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Abstract. Group signatures are a central cryptographic primitive which allows users to sign messages
while hiding their identity within a crowd of group members. In the standard model (without the ran-
dom oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Euro-
crypt’08). The structure-preserving signatures of Abe et al. (Asiacrypt’12) make it possible to design
group signatures based on well-established, constant-size number theoretic assumptions (a.k.a. “simple
assumptions”) like the Symmetric eXternal Diffie-Hellman or Decision Linear assumptions. While much
more efficient than group signatures built on general assumptions, these constructions incur a significant
overhead w.r.t. constructions secure in the idealized random oracle model. Indeed, the best known solu-
tion based on simple assumptions requires 2.8 kB per signature for currently recommended parameters.
Reducing this size and presenting techniques for shorter signatures are thus natural questions. In this
paper, our first contribution is to significantly reduce this overhead. Namely, we obtain the first fully
anonymous group signatures based on simple assumptions with signatures shorter than 2 kB at the 128-
bit security level. In dynamic (resp. static) groups, our signature length drops to 1.8 kB (resp. 1 kB). This
improvement is enabled by two technical tools. As a result of independent interest, we first construct a
new structure-preserving signature based on simple assumptions which shortens the best previous scheme
by 25%. Our second tool is a new method for attaining anonymity in the strongest sense using a new
CCA2-secure encryption scheme which is simultaneously a Groth-Sahai commitment.

Keywords. Group signatures, standard model, simple assumptions, efficiency, structure-preserving
cryptography, QA-NIZK arguments.

1 Introduction

As introduced by Chaum and van Heyst [29] in 1991, group signatures allow members of a group
administered by some authority to anonymously sign messages on behalf of the group. In order to
prevent abuses, an opening authority has the power to uncover a signer’s identity if the need arises.

The usual approach for building a group signature consists in having the signer encrypt his
group membership credential under the public key of the opening authority while appending a non-
interactive zero-knowledge (NIZK) proof, which is associated with the message, claiming that things
were done correctly. Until 2006, efficient instantiations of this primitive were only available under
the random oracle idealization [14], which is limited to only provide heuristic arguments in terms
of security [24]. This state of affairs changed in the last decade, with the emergence of solutions
[20,21,37,38] enabled by breakthrough results in the design of relatively efficient non-interactive
witness indistinguishable (NIWI) proofs [39]. While drastically more efficient than solutions based
on general NIZK proofs [12,15], the constructions of [20,21,37,38] still incur a substantial overhead
when compared with their random-oracle-based counterparts [10,32,18]. Moreover, their most efficient
variants [21,38] tend to rely on parametrized assumptions – often referred to as “q-type” assumptions
– where the number of input elements is determined by a parameter q which, in turn, depends on the
number of users in the system or the number of adversarial queries (or both). Since the assumption
becomes stronger as q increases, a different assumption is needed for every adversary (based on its
number of queries) and every maximal number of users in the group. Not only does it limit the
scalability of realizations, it also restricts the level of confidence in their security.
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In this paper, we consider the problem of devising as short as possible group signatures based
on simple assumptions. By “simple assumption”, we mean a well-established assumption, like the
Decision Diffie-Hellman assumption, which is simultaneously non-interactive (and thus falsifiable
[56]) and described using a constant number of elements, regardless of the number of users in the
system or the number of adversarial queries. We remark that even in the random oracle model,
this problem turns out to be highly non-trivial as non-simple assumptions (like the Strong RSA
[10,46] or Strong Diffie-Hellman [18,32]) are frequently relied on. In the standard model, our main
contribution is designing the first group signatures based on simple assumptions and whose size
is less than 2 kB for the currently recommended 128-bit security level. In static groups, our most
efficient scheme features signatures slightly longer than 1 kB. So far, the best standard-model group
signature based on simple assumptions was obtained from the structure-preserving signatures (SPS)
of Abe et al [1,2] and required 2.875 kB per signature. Along the way and as a result of independent
interest, we also build a new structure-preserving signature (SPS) with the shortest length among
those based on simple assumptions. Concretely, the best previous SPS based on similar assumptions
[1,2] is shortened by 25%.

Related Work. Group signatures have a long history. Still, efficient and provably coalition-resistant
constructions (in the random oracle model) remained elusive until the work of Ateniese, Camenisch,
Joye and Tsudik [10] in 2000. At that time, however, there was no proper formalization of the secu-
rity properties that can be naturally expected from group signatures. This gap was filled in 2003 by
Bellare, Micciancio and Warinschi [12] (BMW) who captured all the requirements of group signatures
in three properties. In (a variant of) this model, Boneh, Boyen and Shacham [18] obtained very short
signatures using the random oracle methodology [14].

The BMW model assumes static groups where the set of members is frozen after the setup phase
beyond which no new member can be added. The setting of dynamic groups was explored later on
by Bellare-Shi-Zhang [15] and, independently, by Kiayias and Yung [46]. In these models [15,46],
short signature lengths were obtained in [57,32]. A construction based on interactive assumptions
in the standard model was also put forth by Ateniese et al. [9]. Using standard assumptions, Boyen
and Waters gave a different solution [20] based on the Groth-Ostrovsky-Sahai NIZK proof system
[36]. They subsequently managed to obtain O(1)-size signatures at the expense of appealing to a
q-type assumption [21] . Their constructions [20,21] were both analyzed in (a relaxation of) the
BMW model [12] where the adversary is not granted access to a signature opening oracle. In dy-
namic groups [15], Groth [37] obtained constant-size signatures in the standard model but, due to
huge hidden constants, his result was mostly a proof of concept. By making the most of Groth-Sahai
NIWI proofs [39], he subsequently reduced signatures to 48 group elements [38] with the caveat of
resting on relatively ad hoc q-type assumptions. For the time being, the best group signatures based
on standard assumptions are enabled by the structure-preserving signatures of Abe, Chase, David,
Kohlweiss, Nishimaki, and Ohkubo [1]. In asymmetric pairings e : G × Ĝ → GT (where G 6= Ĝ),
anonymously signing messages requires at least 40 elements of G and 26 elements of Ĝ.

In 2010, Abe et al. [8,3] advocated the use of structure-preserving cryptography as a general tool
for building privacy-preserving protocols in a modular fashion. In short, structure-preserving signa-
tures (SPS) are signature schemes that smoothly interact with Groth-Sahai proofs [39] as messages,
signatures public keys all live in the source groups (G, Ĝ) of a bilinear map e : G × Ĝ → GT . SPS
schemes were initially introduced by Groth [37] and further studied in [26,33]. In the last three years,
a large body of work was devoted to the feasibility and efficiency of structure-preserving signatures
[37,26,33,8,3,4,23,28,40,1,2]. In Type III pairings (i.e., where G 6= Ĝ and no isomorphism is com-
putable from Ĝ to G or backwards), Abe et al. [4] showed that any SPS scheme must contain at
least 3 group elements per signature. For a natural class of reductions, the security of optimally short
signatures was also shown [5] unprovable under any non-interactive assumption. These impossibility
results were recently found [7] not to carry over to Type II pairings (i.e., where G 6= Ĝ and an
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efficiently computable isomorphism ψ : Ĝ→ G is available).
To the best of our knowledge, the minimal length of structure-preserving signatures based on

simple assumptions remains an unsettled open question. We believe it to be of primary importance
considering the versatility of structure-preserving cryptography in the design of privacy-related pro-
tocols, including group signatures [8], group encryption [26] or adaptive oblivious transfer [35].

Our Results. The first contribution of this paper is to describe a new structure-preserving signature
based on the standard Symmetric eXternal Diffie-Hellman (SXDH) assumption and an asymmetric
variant of the Decision Linear assumption with only 10 group elements (more precisely, 9 elements
of G and one element of Ĝ) per signature. So far, the best instantiation of [1,2] required 7 elements
of G and 4 elements of Ĝ. Since the representation of Ĝ elements is at least twice as long as that of
G elements, our scheme thus saves 26% in terms of signature length. Armed with our new SPS and
other tools, we then construct dynamic group signatures using only 32 elements of G and 14 elements
of Ĝ in each signature, where Abe et al. [1,2] need at least 40 elements of G and 26 elements of Ĝ.
For typical parameters, our signatures are thus 37% shorter with a total length of only 1.8 kB at
the 128-bit security level. In an independent work, Kiltz, Pan and Wee [49] managed to obtain even
shorter structure-preserving signatures than ours under the SXDH assumption. If their construction
is used in our dynamic group signature, it allows eliminating at least 4 more elements of G from the
group signatures.

In the static model of Bellare, Micciancio and Warinschi [12], we also describe an even more
efficient realization where the signature length decreases to almost 1 kB.

Our Techniques. Our structure-preserving signature can be seen as a non-trivial optimization of
a modular design, suggested by Abe et al [1], which combines a weakly secure SPS scheme and a
tagged one-time signature (TOTS). In a TOTS scheme, each signature contains a fresh tag and,
without knowing the private key, it should be computationally infeasible to generate a signature
on a new message for a previously used tag. The construction of [1] obtains a full-fledged SPS by
combining a TOTS scheme with an SPS system that is only secure against extended random message
attacks (XRMA). As defined in [1], XRMA security basically captures security against an adversary
that only obtains signatures on random group elements even knowing some auxiliary information
used to sample these elements (typically their discrete logarithms). While Abe et al. [1] make use of
the discrete logs of signed messages in their proofs of XRMA security, their modular construction
does not. Here, by explicitly using the discrete logarithms in the construction, we obtain significant
efficiency improvements. Using Waters’ dual system techniques [62], we construct an SXDH-based
F -unforgeable signature scheme which, according to the terminology of Belenkiy et al. [11], is a sig-
nature scheme that remains verifiable and unforgeable even if the adversary only outputs an injective
function of the forgery message. Our new SPS is the result of combining our F -unforgeable signature
and the TOTS system of [2]. We stress that our scheme can no longer be seen as an instantiation of
a generic construction. Still, at the natural expense of sacrificing modularity, it does provide shorter
signatures.

In turn, our F -unforgeable signatures are obtained by taking advantage of the quasi-adaptive
NIZK (QA-NIZK) arguments of linear subspace membership suggested by Jutla and Roy [43] and
further studied in [53,44], where the CRS may depend on the language for which proofs have to
be generated. In a nutshell, our starting point is a signature scheme suggested by Jutla and Roy
(inspired by ideas due to Camenisch et al. [22]) where each signature is a CCA2-secure encryption
of the private key (made verifiable via QA-NIZK proofs) and the message is included in the label
[60]. We rely on the observation that QA-NIZK proofs for linear subspaces [43] (or their optimized
variants [53,44]) make it possible to verify signatures even if the message is only available in the
exponent.

