a hypertree over H [14].
The joint probability distribution

P (X ) =
1

Z

∏
i

φi(Xi) (1)

is then the product of the potentials associated with each
Hi (with duplication ignored), where Z is the standard
normalizing function.

The hyperlinks serve as the communication channels be-
tween adjacent agents, while the hypertree structure defines
the communication topology of the multi-agent system. The
running intersection property enforces d-separation of hy-
pernodes by the hyperlinks and thus ensures that message-
passing operations over the hypertree are probabilistically
sound.

III. GRID STRUCTURED MULTI-AGENT MARKOV
RANDOM FIELDS

We gain insight into the MAMRF by examining a multi-
agent extension of the common and widely applicable pair-
wise MRF with grid structure. Define the domain X =
{Xij} ∪ {Y k

ij}, where i, j = 1, ..., Np, k = 1, ..., Nm, and
N = N2

p (Nm + 1). Each Xij , which we term a process
variable, is a random variable with associated node potentials
φ(Xij) and edge potentials {φ(Xij , Xlm), l,m = 1, ..., Np :
(Xij , Xlm) ∈ E}, where E is the edge set of a global graph
structure H. The Y k

ij ’s, called model variables, are random
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Fig. 1. 2×2 grid structured pairwise MAMRF with two subgraphs sharing
process variables {X11, X12, X21, X22}. Each agent maintains a single set
of model variables and the hypertree structure is H1 −H2.

variables associated with each Xij , with conditional edge
potentials φ(Xij , Y

k
ij).

The graph H is defined by nodes labeled by each domain
variable in X , with an Np×Np pairwise grid structure over
the process variables, and Nm model variables per grid node.
We partition H over A with local graphs {H1, ...,HK}, and
require that H partitions according to a hypertree structure
Ψ. Each agent shares only the set of process variables, i.e.
the interfaces are uniformly {Xij}. The model variables are
then partitioned over the agents in some fixed way to meet
system requirements (e.g. to satisfy spatial or measurement
constraints). We treat the process variables as unobservable;
only model variable observations are available for inference
over the process variables. Fig. 1 illustrates a trivial 2×2 grid
structured MAMRF with two agents and one set of model
variables per agent.

A. Inference Methods

Our goal is to infer a set of marginal distributions
{P (Xij | Z), i, j = 1, ..., Np} over the process variables
that represents the collective conditional beliefs of the multi-
agent system given a distributed set of observed model
variables Z = {Z1 ∪ Z2 ∪ ... ∪ ZK}. To that end, we
decompose the global inference problem into a set of inter-
agent belief exchanges over the hypertree and a set of
local inference problems performed per-agent over each Hi.
Exact inference over the local grid structured MRFs using a
clique tree message passing algorithm has a complexity that
grows exponentially in Np [15]. To alleviate this problem
for realistic domains we propose an approximate inference
algorithm based on the extension of loopy belief propagation
(LBP) over generalized cluster graphs to MASs.

To facilitate the extraction of process marginals, we re-
place the local graphs Hi with generalized cluster graphs
(denoted Ci). For each potential in the original network Hi

we introduce a corresponding cluster and connect clusters
with overlapping scope [15]. For the simple MAMRF in Fig.
1, the described method generates the cluster graph shown
in Fig. 2 for local graph H1. Notice that there now exists
univariate clusters from which to extract the set of process
marginals without the need for marginalization.



Inference begins with each agent initializing their local
cluster graphs by computing initial cluster potentials, denoted
ψ, by reducing assigned potentials by the set of local evi-
dence Zi. The agents then perform message passing over the
hypertree to exchange beliefs over the shared set of process
variables, induced by local observations on the hidden model
variables. We apply a structured collect/distribute message
passing scheme for the purposes of clarity (an asynchronous
scheme is equally appropriate [15]).

During message collection, message sets are passed be-
tween neighbors upward through the hypertree towards an
arbitrarily chosen root node. Each message set, defined by

{δki→j} = ψk

∏
m∈Nbi−{j}

δkm→i, ∀ k ∈ Zi (2)

consists of messages generated by observed model clusters
(the leaves in Ci), sent from agent Ai to agent Aj . The
domain of each message is the process variable associated
with kth observed cluster. The message distribution step is
analogous to the collection phase, with message sets flowing
downward from the root.