In order to save the equivalent of 15 elements of the group G and make the group signature as short
as possible, we also design a new CCA2-secure tag-based encryption (TBE) scheme [55,48] which
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incorporates a Groth-Sahai commitment. In fully anonymous group signatures, CCA2-anonymity is
usually acquired by verifiably encrypting the signer’s credential using a CCA2-secure cryptosystem
while providing evidence that the plaintext coincides with a committed group element. Inspired by
a lossy encryption scheme [13] suggested by Hemenway et al. [41], we depart from this approach and
rather use a CCA2-secure encryption scheme which simultaneously plays the role of a Groth-Sahai
commitment. That is, even when the Groth-Sahai CRS is a perfectly hiding CRS, we are able to ex-
tract committed group elements for any tag but a specific one, where the encryption scheme behaves
like a perfectly hiding commitment and induces perfectly NIWI proofs. In order to make the validity
of TBE ciphertexts publicly verifiable, we rely on the QA-NIZK proofs of Libert et al. [53] which
are well-suited to the specific subspaces encountered4 in this context. We believe this encryption
scheme to be of interest in its own right since it allows shortening other group signatures based on
Groth-Sahai proofs (e.g., [38]) in a similar way.

Our group signature in the static BMW model [12] does not build on structure-preserving signa-
tures but rather follows the same design principle as the constructions of Boyen and Waters [20,21].
It is obtained by extending our F -unforgeable signature into a 2-level hierarchical signature [47] (or,
equivalently, an identity-based signature [59]) where first-level messages are implicit in the exponent.
In spirit and from an efficiency standpoint, our static group signature is thus similar to the second
construction [21] of Boyen and Waters, with the benefit of providing full anonymity while relying on
the sole SXDH assumption.

2 Background

2.1 Hardness Assumptions

We use bilinear maps e : G× Ĝ→ GT over groups of prime order p where e(g, ĥ) 6= 1GT if and only
if g 6= 1G and ĥ 6= 1Ĝ. We rely on hardness assumptions that are non-interactive and described using
a constant number of elements.

Definition 1. The Decision Diffie-Hellman (DDH) problem in G, is to distinguish the distribu-
tions (ga, gb, gab) and (ga, gb, gc), with a, b, c R← Zp. The DDH assumption is the intractability of the
problem for any PPT distinguisher.

In the following, we will rely on the Symmetric external Diffie-Hellman (SXDH) assumption which
posits the hardness of DDH in G and Ĝ in asymmetric pairing configurations. We also assume the
hardness of the following problem, which generalizes the Decision Linear problem [18] to asymmetric
pairings.

Definition 2 ([1]). In bilinear groups (G, Ĝ,GT ) of prime order p, the eXternal Decision Linear
Problem 2 (XDLIN2) is to distinguish the distribution

D1 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝc+d) ∈ G5 × Ĝ6 | a, b, c, d R← Zp}
D2 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝz) ∈ G5 × Ĝ6 | a, b, c, d, z R← Zp}.

The XDLIN1 assumption is defined analogously and posits the infeasibility of distinguishing gc+d

and gz given (g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd).

4 Specifically, we have to prove membership of a t×n subspace of rank t described by a 2t×n matrix and the security
proofs of [52,53] still work in this case.
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2.2 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [8,3] are signature schemes where messages and public keys all consist
of elements of a group over which a bilinear map e : G× Ĝ→ GT is efficiently computable.

Libert et al. [52] considered structure-preserving signatures with linear homomorphic properties.
This section recalls the one-time linearly homomorphic structure-preserving signature (LHSPS) of
[52]. In the description below, we assume that all algorithms take as input the description of common
public parameters cp consisting of asymmetric bilinear groups (G, Ĝ,GT , p) of prime order p > 2λ,
where λ is the security parameter.

In [52], Libert et al. suggested the following construction which can be proved secure under the
SXDH assumption.

Keygen(cp, n): Given common public parameters cp = (G, Ĝ,GT , p) and the dimension n ∈ N of
the subspace to be signed. Then, choose ĝz, ĝr

R← Ĝ. For i = 1 to n, pick χi, γi
R← Zp and compute

ĝi = ĝz
χi ĝr

γi . The private key is sk = {(χi, γi)}ni=1 while the public key is

pk =
(
ĝz, ĝr, {ĝi}ni=1

)
∈ Ĝn+2.

Sign(sk, (M1, . . . ,Mn)): In order to sign a vector (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi)}ni=1,
output σ = (z, r) =

(∏n
i=1M

−χi
i ,

∏n
i=1,M

−γi
i

)
.

SignDerive(pk, {(ωi, σ(i))}`i=1): given pk as well as ` tuples (ωi, σ
(i)), parse σ(i) as σ(i) =

(
zi, ri

)
for i = 1 to `. Return σ = (z, r) =

(∏`
i=1 z

ωi
i ,
∏`
i=1 r

ωi
i

)
.

Verify(pk, σ, (M1, . . . ,Mn)): Given a signature σ = (z, r) ∈ G2 and a vector (M1, . . . ,Mn), return
1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (z, r) satisfy

1GT = e(z, ĝz) · e(r, ĝr) ·
n∏
i=1

e(Mi, ĝi).

In [53], (a variant of) this scheme was used to construct constant-size QA-NIZK arguments
[43] showing that a vector v ∈ Gn belongs to a linear subspace subspace of rank t spanned by a
matrix ρ ∈ Gt×n. Under the SXDH assumption, each argument is comprised of two elements of G,
independently of t or n.

3 An F-Unforgeable Signature

As a technical tool, our constructions rely on a signature scheme which we prove F-unforgeable under
the SXDH assumption. As defined by Belenkiy et al. [11], F-unforgeability refers to the inability of
the adversary to output a valid signature for a non-trivial message M without outputting the message
itself. Instead, the adversary is only required to output F (M), for an injective but not necessarily
efficiently invertible function F .

The scheme extends ideas used in signature schemes suggested in [22,43,54], where each signature
is a CCA2-secure encryption —using the message to be signed as a label— of the private key accompa-
nied with a QA-NIZK proof that the encrypted value is the private key. In their most efficient variant,
Jutla and Roy observed [43, Section 5] that it suffices to encrypt private keys gω with a projective
hash value (vM ·w)r [31] so as to obtain signatures of the form (σ1, σ3, σ3) = (gω · (vM ·w)r, gr, hr),
which is reminiscent of selectively secure Boneh-Boyen signatures [16].

As in [62,51,34], the security proof proceeds with a sequence of hybrid games to gradually reach
a game where the signing oracle never uses the private key, in which case it becomes much easier to
prove security. In the final game, signatures always encrypt a random value while QA-NIZK proofs
are simulated. When transitioning from one hybrid game to the next one, the crucial step is to argue
that, even if the signing oracle produces fewer and fewer signatures using the real private key, the
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adversary’s forgery will still encrypt the private key. This is achieved via an information theoretic
argument borrowed from 2-universal hash proof systems [30,31].

In order to obtain an F -unforgeable signature which is verifiable given only F (M), our key
observation is that QA-NIZK proofs make it possible to verify signatures even if M appears only
implicitly in a tuple (gs·M , gs, hs·M , hs) ∈ G4.

Keygen(cp) : Given common public parameters cp = (G, Ĝ,GT , p) consisting of asymmetric bilinear
groups of prime order p > 2λ, do the following.

1. Choose ω, a R← Zp, g, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.

2. Define a matrix M = (Mj,i)j,i given by

M =

 g 1 1 1 1 h

v g 1 h 1 1

w 1 g 1 h 1

 ∈ G3×6. (1)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic signature of Sec-
tion 2.2 in order to sign vectors of dimension n = 6. Let skhsps = {(χi, γi)}6i=1 be the private
key, of which the corresponding public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χi, γi}6i=1, generate one-time homomorphic signatures {(zj , rj)}3j=1 on the

rows M j = (Mj,1, . . . ,Mj,6) ∈ G6 of M. These are obtained as

(zj , rj) =

(
6∏
i=1

M−χij,i ,

6∏
i=1

M−γij,i

)
, ∀j ∈ {1, 2, 3}

and, as part of the common reference string for the QA-NIZK proof system of [53], they will
be included in the public key.

The private key is sk := ω and the public key is defined as

pk =
(

(G, Ĝ,GT ), p, g, h, ĝ, (v, w), Ω = hω, pkhsps, {(zj , rj)}3j=1

)
.

Sign(sk,M) : given the private key sk = ω and a message M ∈ Zp, choose s R← Zp to compute

σ1 = gω · (vM · w)s, σ2 = gs·M , σ3 = gs

σ4 = hs·M σ5 = hs

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω) ∈ G6 is in the row space
of M. This QA-NIZK proof (z, r) ∈ G2 is obtained as

z = zω1 · (zM2 · z3)s, r = rω1 · (rM2 · r3)s. (2)

Return the signature σ =
(
σ1, σ2, σ3, σ4, σ5, z, r

)
.

Verify(pk, σ,M) : parse σ as above and return 1 if and only if it holds that

e(z, ĝz) · e(r, ĝr) = e(σ1, ĝ1)
−1 · e(σ3, ĝ3 · ĝ2M )−1 · e(σ5, ĝ5 · ĝ4M )−1 · e(Ω, ĝ6)−1

and (σ2, σ4) = (σM3 , σ
M
5 ).

Note that a signature can be verified given only F (M) = ĝM by testing the equalities

e(σ2, ĝ) = e(σ3, F (M)), e(σ4, ĝ) = e(σ5, F (M))
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and

e(z, ĝz) · e(r, ĝr) = e(σ1, ĝ1)
−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3)−1 · e(σ4, ĝ4)−1 · e(σ5, ĝ5)−1 · e(Ω, ĝ6)−1

In order to keep the description as simple as possible, the above description uses the QA-NIZK
argument system of [53], which is based on linearly homomorphic signatures. However, the security
proof goes through if we use the more efficient SXDH-based QA-NIZK argument of Jutla and Roy
[44], as explained in Appendix D. The pair (z, r) can thus be replaced by a single element of G.

Under the SXDH assumption, the scheme can be proved to be F-unforgeable for the injective
function F (M) = ĝM . The proof of this result is implied by the security result of Section 4 where
we describe a generalization of the scheme that will be used to build a group signature in the BMW
model.

4 A Two-Level Hierarchical Signature from the SXDH Assumption

This section extends our F-unforgeable signature into a 2-level hierarchical signature with partially
hidden messages. In a 2-level hierarchical signature [47] (a.k.a. identity-based signature), a signature
on a message ID (called “identity”) can be used as a delegated key for signing messages of the form
(ID,M) for any M . In order to construct group signatures, Boyen and Waters [21] used hierarchical
signatures that can be verified even when identities (i.e., first-level messages) are not explicitly given
to the verifier, but only appear implicitly in the exponent. The syntax and security definition are
recalled in Appendix C.3.

In their most efficient construction [21], Boyen and Waters used a non-standard q-type assump-
tion. This section gives a very efficient solution based on the standard SXDH assumption. It is
obtained from our signature of Section 3 by having a signature (gω · (vID · w)s, gs, hs) on a given
identity ID serve as a private key for this identity modulo the introduction of a delegation compo-
nent ts akin to those of the Boneh-Boyen-Goh hierarchical IBE [17]. For the security proof to go
through, we need to make sure that pairs (gs·M , gs), (hs·M , hs) hide the same message M , which is
not immediately verifiable in the SXDH setting. To enforce this condition, we thus include ĝM in
each signature.

Setup(cp) : Given public parameters cp = (G, Ĝ,GT , p), do the following.

1. Choose ω, a R← Zp, g, t, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.
2. Define a matrix M = (Mj,i)j,i given by

M =


g 1 1 1 1 1 1 h

v g 1 h 1 1 1 1

w 1 g 1 h 1 1 1

t 1 1 1 1 g h 1

 ∈ G4×8. (3)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic signature of Sec-
tion 2.2 in order to sign vectors of dimension n = 8. Let skhsps = {(χi, γi)}8i=1 be the private
key, of which the corresponding public key is pkhsps =

(
ĝz, ĝr, {ĝi}8i=1

)
.

4. Using skhsps = {χi, γi}8i=1, generate one-time homomorphic signatures {(zj , rj)}4j=1 on the

rows M j = (Mj,1, . . . ,Mj,8) ∈ G8 of M. These are obtained as

(zj , rj) =

(
8∏
i=1

M−χij,i ,

8∏
i=1

M−γij,i

)
, ∀j ∈ {1, . . . , 4}

and, as part of the common reference string for the QA-NIZK proof system of [53], they will
be included in the public key.
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The master secret key is msk := ω and the master public key is defined as

mpk =
(

(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
.

Extract(msk, ID) : given the master secret key msk = ω and an identity ID ∈ Zp, choose s R← Zp to
compute

K1 = gω · (vID · w)s, K2 = gs·ID, K3 = gs

K4 = hs·ID K5 = hs K6 = ts

as well as K̂7 = ĝID. Looking ahead, K6 will serve as a delegation component in the generation
of level 2 signatures. Then, generate a QA-NIZK proof that (K1,K2,K3,K4,K5, 1, 1, Ω) ∈ G8 is
in the row space of the first 3 rows of M. This QA-NIZK proof (z, r) ∈ G2 is obtained as

z = zω1 · (zID2 · z3)s, r = rω1 · (rID2 · r3)s. (4)

Then, generate a QA-NIZK proof (zd, rd) that the delegation component K6 is well-formed. This
proof consists of (zd, rd) = (zs4, r

s
4). The private key is

KID =
(
K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd

)
. (5)

Sign(mpk,KID,M) : to sign M ∈ Zp, parse KID as in (5) and do the following.

1. Choose s′ R← Zp and compute

σ1 = K1 ·KM
6 · (vID · tM · w)s

′
= gω · (vID · tM · w)s̃,

where s̃ = s+ s′, as well as

σ2 = K2 · gs
′·ID = gs̃·ID, σ3 = K3 · gs

′
= gs̃, σ̂6 = K̂7 = ĝID

σ4 = K4 · hs
′·ID = hs̃·ID, σ5 = K5 · hs

′
= hs̃.

2. Using (z, r) and (zd, rd), generate a QA-NIZK proof (z̃, r̃) ∈ G2 that

(σ1, σ2, σ3, σ4, σ5, σ
M
3 , σ

M
5 , Ω) ∈ G8 (6)

is in the row space of M. Namely, compute

z̃ = z · zMd · (zID2 · zM4 · z3)s
′
, r̃ = r · rMd · (rID2 · rM4 · r3)s

′
. (7)

Return the signature

σ =
(
σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6

)
∈ G7 × Ĝ. (8)

Verify(mpk, σ,M) : parse σ as per (8) and return 1 if and only if it holds that

e(z̃, ĝz) · e(r̃, ĝr) = e(σ1, ĝ1)
−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3 · ĝ6M )−1

·e(σ4, ĝ4)−1 · e(σ5, ĝ5 · ĝ7M )−1 · e(Ω, ĝ8)−1

as well as e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6).

As in Section 3, the technique of [44] can be used to shorten the signature by one element of G as it
allows replacing (z̃, r̃) by one element of G.

We prove that, under the sole SXDH assumption, the scheme is secure in the sense of the natural
security definition used by Boyen and Waters [20,21] which is recalled in Appendix C.3. In short, this
definition requires that the adversary be unable to forge a valid signature for a pair (ID?,M?) such
that no private key query was made for ID? and no signing query was made for the pair (ID?,M?).
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Theorem 1. The above hierarchical signature is secure under chosen-message attacks if the SXDH
assumption holds in (G, Ĝ,GT ). (The proof is available in Appendix D).

A simple reduction shows that the signature scheme of Section 3 is F -unforgeable so long as the
above scheme is a secure 2-level hierarchical signature.

Theorem 2. The signature scheme of Section 3 is F -unforgeable under chosen-message attacks for
the function F (M) = ĝM if the SXDH assumption holds in (G, Ĝ,GT ). (The proof is available in
Appendix E).

5 A Structure-Preserving Signature from the SXDH and XDLIN2 Assumptions

Our F-unforgeable signature of Section 3 can be combined with the tagged one-time signature of
Abe et al. [2] (or, more precisely, an adaption of [2] to asymmetric pairings) so as to obtain a new
structure-preserving signature based on the SXDH and XDLIN2 assumptions. Like [1], we obtain an
SPS scheme based on simple assumptions with only 11 group elements per signature. However, only
one of them has to be in Ĝ, instead of 4 in [1]. Considering that Ĝ elements are at least twice as long
to represent as those of G, we thus shorten signatures by the equivalent of 3 elements of G (or 20%).

Our construction can be seen as an optimized instantiation of a general construction [1] that
combines a tagged one-time signature and an SPS scheme which is only secure against extended
random-message (XRMA) attacks. A tagged one-time signature (TOTS) is a signature scheme where
each signature contains a single-use tag: namely, only one signature is generated w.r.t. each tag. The
generic construction of [1] proceeds by certifying the tag of the TOTS scheme using an XRMA-
secure SPS scheme. Specifically, our F-unforgeable signature assumes the role of the XRMA-secure
signature and its shorter message space allows us to make the most of the optimal tag size of [2]. In
[1], the proofs of XMRA security rely on the property that, when the reduction signs random groups
elements of its choice, it is allowed to know their discrete logarithms. However, this property is only
used in the security proof and not in the scheme itself. Here, we also use the discrete logarithm of
the tag in the SPS construction itself, which allows our F -unforgeable signature to supersede the
XRMA-secure signature. By exploiting the smaller message space of our F -unforgeable signature,
we can leverage the optimal tag size of [2]. Unlike the SPS of [2], we do not need to expand the tag
from one to three group elements before certifying it.

Keygen(cp, n) : given the length n of messages to be signed and common parameters cp specifying
the description of bilinear groups (G, Ĝ,GT ) of prime order p > 2λ, do the following.

a. Generate a key pair (skfsig, pkfsig)← Setup(cp) for the F-unforgeable signature of Section 3.
Namely,

1. Choose ω, a R← Zp, g R← G, ĝ R← Ĝ and set h = ga, Ω = hω. Then, choose v, w R← G.
2. Define a matrix M = (Mj,i)j,i given by

M =

 g 1 1 1 1 h

v g 1 h 1 1

w 1 g 1 h 1

 ∈ G3×6. (9)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic signature of
Section 2.2 in order to sign vectors of dimension n = 6. Let skhsps = {(χ0,i, γ0,i)}6i=1 be
the private key, of which the corresponding public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χ0,i, γ0,i}6i=1, generate one-time homomorphic signatures {(zj , rj)}3j=1 on

the rows M j = (Mj,1, . . . ,Mj,6) ∈ G6 of M. These are obtained as

(zj , rj) =

(
6∏
i=1

M
−χ0,i

j,i ,

6∏
i=1

M
−γ0,i
j,i

)
, ∀j ∈ {1, 2, 3}
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and, as part of the common reference string for the QA-NIZK proof system of [53], they
will be included in the public key.

b. Generate a key pair (pkpots, skpots) for the partial one-time structure-preserving signature of

Abe et al. [1]. Namely, choose wz, wr, µz, µu, wt
R← Zp and set

Ĝz = ĝwz , Ĝr = ĝwr , Ĝt = ĝwt , Ĥz = ĝµz , Ĥu = ĝµu

Gz = gwz , Gr = gwr , Gt = gwt , Hz = gµz , Hu = gµu

Then, for i = 1 to n, choose χi, γi, δi
R← Zp and compute Ĝi = Ĝz

χi ·Ĝr
γi

and Ĥi = Ĝz
χi ·Ĝr

δi
.

Define

pkpots :=
(
Gz, Gr, Gt, Hz, Hu, Ĝz, Ĝr, Ĝt, Ĥz, Ĥu, {Ĝi, Ĥi}ni=1

)
and skpots := {(χi, γi, δi)}ni=1.

The private key is SK = (ω,wr, µu, skpots) and the public key consists of

PK =
(
g, h, ĝ, (v, w), Ω = hω, pkpots, pkhsps, {(zj , rj)}3j=1

)
.

Sign(SK,M) : given SK = (ω,wr, µu, skpots) and M = (M1, . . . ,Mn) ∈ Gn,

1. Choose s, τ R← Zp to compute

σ1 = gω · (vτ · w)s, σ2 = gs·τ , σ3 = gs,

σ4 = hs·τ σ5 = hs, σ̃6 = ĝτ .