At the conclusion of hypertree message passing, each
agent has reached consensus with respect to the set of
model-induced beliefs over the shared process variables. The
final phase in the hypertree-based inference algorithm is
the injection step, where each agent injects the messages
received from neighboring agents over the hypertree into a
local LBP inference process. Each agent Ai generates an
injection message given by

ηji =
∏

k∈Nbi

δjk→i (3)

for each observed model variable (indexed by j) by multi-
plying the messages received over the hypertree that agree
on message scope. The resulting injection messages, whose
domains are each in the set of process variables, are as-
signed to the lightest cluster in the agent’s local cluster
graph containing η’s domain (i.e. the cluster with the fewest
assigned potentials). After injection, each agent then runs an
LBP inference process on their injected local cluster graph
and extracts a set of marginal distributions over the process
variables.

B. Message Passing in Loopy Belief Propagation

The primary drawbacks of the LBP algorithm are non-
convergence and message passing complexity. There are
various heuristic methods that can be applied to alleviate the
issues, several of which are related to intelligent message
passing approaches [15]. To address computational com-
plexity, we propose an intelligent message passing scheme
that exploits the underlying structure of the proposed grid
structured MRF to determine regions in the graph where mes-
sages would the most useful, as opposed to the synchronous
approach. Noting that messages generated by non-observed
model clusters are unitary and thus ineffectual in the in-
ference process, we make the fundamental assumption that
messages would be most useful in regions surrounding grid
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Fig. 2. The generalized cluster graph for approximate inference over H1

in Fig. 1 [15].

clusters with observed model cluster neighbors. We call these
areas of the graph regions of influence (ROIs). The ROIs
are characterized by a fixed radius R over which standard
sum-product messages are recursively passed to neighboring
clusters. Message passing over the ROIs eliminates the need
to search for regions of potential influence and also reduces
significantly the total number of messages passed during
an iteration of LBP when the ROIs do not fully overlap.
As an example consider a large spatial grid 1000×1000 in
size, over which two teams of agents are to operate. Let
us assume that the ROI radii are chosen and the teams are
arranged such that there exist two effective ROIs of radius
50 over which LBP message passing will occur. In such a
scenario, each local cluster graph will contain 3N2

p −2Np =
2.998×106 non-leaf clusters over which messages are passed
in each iteration of synchronous LBP. In comparison the ROI
assumption reduces the effective cluster count to 5.96×104,
a reduction of about 50-to-1 per iteration. In particular,
intelligent ROI message passing is independent of grid size
and scales only according to the size of the evidence set
(which is proportional to the number of agents) and the
radius of the ROIs, enabling mission dependent tuning for
achieving feasibility in otherwise infeasible workspaces.

The primary sacrifice that is made by the ROI assumption
is that of accuracy. Since the ROIs are of fixed width, regions
that do not overlap are rendered independent since messages
will not propagate from one region to the other. While this
property would certainly be inappropriate in some problem
domains, there are others where it could be a benefit, for
example in large spatial grids where the independence of
distant features is quite a natural assumption.

IV. SIMULATION RESULTS

We present the simulation results for the proposed ap-
proximate multi-agent inference algorithm for a dynamic
three agent system (K = 3) over a 10 × 10 spatial grid
(Np = 10). Agent dynamics are introduced by applying
simple waypoint-based locomotion over the grid cells. At
a predefined interval, the agents capture local observations
and perform cooperative inference to iteratively compute a
set of process marginals. The overriding goal of the system is



to probabilistically map a process of interest over the grid.
For the purposes of our simulations we chose to consider
the problem of mapping oceanographic phenomenon that
are typified by plume-like spatial behavior (e.g. harmful
algal blooms (HABs) [16]; more generally [10]). Towards
this goal, we simulate observations over the workspace
by sampling from sea surface temperature (SST, in ◦C)
and chlorophyll concentration (CC, in mg/m3) data taken
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument aboard NASA satellites Terra and Aqua
[17]. In particular we selected data captured from a MODIS
sampling taken in 2007 over the coast of California near
Santa Cruz. Fig. 3 shows composite images of SST and CC
data, and a plume-like region which we select for sampling
and simulation. Each agent notionally represents an ASV on
the ocean surface.