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω) is in the row space of
M. This proof (z, r) ∈ G2 is computed as

z = zω1 · (zτ2 · z3)s, r = rω1 · (rτ2 · r3)s. (10)

2. Choose ζ R← Zp and compute Z = gζ ·
∏n
i=1M

−χi
i as well as

R = (Gτt ·Gz−ζ)1/wr ·
n∏
i=1

M−γii , U = (H−ζz )1/µu ·
n∏
i=1

M−δii

Return the signature

σ =
(
σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U

)
∈ G5 × Ĝ×G5. (11)

Verify(PK, σ,M) : given M = (M1, . . . ,Mn) ∈ Gn, parse σ as per (11). Return 1 if and only if
e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6) as well as

e(z, ĝz) · e(r, ĝr) =

5∏
i=1

e(σi, ĝi)
−1 · e(Ω, ĝ6)−1

e(Gt, σ̂6) = e(Z, Ĝz) · e(R, Ĝr) ·
n∏
i=1

e(Mi, Ĝi) (12)

1GT = e(Z, Ĥz) · e(U, Ĥu) ·
n∏
i=1

e(Mi, Ĥi).
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Each signature requires 10 elements of G and one element of Ĝ. Using the optimized F -unforgeable
signature based on the Jutla-Roy QA-NIZK proof [44], we can also save one more element of G and
obtain signatures in G9× Ĝ, which shortens the signatures of Abe et al. [1] by 26%. In Appendix B,
we give more detailed comparisons among all SPS based on non-interactive assumptions.

In the application to group signatures, it is desirable to minimize the number of signature com-
ponents that need to appear in committed form. To this end, signatures must be randomizable in
such a way that (σ3, σ5) can appear in the clear modulo a re-randomization of the underlying s ∈ Zp.
To enable this randomization, it is necessary to augment signatures (similarly to [6]) with a ran-
domization token (gτ , hτ , vτ , zτ2 , r

τ
2). We will prove that the scheme remains unforgeable even when

the signing oracle also outputs these randomization tokens at each invocation.5 We call this notion
extended existential unforgeability (or EUF-CMA∗ for short).

When the re-randomization tokens are used, proving the knowledge of a signature on a commit-
ted message M ∈ Gn requires 2n+ 24 elements of G and 12 elements of Ĝ. In comparison, the best
previous solution of Abe et al. costs 2n+ 26 elements of G and 18 elements of Ĝ.

Theorem 3. The scheme provides EUF-CMA∗ security if the SXDH and XDLIN2 assumptions hold
in (G, Ĝ,GT ). (The proof is given in Appendix F).

The details of the proof are available in Appendix F. In short, we consider two kinds of forgeries.
In Type I forgeries, the adversary’s forgery contains an element σ̂6

? that did not appear in any
signature obtained by the forger during the game. In contrast, Type II forgeries are those for which
σ̂6
? is recycled from a response of the signing oracle. It is easy to see that a Type I forger allows

breaking the security of the F -unforgeable signature. As for Type II forgeries, they are shown to
contradict the XDLIN2 assumption via a careful adaptation of the proof given by Abe et al. for their
TOTS scheme [2]. While the latter was originally presented in symmetric pairings, it goes through in
Type 3 pairings modulo natural changes that consist in making sure that most handled elements of Ĝ
have a counterpart in G. One difficulty is that, at each query, the reduction must properly simulate
the randomization tokens (vτ , gτ , hτ , zτ2 , r

τ
2) as well as an instance of the F -unforgeable signature

without knowing the discrete logarithm logĝ(σ̂6) = ĝτ or that of its shadow logg(σ6) = gτ in G.
Fortunately, this issue can be addressed by letting the reduction know logg(v) and logg(w).

It is tempting to believe that our approach can generically combine a TOTS and an F -unforgeable
signature. Unfortunately, we did not manage to get this idea to work in general. In particular, our F -
unforgeable signature does not blend well with our attempts of SXDH-based TOTS schemes. When
mixing it with the system of Abe et al. [1], we leveraged the algebraic compatibility of both schemes
and the fact that the XDLIN2 assumption allows input elements to be replicated in both G and Ĝ.
Under the SXDH assumption, no such replication is possible and this makes it hard to rely on the
SXDH assumption alone, for example.

In an independent work [49], Kiltz, Pan and Wee obtained even shorter signatures, which live in
G6× Ĝ under the SXDH assumption. On the other hand, their security reduction is looser than ours
as the gap between the adversary’s advantage and the reduction’s probability to break the underlying
assumption is quadratic (instead of linear in our case) in the number of signing queries.

6 A Publicly Verifiable Tag-Based Encryption Scheme

As a tool for constructing a CCA2-anonymous group signature, we describe a new tag-based encryp-
tion scheme [55,48] (see Appendix C.4 for definitions) which is inspired by the lossy encryption scheme
[13] of [41]. In our group signature, we will exploit the fact that the DDH-based lossy encryption
scheme of Bellare et al. [13] can also be seen as a Groth-Sahai commitment.

5 Note, however, that the adversary is not required to produce any randomization token as part of its forgery.
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Keygen(cp): Given public parameters cp = (G, Ĝ,GT , p) specifying asymmetric bilinear groups of
prime order p > 2λ, conduct the following steps.

1. Choose g, h R← Ĝ. Choose x, α, β R← Zp and set X1 = gx, X2 = hx, S = gα, T = gβ, W = hα

and V = hβ.
2. Generate a key pair (pk′hsig, sk

′
hsig) for the homomorphic signature of Section 2.2 in order

to sign vectors in G3. Let pk′hsig =
(
Ĝz, Ĝr, {Ĝi}3i=1

)
be the public key and let sk′hsig =

{(ϕi, ϑi)}3i=1 be the private key.
3. Use sk′hsig to generate linearly homomorphic signatures {(Zi, Ri)}4i=1 on the rows of the matrix

L =


g 1 T

h 1 V

1 g S

1 h W

 ∈ G4×3

which form a subspace of rank 2 spanned by (g, 1, T ) and (1, g, S). The private key is sk = x
and the public key is

pk :=
(
g, h, X1, X2, S, W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1

)
.

Encrypt(pk,M, τ): To encrypt M ∈ G under the tag τ , choose θ1, θ2
R← Zp and compute the cipher-

text C = (C0, C1, C2, Z,R) as

C =
(
M ·Xθ1

1 ·X
θ2
2 , g

θ1 · hθ2 , (Sτ · T )θ1 · (W τ · V )θ2 ,

(Zτ3 · Z1)
θ1 · (Zτ4 · Z2)

θ2 , (Rτ3 ·R1)
θ1 · (Rτ4 ·R2)

θ2
)
.

Here, (Z,R) serves as a proof that the vector (C1, C
τ
1 , C2) is in the row space of L and satisfies

e(Z, Ĝz) · e(R, Ĝr) = e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1 (13)

Decrypt(sk,C, τ): Parse C as above. Return ⊥ if (Z,R) does not satisfy (13). Otherwise, return
M = C0/C

x
1 .

We note that the validity of C can also be verified by testing the equality C2 = Cα·τ+β1 if α and β
are included in the private key sk.

We also observe that, in the ciphertext, (C0, C1) form a Groth-Sahai commitment based on the
DDH assumption in G. If logg(X1) = logh(X2), the commitment is extractable. Otherwise, it is
perfectly hiding. In the following section, we will use this CCA2-secure scheme as a commitment
that is extractable on all tags, except one τ? where it behaves as a perfectly hiding commitment.
The above system achieves this while only expanding the original Groth-Sahai commitment (C0, C1)
by 3 elements of G.

This scheme will save our group signatures from having to contain (beyond (C0, C1)) an additional
CCA2-secure encryption and a NIZK proof that the plaintext coincides with the content of a Groth-
Sahai commitment. In its most efficient instantiation, the latter approach would require a publicly
verifiable variant of the Cramer-Shoup encryption scheme (such as those suggested in [42,53]) with
a ciphertext of the form (gr, hr,M ·Y r, (Y τZ)r, Z) ∈ G5, where Z is a QA-NIZK proof of ciphertext
validity obtained from [42,44]. Proving that the underlying M is consistent with a commitment
(C0, C1) = (M · Xθ1

1 · X
θ2
2 , g

θ1 · hθ2) would require commitments to (θ1, θ2, r), which would incur 6
elements of Ĝ, and NIZK proofs for 2 linear multi-exponentiation equations. The overhead w.r.t.
(C0, C1) would amount to 7 elements of G and 6 elements of Ĝ, instead of 3 elements of G here.
The above technique thus allows saving the equivalent of 16 elements of G. We thus believe this
cryptosystem to be of interest in its own right since it can be used in a similar way to shorten other
group signatures (e.g., [38]) based on Groth-Sahai proofs.

In Appendix G.1, we prove that the scheme satisfies the security definition given by Kiltz [48].
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Theorem 4. The above scheme is selective-tag weakly IND-CCA2-secure if the SXDH assumption
holds. (The proof is given in Appendix G.1).

7 Short Group Signatures in the BMW Model

The TBE scheme of Section 6 allows us to achieve anonymity in the CCA2 sense by encrypting an
encoding of the group member’s identifier. In order to minimize the signature length, we let the TBE
ciphertext live in G instead of Ĝ. To open signatures in constant time, however, the opening algorithm
uses the extraction trapdoor of a Groth-Sahai commitment in Ĝ2 rather than the private key sktbe
of the TBE system. The latter key is only used in the proof of anonymity where the reduction uses
a somewhat inefficient opening algorithm of complexity O(N).

Keygen(λ,N): given a security parameter λ ∈ N and the desired number of users N ∈ poly(λ),
choose asymmetric bilinear groups cp = (G, Ĝ,GT , p) of order p > 2λ and do the following.

1. Generate a key pair (msk,mpk) for the two-level hierarchical signature of Section 4. Let

mpk :=
(

(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
be the master public key and msk := ω ∈ Zp be the master secret key.

2. Generate a key pair (sktbe, pktbe) for the tag-based encryption scheme of Section 6. Let

pktbe =
(
g, h, X1, X2, S, W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1

)
be the public key and sktbe = x be the underlying private key. For simplicity, the element g
can be recycled from mpk.

3. Choose a vector û1 = (û11, û12)
R← Ĝ2 and set û2 = û1

ξ, where ξ R← Zp. Also, define the
vectors u1 = (g,X1) and u2 = (h,X2). These vectors will form Groth-Sahai CRSes (u1,u2)
and (û1, û2) in the perfectly binding setting. Although sktbe serves as an extraction trapdoor
for commitments generated on the CRS (u1,u2), the group manager will more efficiently use
ζ = logû11(û12) to open signatures.

4. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch) with a key pair (hk, tk)
and randomness space Rhash.

5. For each group member i, choose an identifier IDi
R← Zp and use msk to compute KIDi =

(K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), where

K1 = gω · (vIDi · w)s·, K2 = gs·IDi , K3 = gs

K4 = hs·IDi K5 = hs K6 = ts

z = zω1 · (z
IDi
2 · z3)s r = rω1 · (r

IDi
2 · r3)s K̂7 = ĝIDi

and (zd, rd) = (zs4, r
s
4). For each i ∈ {1, . . . , N}, the i-th group member’s private key is

gsk[i] = (IDi,KIDi).

The group public key consists of

gpk :=
(

(G, Ĝ,GT ), mpk, pktbe, (u1,u2), (û1, û2), CMH, hk
)
,

whereas the group manager secret key is gsk :=
(
msk, ζ = logû11(û12)

)
.

Sign(gpk, gsk[i],M): In order to sign a message M ∈ Zp using the i-th group member’s private key
gsk[i] = (IDi,KIDi), conduct the following steps.
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1. Using KIDi = (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), derive a second-level hierarchical sig-
nature. Namely, choose s′ R← Zp and compute

σ1 = K1 ·KM
6 · (vIDi · tM · w)s

′
σ2 = K2 · gs

′·IDi = gs̃·IDi

= gω · (vIDi · tM · w)s̃ σ3 = K3 · gs
′

= gs̃

σ4 = K4 · hs
′·IDi = hs̃·IDi σ5 = K5 · hs

′
= hs̃,

and σ̂6 = K̂7, where s̃ = s+ s′, as well as

z̃ = z · zMd · (z
IDi
2 · zM4 · z3)s

′
r̃ = r · rMd · (r

IDi
2 · rM4 · r3)s

′

= zω1 · (z
IDi
2 · zM4 · z3)s̃ = rω1 · (r

IDi
2 · rM4 · r3)s̃.

2. Choose θ1, . . . , θ12
R← Zp and compute Groth-Sahai commitments

Cσ1 = (1, σ1) · u1
θ1 · u2

θ2 , Cσ2 = (1, σ2) · u1
θ3 · u2

θ4 ,

Cσ4 = (1, σ4) · u1
θ5 · u2

θ6 , C σ̂6 = (1, σ̂6) · û1
θ7 · û2

θ8 .

C z̃ = (1, z̃) · u1
θ9 · u2

θ10 , C r̃ = (1, r̃) · u1
θ11 · u2

θ12

Note that Cσ2 can be written as (C1, C0) = (gθ3 · hθ4 , σ2 ·Xθ3
1 ·X

θ4
2 ).

3. Generate Groth-Sahai NIWI proofs π1 ∈ Ĝ2, π2 ∈ G2×Ĝ2 and π3 ∈ G2×Ĝ2 that committed
variables (z̃, r̃, σ1, σ2, σ4, σ̂6) satisfy

e( z̃ , ĝz) · e( r̃ , ĝr) = e( σ1 , ĝ1)
−1 · e( σ2 , ĝ2)−1 · e(σ3, ĝ3 · ĝ6M )−1 (14)

·e( σ4 , ĝ4)−1 · e(σ5, ĝ5 · ĝ7M )−1 · e(Ω, ĝ8)−1

and

e( σ2 , ĝ) = e(σ3, σ̂6 ), e( σ4 , ĝ) = e(σ5, σ̂6 ). (15)

Since (14) is a linear pairing product equation where all variables are in G, it only costs two
elements of Ĝ. Each equation of (15) contains one variable in G and Ĝ and thus takes two
proofs element in each group.

4. Choose rhash
R← Rhash and compute a chameleon hash value

τ = CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3), rhash).

Then, using τ and (θ3, θ4) ∈ Z2
p, compute C2 = (Sτ · T )θ3 · (W τ · V )θ4 . Using pk′hsig as a CRS,

generate a QA-NIZK argument

(Z,R) =
(
(Zτ3 · Z1)

θ3 · (Zτ4 · Z2)
θ4 , (Rτ3 ·R1)

θ1 · (Rτ4 ·R2)
θ2
)

that the vector (C1, C
τ
1 , C2) ∈ G3 is in the row space of L. This allows turning Cσ2 = (C1, C0)

into a TBE ciphertext C̃σ2 = (C0, C1, C2, Z,R) as

C̃σ2 =
(
σ2 ·Xθ3

1 ·X
θ4
2 , g

θ3 · hθ4 , (Sτ · T )θ3 · (W τ · V )θ4 ,

(Zτ3 · Z1)
θ3 · (Zτ4 · Z2)

θ4 , (Rτ3 ·R1)
θ1 · (Rτ4 ·R2)

θ2
)
∈ G5

for the tag τ . Note that C̃σ2 contains the original commitment Cσ2 .

Return the signature

σ =
(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
(16)
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Verify(gpk,M, σ): Parse the signature σ as above. Return 1 if and only if it holds that: (i) The
proofs π1,π2,π3 verify; (ii) C̃σ2 is a valid TBE ciphertext (i.e., (13) holds) for the tag τ =
CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3), rhash).

Open(gpk, gmsk,M, σ): To open σ using gmsk =
(
msk, ζ

)
, parse σ as in (16) and return ⊥ if it is

not a valid signature w.r.t. gpk and M . Otherwise, use ζ = logû11(û12) to decrypt the Elgamal

ciphertext C σ̂6 ∈ Ĝ2. Then, check if the resulting plaintext is ĝID for some group member’s
identifier ID. If so, output ID. Otherwise, return ⊥.

The signature consists of 19 elements of G, 8 elements of Ĝ and one element of Zp. If each element

of G (resp. Ĝ) has a 256-bit (resp. 512-bit) representation, the entire signature fits within 9216 bits
(or 1.125 kB). By using the technique of Jutla and Roy [44] to shorten the hierarchical signature, it
is possible to shorten the latter by one group element (as explained in Section 4), which saves two
elements of G in the group signature without modifying the underlying assumption. In this case, the
signature length reduces to 8704 bits (or 1.062 kB). Using the technique of Boyen, Mei and Waters
[19], it is also possible to eliminate the randomness rhash and replace the chameleon hash function
by an ordinary collision-resistant hash function, as explained in Appendix G.2. By doing so, at the
expense of a group public key made of Θ(λ) elements of Ĝ, we can further compress signatures down
to 8448 bits (or 1.031 kB).

If we settle for a weaker flavor of CPA-anonymity (i.e., without a signature opening oracle), the
commitment C̃σ2 can be replaced by an ordinary Groth-Sahai commitment Cσ2 so as to further save
three elements of G (or 768 bits). In this CPA-anonymous variant, the signature length drops to 7936
bits.

To give a concrete comparison with earlier constructions, an implementation of the Boyen-Waters
group signature [21] in asymmetric prime order groups requires 10 elements of G and 8 elements
of Ĝ for a total of 6656 bits per signature. However, besides the SXDH assumption, the resulting
scheme relies on the non-standard q-Hidden Strong Diffie-Hellman assumption [21] and only provides
anonymity in the CPA sense.

Theorem 5. The scheme provides full traceability under the SXDH assumption.

The proof of Theorem 5 relies on the unforgeability of the two-level hierarchical signature of Section
4. By preparing extractable Groth-Sahai CRSes (u1,u2) and (û1, û2), the reduction can always
turn a full traceability adversary (whose definition is recalled in Appendix H.1) into a forger for the
hierarchical signature. The proof is straightforward and the details are omitted.

Theorem 6. The scheme provides full anonymity assuming that: (i) The SXDH assumption holds
in (G, Ĝ,GT ); (ii) CMhash is a collision-resistant chameleon hash function. (The proof is given in
Appendix I.1).

In Appendix J, we extend the above system to obtain dynamic group signatures based on the
SXDH and XDLIN2 assumption. The signature length is only 1.8 kB, which gives us the shortest
dynamic group signatures based on constant-size assumptions to date. The construction builds on
our structure-preserving signature and the encryption scheme of Section 6 in a modular manner.
Detailed efficiency comparisons are given in the table in Appendix J.
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A Groth-Sahai Proofs

Our constructions use Groth-Sahai proofs for pairing product equations (PPE) of the form:

n∏
j=1

e(Aj ,Yj)
n∏
j=1

e(Xi,Bi)
m∏
i=1

n∏
j=1

e(Xi,Yj)γi,j = tT ,

where Xi,Yj are variables in G1 and G2, respectively, and Aj ∈ G,Bi ∈ Ĝ and tT ∈ GT are constants
for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

A non-interactive witness indistinguishable (NIWI) proof system is a tuple of four algorithms
(Setup,Prove,VerifyProof). Setup outputs a common reference string (CRS) crs, Prove first gen-
erates commitments of variables and constructs proofs that these variables satisfy the statement,
and VerifyProof verifies the proof. Such a proof system should satisfy correctness, soundness and
witness-indistinguishability. Correctness requires that honestly generated proofs for true statements
be always accepted by the verifier. Soundness guarantees that cheating provers can only prove true
statements with all but negligible probability. Witness-indistinguishability requires the existence of
an efficient simulator GSSimSetup that produces a common reference string (CRS) crs′ which is
computationally indistinguishable from a normal crs. When commitments are computed using crs′,
they are perfectly hiding and the corresponding proofs are witness indistinguishable: i.e., so long as
a statement as several witnesses, the proof leaks no information on which specific witness is used
to generate it. Zero-knowledge additionally requires the existence of an algorithm GSSimProve that,
given a simulated CRS crs′ and some trapdoor information τ , generates a simulated proof of the
statement without using the witnesses and in such a way that the proof is indistinguishable from a
real proof.

In the perfect soundness setting, a CRS (u1,u2, û1, û2) consists of vectors u1 = (g, u12), u2 =
(h, u22) ∈ G2 and û1 = (ĝ, û12), û2 = (ĥ, û22) ∈ Ĝ2 that are linearly dependent. Namely, there exist

ζ, ζ̂ ∈ Zp for which u2 = u1
ζ and û2 = û1

ζ̂ . Moreover, NIWI proofs for pairing product equations
are perfectly sound (meaning that proofs for false statements do not exist) and the pair (x, y) =
(logg(u12), logĝ(û12)) ∈ Z2

p can serve as an extraction trapdoor to extract committed group elements

X ∈ G and X̂ ∈ Ĝ from their commitments CX = (1, X) · u1
θ1 · u2

θ2 , ĈX = (1, X̂) · û1
θ3 · û2

θ4 . In
the perfect witness indistinguishability setting, (u1,u2) are linearly independent vectors, just like
(û1, û2). In this case, CX = (1, X) · u1

θ1 · u2
θ2 and ĈX = (1, X̂) · û1

θ3 · û2
θ4 are perfectly hiding

commitments to X and X̂, respectively, and non-interactive proofs for pairing product equations are
perfectly witness indistinguishable. Under the SXDH assumption, no PPT adversary can distinguish
a perfectly sound CRS from a perfectly hiding CRS.