A single model variable is assigned to each agent per grid
cell, where agents A1 and A3 are assigned SST and agent
A2 is assigned CC. As we are interested in plume detection,
we choose binary process variables with potentials

φ(Xij) =

[
0.5

0.5

]
, φ(Xij , Xlm) =

[
0.7 0.3

0.3 0.7

]
(4)

The model variables are assumed to be Gaussian distributed
with

P (Y k
ij |x) ∼ N (µx;σ2

x) (5)

where for every x ∈ V al(Xij) we have an associated mean
and variance, µx and σ2

x. We determine the appropriate
conditional Gaussian potentials empirically by selecting a
portion of the workspace as being in-plume a priori and
calculating mean and variance vectors

µsst = (14.5 13.75), σ2
sst = (0.5 0.25)

µcc = (1.2 1.9), σ2
cc = (0.3 0.2)

(6)

The model parameters define the expected in plume and out
of plume distribution of SST and CC measurements, while
the process potentials reflect both an unbiased predisposi-
tion towards cell-wise plume membership and a desire for
smoothness of the generated process probabilities. Although
we choose a uniform and symmetric set of process potentials
for simplicity, varied potentials afford flexibility in modeling
process features that are significantly more complex, includ-
ing spatial biasing and localized asymmetries.

Fig. 4 depicts an example of a 100 time unit simulation
of the 3-agent system dynamically performing exact and
approximate inference over the grid. The agents were as-
signed initial positions x1 = (0.5, 0.5), x2 = (9.5, 9.5), x3 =
(0.5, 9.5), and a list of waypoints that define lawnmower
patterned cell traversals (a standard pattern in ocean sam-
pling). Agent measurements were sampled from the MODIS
dataset with additive Gaussian noise defined by N (0; 0.1),
to simulate the effects of imperfect sensors.

To assess the relative performance of the proposed in-
ference algorithms, we generated 100 simulation runs with
randomized initial positions and sampling patterns over the
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Fig. 3. MODIS data used for measurement sampling in agent simula-
tions: (a) sea surface temperature with highlighted region of interest; (b)
chlorophyll concentration with highlighted region of interest.

grid. For each simulation we then computed the Kullback–
Leibler divergence (KL-Div) for each grid cell marginal
distribution versus a set of baseline distributions generated by
performing exact inference over the grid with full evidence
(i.e. all model variables are observed). The error of a grid of
inferred process marginals is then given by

ε =

Np∑
i,j

∑
x

Pij(Xij = x) ln

{
Pij(Xij = x)

Qij(Xij = x)

}
(7)

where Pij(·) is the baseline distribution and Qij(·) is the
estimated distribution for a cell in row i and column j of
the grid. We refer to this error as the cell-wise KL-Div.

The impact of cell-wise error on agent decision making
is assessed by calculating the cell-wise classification error
by applying a threshold decision rule to each estimated cell
and comparing the result to the baseline classification. Fig. 5
shows a comparison averaged over the 100 simulation runs
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Fig. 4. Simulation results of a three agent system performing exact and approximate inference (synchronous and intelligent ROI message passing with
R = 12) over the region shown in Fig. 3: (a)-(c) at t = 40; (d)-(f) at t = 100. The agents are depicted as white dots, the initial positions are indicated
with white x’s, the trajectories are the white dashed lines, and the agent direction of travel is indicated by the white arrows. Note that the agents perform
lawnmower patterned cell traversals.

of inference error and classification error (with a threshold
of 0.7) as a function of the percentage of samples taken for
the exact method, the approximate method with synchronous
message passing, and the approximate method with intelli-
gent message passing with ROI radii of 4, 8, and 12.