Regardless of which kind of CRS is used, linear pairing product equations (i.e., where γij = 0 for

all i, j) have proofs in G2 × Ĝ2 when they involve witnesses in both G and Ĝ. When all witnesses
are in G, proofs live in Ĝ2.

B Comparisons Among Structure-Preserving Signatures

Abe, Haralambiev, Groth, Ohkubo [4] gave lower bounds on the complexity of structure-preserving
signatures. In asymmetric pairings, they showed that the signature size must be at least 3 group
elements and they provided a scheme matching these bounds. The security proof, however, relies
on interactive assumptions which are not falsifiable [56]. At the cost of increasing the signature size
by 1 or 3 group elements (depending whether messages contain elements from both source groups),
a variant of their scheme can be proved secure under a “q-type” assumption which, while non-
interactive, remains pretty ad hoc. In 2011, Abe, Groth Ohkubo [5] subsequently showed that, under
algebraic reductions, the optimal bound of 3 elements cannot be reached under any non-interactive
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assumption in Type 3 pairings. Under a q-type assumption, the bound of 4 group elements was
reached by the scheme of [4] for unilateral vectors of group elements with a restricted message space.
To our knowledge, no impossibility result or lower bound is known for SPS schemes based on simple
assumption.

Table 1. Efficiency comparison of constant-size structure preserving signatures.

Schemes Public key† Signature #(PPEs) Pairings Assumptions

AHO10 [3,8] 12 + 2n 7 2 Type I q-SFP
ACDKNO12 [1] 25 + 2n 17 9 Type I DLIN
ADKNO13 [2] 20 + 2n 14 7 Type I DLIN

AHO10 [3,8] (4, 8 + 2n) (5, 2) 2 Type III q-SFP
AGHO11 [4] (1, 4 + 2n) (3, 1) 2 Type III q-type
ACDKNO12 [1] (7, 13 + n) (7, 4) 5 Type III SXDH, XDLIN1

Section 5 (11, 14 + 2n) (10, 1) 5 Type III SXDH, XDLIN2

Section 5 + [44] (8, 13 + 2n) (9, 1) 5 Type III SXDH, XDLIN2

† We assume unilateral messages and n denotes the number of elements of G per message.

Under The DLIN assumption, Chase and Kohlweiss [27] presented a framework for building
SPS schemes from a stateful signature that is F -unforgeable under weak chosen message attacks
and and efficient non-interactive zero-knowledge proof. Their scheme is proven secure under the
DLIN assumption, but the size of a signature is 100 + 24 · n + 9ẋ, where n is the number of group
elements signed and x determines an upper bound on the number of signatures produced using a
given key pair. Camenisch, Dubovitskaya and Haralambiev [23] proposed the first scheme under a
simple assumption.

Later on, Abe et al. [1,2] gave the first constructions allowing to sign n group elements at once
using a constant number of group elements.

C Definitions for Involved Primitives

C.1 Quasi-Adaptive NIZK Arguments

Quasi-Adaptive NIZK (QA-NIZK) proofs [43] are NIZK proofs where the CRS is allowed to depend
on the specific language for which proofs have to be generated. The CRS is divided into a fixed
part Γ , produced by an algorithm K0, and a language-dependent part ψ. However, there should be
a single simulator for the entire class of languages.

Let λ be a security parameter. For public parameters Γ produced by K0, let DΓ be a probability
distribution over a collection of relations R = {Rρ} parametrized by a string ρ with an associated
language

Lρ = {x | ∃w : Rρ(x,w) = 1}.
A tuple of algorithms (K0,K1,P,V) is a QA-NIZK proof system for R if there exists a PPT sim-

ulator (S1,S2) such that, for any PPT adversaries A1,A2 and A3, we have the properties hereunder.
We assume that the CRS ψ contains an encoding of ρ, which is thus available to V. The definition

of Quasi-Adaptive Zero-Knowledge requires a single simulator for the entire family of relations R.

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ);

(x,w)← A1(Γ, ψ); π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w) = 1] = 1 .

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π)← A2(Γ, ψ) :

V(ψ, x, π) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ) .
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Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) : AS(ψ,τsim,.,.)
3 (Γ, ψ) = 1] ,

where
– P(ψ, ., .) emulates the actual prover. It takes as input a pair (x,w) and outputs a proof π if

(x,w) ∈ Rρ. Otherwise, it outputs ⊥.
– S(ψ, τsim, ., .) is an oracle that takes as input (x,w). It outputs a simulated proof S2(ψ, τsim, x)

if (x,w) ∈ Rρ and ⊥ if (x,w) 6∈ Rρ.

C.2 F -Unforgeable Signatures

In the syntax of Belenkiy et al. [11], a signature scheme consists of algorithms (Keygen,Sign,Verify)
which operate in the usual way with the difference that Keygen takes as input common public
parameters cp, which typically specifies the abelian groups to be used in the scheme, produced by a
setup algorithm on input of a security parameter λ.

Definition 3. Let F be an efficiently computable (but not necessarily efficiently invertible) bijection.
A signature scheme (Keygen,Sign,Verify) is F -unforgeable if no PPT adversary has non-negligible
advantage in the following game:

1. The challenger generates cp← Setup(λ) and (sk, pk)← Keygen(cp) and gives (cp, pk) to A.
2. On polynomially-many occasions, A chooses messages M and obtains σ ← Sign(sk,M).
3. A outputs a pair (y, σ) and wins if Verify(pk, F−1(y), σ)) = 1 and F−1(y) 6∈ Q, where Q denotes

the set of messages queried at step 2.

C.3 Hierarchical Signatures

A two-level (blinded) hierarchical signature is a tuple (Setup,Extract,Sign,Verify) with the following
specification.

Setup(λ): Takes as input a security parameter λ ∈ N and outputs a master key pair (msk,mpk).
Extract(msk, ID): Takes as input an identity ID and the master secret key msk. It outputs a private

key KID for the identity ID.
Sign(mpk,KID,M): Given the master public key, a private key KID for the identity ID and a message,

this randomized algorithm outputs an a signature for the hierarchical message (ID,M).
Verify(mpk, σ,M): Given a master public key mpk, a candidate signature σ and a message M , this

algorithm outputs 1 if σ is deemed to be a valid signature for the identity-message pair (ID,M),
where ID is implicitly encoded in σ, and 0 otherwise.

The difference with ordinary two-level hierarchical signatures (a.k.a. identity-based signatures) lies
in that the signer’s identity is not explicitly known to the verifier, but is still uniquely determined
(e.g., via an injective but not necessarily efficiently invertible encoding) by the signature.

Definition 4. A two-level (blinded) hierarchical signature is secure under chosen-message attacks if
no PPT adversary has non-negligible advantage in the following game.

1. The challenger generates (mpk,msk)← Setup(λ) and gives mpk to the adversary A.
2. In a learning phase, A interleaves the following queries on a polynomial number of occasions.

- Extraction queries: A chooses an identity ID and obtains the private key KID ← Extract(msk, ID)
from the challenger.
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- Signing queries: A chooses an identity-message pair (ID,M). The challenger generates KID ←
Extract(msk, ID) and returns a signature σ ← Sign(mpk,KID,M) to A.

3. A outputs a pair (σ?,M?) and wins if: (i) Verify(mpk, σ?,M?) = 1; (ii) The identity ID?, which
is uniquely determined by σ?, was never queried to the extraction oracle at step 2; (iii) The pair
(ID?,M?) was never submitted to the signing oracle at step 2.

The adversary’s advantage is its probability of success taken over all coin tosses.

For simplicity, the above definition assumes that, for a given identity ID, the distribution of signatures
does not depend on which specific private key KID is used to run Sign.

C.4 Tag-Based Encryption

A tag-based encryption scheme (TBE) [55,48] is a public key cryptosystem where the encryption and
decryption algorithms take an additional input, named the tag, which is a binary string of appropriate
length with no particular structure. A TBE scheme consists of a triple (Keygen,Encrypt,Decrypt) of
efficient algorithms where, on input of a security parameter λ, Keygen outputs a private/public key
pair (pk, sk); Encrypt is a randomized algorithm that outputs a ciphertext C on input of a public
key pk, a string τ – called tag – and a message M ; Decrypt(sk, τ, C) is the decryption algorithm that
takes as input a secret key sk, a tag τ and a ciphertext C and returns a plaintext M or ⊥. Correctness
requires that for all λ ∈ N, all key pairs (pk, sk) ← Keygen(λ), all tags τ and any plaintext M , it
holds that M ← Decrypt(sk,Encrypt(pk,M, τ), τ).

In Section 6, we use a similar syntax with the only difference that the Keygen algorithm takes as
input pre-existing public parameters cp.

Kiltz [48] showed that, in order to build chosen-ciphertext-secure encryption schemes from tag-
based encryption via the Canetti-Halevi-Katz paradigm [25], it is sufficient to start from a TBE
system satisfying a weaker definition than in [55]. This weaker definition is as follows.

Definition 5 ([48]). A tag-based encryption (TBE) scheme is weakly secure against selective-tag
chosen-ciphertext attacks if no PPT adversary has non-negligible advantage in the following game:

1. The adversary A is run on input of the security parameter λ ∈ N and chooses a tag τ?. The
challenger generates (pk, sk)← Keygen(λ) and gives pk to A.

2. On polynomially-many occasions, the adversary chooses a pair (τ, C) such that τ 6= τ? and obtains
M ← Decrypt(sk, τ, C), where M may be ⊥ if the pair (τ, C) is deemed invalid by the decryption
algorithm.

3. The adversary A chooses two equal-length messages M0,M1 and obtains C? ← Encrypt(pk,Mβ, τ
?)

for a random bit β R← {0, 1} chosen by the challenger.
4. The adversary A makes further decryption queries as in step 2.
5. A outputs a random bit β′ ∈ {0, 1} and wins if β′ = β.

As always, A’s advantage is defined to be Advstag-cca(λ) := |Pr[β′ = β]− 1/2|.

The above definition relaxes the original one [55] in that no decryption query is allowed with respect
to the challenge tag τ? chosen at step 1.

C.5 Chameleon Hash Functions

A chameleon hash function [50] consists of a tuple of algorithms CMH = (CMKg,CMhash,CMswitch)
which contains an algorithm CMKg that, given a security parameter λ, outputs a key pair (hk, tk)←
G(λ). The randomized hashing algorithm outputs y = CMhash(hk,m, r) given the public key hk, a
message m and random coins r ∈ Rhash. On input of messages m,m′, random coins r ∈ Rhash and
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the trapdoor key tk, the switching algorithm computes random coins r′ ← CMswitch(tk,m, r,m′)
such that CMhash(hk,m, r) = CMhash(hk,m′, r′). The collision-resistance property mandates that it
be infeasible to come up with pairs (m′, r′) 6= (m, r) such that CMhash(hk,m, r) = CMhash(hk,m′, r′)
without knowing the trapdoor key tk. Uniformity guarantees that the distribution of hash values is
independent of the message m: in particular, for all hk, and all messages m,m′, the distributions
{r ← Rhash : CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)} are identical.

D Proof of Theorem 1

Proof. To prove the result, we will consider a sequence of hybrid games involving two kinds of private
keys and two kinds of signatures.

Type A private keys: These keys have the same distribution as those produced by the real Extract
algorithm. They are obtained by computing

K1 = gω · (vID · w)s, K2 = gs·ID, K3 = gs, (17)

K4 = hs·ID K5 = hs, K6 = ts, K̂7 = ĝID,

for a randomly chosen s R← Zp, and

z = zω1 · (zID2 · z3)s, zd = zs4,

r = rω1 · (rID2 · r3)s, rd = rs4.

We observe that, since the vector (K1,K2,K3,K4,K5, 1, 1, Ω) (resp. (K6, 1, 1, 1, 1,K3,K5, 1)) is
in the subspace spanned by the first three rows (resp. the last row) of M, the QA-NIZK proofs
(z, r) and (zd, rd) can equivalently be computed as

z =
5∏
i=1

K−χii ·Ω−χ8 , zd = K−χ1
6 ·K−χ6

3 ·K−χ7
5 ,

r =
5∏
i=1

K−γii ·Ω−γ8 , rd = K−γ16 ·K−γ63 ·K−γ75 . (18)

We further define Type A’ private keys as a broader class of private keys where only conditions (17)
are required. We do not impose any condition on (z, r) and (zd, rd) besides being valid homomorphic
signatures on the vectors (K1,K2,K3,K4,K5, 1, 1, Ω) and (K6, 1, 1, 1, 1,K3,K5, 1), respectively. Type
A private keys are thus a special kind of Type A’ private keys.

Type B private keys: In these keys, the secret exponent ω ∈ Zp is replaced by a random exponent
ω′ ∈R Zp. Type B keys are obtained by computing

K1 = gω
′ · (vID · w)s, K2 = gs·ID, K3 = gs,

K4 = h(s+s1)·ID, K5 = hs+s1 , K6 = ts, K̂7 = ĝID,

where ω′, s, s1
R← Zp, and

z =

5∏
i=1

K−χii ·Ω−χ8 , r =

5∏
i=1

K−γii ·Ω−γ8 ,

zd = K−χ1
6 ·K−χ6

3 ·K−χ7
5 , rd = K−γ16 ·K−γ63 ·K−γ75 .

Likewise, we consider two distributions of signatures.
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Type A signatures: These signatures are obtained by computing

σ1 = gω · (vID · tM · w)s, σ2 = gs·ID,

σ3 = gs, σ4 = hs·ID, (19)

σ5 = hs, σ̂6 = ĝID,

and

z̃ = zω1 · (zID2 · zM4 · z3)s, r̃ = rω1 · (rID2 · rM4 · r3)s.

Note that, since (σ1, σ2, σ3, σ4, σ5, σ
M
3 , σ

M
5 , Ω) is in the row space of M, the QA-NIZK proof (z̃, r̃)

has the same distribution as if it were computed as

z̃ =

5∏
i=1

σ−χii · σ−M ·χ6
3 · σ−M ·χ7

5 ·Ω−χ8 , (20)

r̃ =
5∏
i=1

σ−γii · σ−M ·γ63 · σ−M ·γ75 ·Ω−γ8 .

Moreover, Type A signatures also have the same distribution as signatures derived from a Type
A key KID = (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd) by faithfully running the real signing algo-
rithm.

Similarly to private keys, we define Type A’ signatures as a generalization of Type A signatures
where only conditions (19) are imposed and no restriction is placed on (z̃, r̃) beyond the fact that it
should be a valid homomorphic signature on the vector (6).

Type B signatures: In these signatures, the secret exponent ω ∈ Zp is replaced by a random value
ω′ ∈R Zp. Type B signatures are obtained by computing

σ1 = gω
′ · (vID · tM · w)s, σ2 = gs·ID,

σ3 = gs, σ4 = h(s+s1)·ID,

σ5 = hs+s1 , σ̂6 = ĝID,

for random ω′, s, s1
R← Zp. The QA-NIZK proof (z̃, r̃) is computed using {(χi, γi)}8i=1 in the same

way as in (20).

We note that, unlike their Type A counterparts, Type B private keys and Type B signature can both
be generated without using the private exponent ω ∈ Zp.

We consider a sequence of games. In Game i, we denote by Si the event thatA wins by producing a
signature σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?) on a message M? such that ID? = logσ?3 (σ?2) = logσ?5 (σ?4)

was not queried for private key extraction and no signing query was made on M? for the identity
ID?.

Game 0: This game is the real game.

Game 1: This game is identical to Game 0 with the sole difference that, instead of generating
signatures (σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6) by deriving them from a Type A private key, the challenger
B directly computes Type A signatures according to (19)-(20). At the end of the game, we define
E1 as the event that the forgery σ? produced by the adversary A is a Type A’ signature. We
clearly have Pr[S1] = Pr[S1∧E1]+Pr[S1∧¬E1]. Lemma 1 provides evidence that event S1∧¬E1

would contradict the computational soundness of the QA-NIZK arguments of [53] and thus the
DDH assumption in Ĝ. We have Pr[S1 ∧ ¬E1] ≤ AdvDDH

Ĝ (λ) + 1/p, meaning that, unless the

DDH assumption is false in Ĝ, A cannot produce anything but a Type A’ forgery. Our task is
now to upper-bound Pr[S1 ∧ E1].
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Game 2: This game is like Game 1 with the difference that, when the challenger B answers private
key queries and signing queries, the QA-NIZK proofs (z, r), (zd, rd) and (z̃, r̃) are computed as
simulated QA-NIZK proofs by using {(χi, γi)}8i=1 as in (18) and (20). These QA-NIZK proofs
are thus simulated proofs for true statements, so that their distribution remains unchanged. We
have Pr[S2 ∧ E2] = Pr[S1 ∧ E1], where E2 denotes the event that A produces a Type A’ forgery
in Game 2.

We now consider a sub-sequence of q1 hybrid games, where q1 is the number of private key
queries, where we gradually modify the distribution of private keys obtained by the adversary. For
convenience, we define Game 3.0 to be identical to Game 2.

Game 3.k (0 ≤ k ≤ q1): In Game 3.k, the challenger returns a Type B private key at the first
k private key queries. At the last q1 − k private key queries, the challenger outputs a Type A
private key. Lemma 2 shows that, in Game 3.k, the adversary A outputs a Type A’ signature
with about the same probability as in Game 3.(k − 1) as long as the DDH assumption holds in
G. Specifically, we have |Pr[S3.k ∧ E3.k]− Pr[S3.(k−1) ∧ E3.(k−1)]| ≤ AdvDDH

G (λ) + 1/p.

The next step is to consider a sub-sequence of q2 hybrid games where the distribution of signatures
is gradually modified. For convenience, we define Game 4.0 as being identical to Game 3.q1.

Game 4.k (0 ≤ k ≤ q2): In Game 4.k, all private key queries are answered by returning a Type
B private key. As for the distribution of signatures produced by the signing oracle, the challenger
returns a Type B signature at the first k signing queries. The last q2 − k signing queries are
answered by returning a Type A signature. Lemma 3 demonstrates that, if the DDH assumption
holds in G, gradually changing the distribution of signatures does not significantly increase A’s
probability not to output a Type A’ forgery. We have

|Pr[S4.k ∧ E4.k]− Pr[S4.(k−1) ∧ E4.(k−1)]| ≤ AdvDDH
G (λ) + 1/p.

In Game 4.q2, we know that, unless the SXDH assumption is false, A can only output a Type
A’ forgery although it only obtains Type B private keys and Type B signatures during the game.
However, Lemma 4 shows that event S4.q2∧E4.q2 would contradict the Computational Diffie-Hellman
assumption which is trivially implied by DDH: we thus have Pr[S4.q2 ∧E4.q2 ] ≤ AdvDDH

G (λ). Putting
the above altogether, we can upper-bound the adversary’s advantage as

Pr[S0] ≤AdvDDH
Ĝ (λ) +

1

p
+ (q1 + q2) ·

(
AdvDDH

G (λ) +
1

p

)
+ AdvDDH

G (λ)

< (q1 + q2 + 2) ·
(
AdvSXDH

G,Ĝ (λ) +
1

p

)
.

ut

Lemma 1. In Game 1, if the DDH assumption holds in Ĝ, no PPT adversary can output anything
but a Type A’ forgery.

Proof. Let us assume that a PPT adversary A has non-negligible probability ε of outputting a forgery
σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?) which is not a Type A’ forgery in Game 1. We turn A into an

algorithm B that inputs an instance (ĝz, ĝr) ∈ Ĝ2 of the DP problem and finds a non-trivial pair
(z?, r?) ∈ G2 such that e(z?, ĝz) · e(r?, ĝr) = 1GT with probability ε · (1 − 1/p). In turn, B implies a
successful DDH distinguisher in Ĝ since the DP assumption implies the DDH assumption in Ĝ.

Let us first define the vector σ = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
3
M?
, σ?5

M?
, Ω) ∈ G8. We know that, if

(M?, σ?) is not a Type A’ forgery, then σ is not in the row space of M.
Our algorithm B receives as input a public key pkhsps for an instance of the LHSPS scheme
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allowing to sign vectors of dimension n = 8. Then, B runs Steps 1, 2 and 3 of the real key generation
algorithm on its own to obtain g, v, t, w R← G and h = ga, ĝ and Ω = hω for randomly chosen
ω, a R← Zp. It then queries its own LHSPS challenger to obtain signatures {(zi, ri)}4j=1 on the rows
of the matrix (3). The adversary A is run on input of

mpk =
(
g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
Since B knows the master secret key ω ∈ Zp, it can answer all private key and signing queries
by faithfully running the Extract and Sign algorithms. In particular, it does not need {(χi, γi)}8i=1

for this purpose. When A terminates, it outputs a message M? along with a signature σ? =
(σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?) which does not constitute a Type A’ forgery. This implies that (z̃?, r̃?) is

a valid homomorphic signature on the vector σ = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
3
M?
, σ?5

M?
, Ω). but σ is outside

the row space of M. Consequently, B can output (z̃?, r̃?) and the above vector as a valid forgery for
the LHSPS scheme. The result of [52] ensures that B implies an algorithm solving the DP problem
with probability at least ε · (1− 1/p). ut

Note that the proof of Lemma 1 does not rely on any specific property of the QA-NIZK proof
system of Libert et al. [53]. Moreover, the proof of Lemma 1 goes through if the reduction B knows
the discrete logarithms logg(h), logg(t), logg(v) and logg(w). For this reason, the QA-NIZK argument
of Jutla and Roy [44] can be used so as to replace the pair (z̃, r̃) by a single group element. In order
to give a reduction from the soundness of the underlying QA-NIZK argument, B takes as input a
CRS for the language defined by the subspace spanned by the rows of M. Since all signing queries are
answered by honestly generating QA-NIZK proofs, it comes that any successful forger also breaks the
soundness of the QA-NIZK argument. Indeed, the adversary still has to come up with a convincing
argument for a vector σ outside the row space of M. Since Lemma 1 is the only step where we
appeal to the soundness of the argument system, we observe that any other QA-NIZK argument can
be applied.