A. Discussion

We now remark on the efficacy of the inference algorithms
based on our simulation results. With only a small number
of model variable observations over the grid (20-30%), the
agents are able to infer a reasonably accurate map of the
underlying process in a cooperative and distributed way. It is
clear that the exact approach is superior in terms of accuracy
and smoothness, an unsurprising result. The approximation
methods require more samples to generate accurate results
and the outcome exhibits less smoothness, especially in the
case of the localized ROI message passing scheme. Also
note that synchronous message passing generates marginally
better solutions than the ROI scheme, where the ROI radius
acts to modulate the estimate accuracy.

Given a threshold classification rule, the exact and approx-
imate (synchronous and intelligent with ROI radius of 12)
inference methods have 10-15% error rates after the first 25-
35% of samples, with the exact method outperforming the

approximate methods on average by only 5%. The strength of
the approximation methods, especially ROI message passing,
lies in computational complexity. In our simulations the
computational burden of exact inference became obvious
as grids with Np >> 10 were rendered infeasible by the
exponentially rising cost of graph triangulation, cluster size,
and message generation. The approximate methods were
simulated on grids orders of magnitude greater in size with
computation times approaching those required for real-time
feasibility. For example, we have achieved LBP computation
rates of 5-10 Hz on 100 × 100 grids in simulation with
minimal optimization. We believe that with the recent explo-
sion in computational power and parallelism our approximate
algorithms represent a viable option for efficient spatial
mapping in realistic multi-agent deployments.

As inter-agent communication is neighbor-wise and not
all-to-all or centralized, we expect the proposed algorithms to
scale well as the number of agents increases. The number of
inter-agent messages is approximately linear in agent count
and the computational burden of injecting increased global
beliefs by each agent is negligible in comparison to the
local LBP process, which scales only according to grid size.
The advantages of agent scaling are clear: large workspaces
become manageable due to enhanced spatial distribution,
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Fig. 5. Average cell-wise KL-Div and plume membership error rate versus
percentage of grid samples taken for the 3 agent system described in Section
IV. Plots are shown for the exact method, the approximate method with
synchronous message passing, and the approximate method with intelligent
message passing with ROI radii of 4, 8, and 12.

measurement capabilities and thus process modeling are
heightened through flexibility in agent composition, and the
impact of agent failures is mitigated by redundancy.

Finally, the proposed MAMRF formulation also has sev-
eral qualitative benefits compared to other plume detec-
tion/tracking implementations (e.g. [11]–[13]). As opposed
to gradient based approaches that require local environmental
gradients that are difficult to obtain in practice, our method
exploits spatial dependence to achieve results based on scalar
observations. In addition, our approach leverages distributed
global observations in contrast to methods that only in-
corporate local information to drive control goals. Finally,
our algorithm benefits from the flexibility and robustness of
probabilistic outputs versus hard decisions or controls.

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied cooperative inference in multi-
agent systems where uncertainty is modeled by the grid
structured pairwise Markov random field. The multi-agent
Markov random field framework was proposed, wherein the
global inference problem is decomposed into inter-agent
belief exchanges and local intra-agent inference problems.
An approximate inference algorithm inspired by loopy belief
propagation was chosen due to the exponential complexity
of exact inference. An intelligent message passing scheme
based on the idea of regions of influence in a cluster graph
in LBP was discussed. Finally, we presented simulation
results for the inference methods over a spatial grid with the
goal of identifying plume-like features in oceanographic data
using multiple virtual robots. The results demonstrated the
accuracy and smoothness of exact inference but also showed
its intractability over large grids. The approximate inference

methods were shown to be a reasonable alternative both in
terms of computational efficiency and accuracy. In particular,
the intelligent ROI message passing scheme is attractive as
it exhibits a lack of dependence on grid size.

Directions for future work include identifying less strin-
gent requirements on agent communication, as maintaining
a tree structured communication graph may place signif-
icant overhead on the system under realistic conditions.
Determining methods of approximation that do not exhibit
the convergence issues of the LBP algorithm could also
be valuable in safety-critical systems. Finally, investigating
varying process and model potentials may prove useful in
mapping more complex spatial phenomenon.
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