Lemma 2. If the DDH assumption holds in G, the adversary A produces a Type A’ forgery with
nearly the same probabilities in Game 3.k and Game 3.(k − 1) for each k ∈ {1, . . . , q1}.

Proof. Towards a contradiction, let us assume that there exists k ∈ {1, . . . , q1} such that the adver-
sary A outputs a Type A’ forgery with significantly smaller probability in Game 3.k than in Game
3.(k − 1). We show how to build a DDH distinguisher in G on top of this adversary A.

Our distinguisher B takes as input a tuple (g, ga, gb, η) ∈ G3, where η = ga(b+c), and has to decide
if c = 0 or c ∈R Zp. To this end, B defines h = ga. It also chooses ω, av, aw, at, bv, bw

R← Zp, and sets
Ω = gω as well as

v = gav · hbv , w = gaw · hbw , t = gat .

It also generates skhsps = {(χi, γi)}8i=1, pkhsps = (ĝz, ĝr, {ĝi}8i=1) as well as {(zj , rj)}4j=1 as in steps
4-5 of the real key generation algorithm and runs the adversary on input of

mpk =
(
g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
and retains (ω, {(χi, γi)}8i=1) to handle signing queries and private key queries.

During the game, B uses (ω, {(χi, γi)}8i=1) to compute and return a Type A signature at each
signing query. The treatment of private key queries depends on the index j ∈ {1, . . . , q1} of the query.

Case j < k: B computes KID = (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd) as a Type B private key
and computes (z, r, zd, rd) using {(χi, γi)}8i=1.
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Case j > k: The last q1 − k − 1 private keys are computed as Type A private keys. Note that B is
able to compute them since it knows the master secret key ω ∈ Zp and {(χi, γi)}8i=1.

Case j = k: In the k-th private key, B will embed the DDH instance by defining.

K2 = (gb)ID, K3 = gb

K4 = (η)ID K5 = η

K6 = (gb)at K̂7 = ĝID

and

K1 = gω ·Kav
2 ·K

aw
3 ·K

bv
4 ·K

bw
5 .

Then, B generates the QA-NIZK proofs (z, r) and (zd, rd) as per (18).

We note that, if η = gab, (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd) is distributed as a Type A private
key with s = b. In contrast, if η = ga(b+c) for some c ∈R Zp, we can write

K2 = gb·ID K3 = gb

K4 = h(b+c)·ID K5 = hb+c

K6 = tb K̂7 = ĝID

K1 = gω · gac·(bv ·ID+bw) · (vID · w)b = gω
′ · (vID · w)c,

where ω′ = ω + ac · (bv · ID + bw). Since the latter value is uniformly distributed and independent of
A’s view, (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd) is distributed as a Type B private key if η = ga(b+c)

with c ∈R Zp.
At the end of the game, the adversary A halts and outputs a message M? together with a forgery

σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?) such that the implicit identity ID? = logĝ(σ̂6) = logσ?3 (σ?2) =

logσ?5 (σ?4) has not been submitted to the private key extraction oracle. At this point, B must decide
if σ? is a Type A’ forgery. To this end, it checks if the equality

σ?1 = gω · σ?2
av · σ?3

aw+at·M?

· σ?4
bv · σ?5

bw (21)

is satisfied. If so, B outputs 1, meaning that η = gab. Otherwise, it outputs 0 to indicate its belief
that η = ga(b+c) for some uniformly random c ∈R Zp.

To justify why B is a SXDH distinguisher if A has non-negligible chance of outputting a forgery
that is not of Type A’, we first note that σ? is of the form

σ?2 = gs·ID
?

σ?3 = gs

σ?4 = h(s+s1)·ID
?

σ?5 = hs+s1

σ̂?6 = ĝID
?

σ?1 = gω+s0 · (vID
?

· w)s,

for some s, s0, s1 ∈ Zp. In particular, the verification equations imply that σ?4 and σ?5 depend on the
same s1 ∈ Zp. The distinguisher B thus has to decide if (s0, s1) = (0, 0), which means that σ? is a
Type A’ signature, or (s0, s1) 6= 0. We first remark that, if s0 6= 0 and s1 = 0, the equality (21) can
never be satisfied. We thus focus on the case s1 6= 0 and observe that, in this case, the equality (21)
holds if and only if s0 = a · s1 · (bv · ID? + bw). We claim that this occurs with probability at most
1/p. To see this, we remark that the information that A can learn about (av, aw, bv, bw) ∈ Z4

p during
the entire game amounts to the first three rows of the right-hand-side member in the following linear
system 

1 a
1 a

ac · ID ac
as1 · ID? as1

 ·

av
aw
bv
bw

 =


logg(v)

logg(w)

ω′ − ω
s0

 ,
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where ID is the identity involved in the k-th private key query. Hence, the adversary can only predict
as1 · (bv · ID? + bw) with probability 1/p since the above matrix is non-singular when ID 6= ID?. ut

Lemma 3. Under the DDH assumption in G, the adversary A produces a Type A’ forgery with
negligibly different probabilities in Game 4.k and Game 4.(k − 1) for each k ∈ {1, . . . , q2}.

Proof. Let us assume that there exists an index k ∈ {1, . . . , q2} and an adversary A which outputs
a Type A’ forgery with noticeably smaller probability in Game 4.k than in Game 4.(k − 1). We
construct a SXDH distinguisher B using A.

Our distinguisher B takes as input a SXDH instance (g, ga, gb, η) ∈ G3, where η = ga(b+c), and un-
dertakes to decide if c = 0 or c ∈R Zp. To do this, B sets h = ga. It also picks ω, av, aw, at, bv, bw, bt

R←
Zp, and defines Ω = gω as well as

v = gav · gbv , w = gaw · hbw t = gat · hbt

It also chooses skhsps = {(χi, γi)}8i=1 and computes pkhsps = (ĝz, ĝr, {ĝi}8i=1) and {(zj , rj)}4j=1 in the
same way as in steps 4-5 of the actual key generation algorithm. The adversary is fed with

mpk =
(
g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
and B retains (ω, {(χi, γi)}8i=1) in order to handle adversarial queries.

Throughout the game, B uses (ω, {(χi, γi)}8i=1) to output Type B private keys at each private
key query. The way to answer signing queries depends on the index j ∈ {1, . . . , q2} of those queries.

Case j < k: B computes a Type B signature σ =
(
σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6

)
. In particular, it com-

putes (z̃, r̃) as a simulated QA-NIZK proof using {(χi, γi)}8i=1.
Case j > k: The last q2−k−1 signing queries are computed as Type A signatures, which B is able

to generate since it knows the master secret key ω ∈ Zp and {(χi, γi)}8i=1.
Case j = k: In the k-th signing query (ID,M), B embeds the DDH instance in the signature and

simulates either Game 4.k or Game 4.(k − 1) depending on whether η = gab or η = ga(b+c) for
some random c ∈R Zp. Namely, B computes

σ2 = (gb)ID, σ3 = gb

σ4 = ηID σ5 = η σ̂6 = ĝID

and

σ1 = gω · σav2 · σ
aw+at·M
3 · σbv4 · σ

bw+bt·M
5

Then, B generates the QA-NIZK proof (z̃, r̃) as per (20).

We observe that, if η = gab, (σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6) is distributed as a Type A signature with
s = b. If η = ga(b+c) for some uniform c ∈R Zp, we can write

σ2 = gb·ID σ3 = gb

σ4 = h(b+c)·ID σ5 = hb+c σ̂6 = ĝID

σ1 = gω · gac·(bv ·ID+bt·M+bw) · (vID · tM · w)b = gω
′ · (vID · tM · w)b,

where ω′ = ω+ac · (bv · ID+ bt ·M + bw). Since the term (bv · ID+ bt ·M + bw) is uniformly distributed
and independent of A’s view, σ is distributed as a Type B signature if η = ga(b+c).

When A terminates, it outputs a message M? and a forgery σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?)
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such that it did not submit the identity ID? = logĝ(σ̂6) = logσ?3 (σ?2) = logσ?5 (σ?4) to the private key
extraction oracle or the pair (ID?,M?) to the signing oracle. At this point, B has to figure out if σ?

is a Type A’ forgery or not. To this end, it tests whether the equality

σ?1 = gω · σ?2
av · σ?3

aw+at·M?

· σ?4
bv · σ?5

bw+bt·M?

(22)

is satisfied. If it is, B outputs 1 to indicate that η = gab. Otherwise, it outputs 0 and rather bets that
η = ga(b+c) for some random c ∈R Zp.

To see why this test allows B to tell apart Type A’ forgeries from other forgeries, we first remark
that σ? is necessarily of the form

σ?2 = gs·ID
?

σ?3 = gs σ̂6
? = ĝID

?

σ?4 = h(s+s1)·ID
?

σ?5 = hs+s1 σ?1 = gω+s0 · (vID
?

· tM? · w)s,

for some s, s0, s1 ∈ Zp since the verification equations ensure that σ?4 and σ?5 depend on the same
s1 ∈ Zp. The task of B thus amounts to deciding if (s0, s1) = (0, 0) or (s0, s1) 6= 0. First, we note
that the equality (22) can never be satisfied if s0 6= 0 and s1 = 0. We are thus left with the case
s1 6= 0 where the equality (22) only holds when s0 = a · s1 · (bv · ID? + bt ·M? + bw). We claim
that this can only happen with probability 1/p. Indeed, the information that A can infer about
(av, aw, at, bv, bw, bt) ∈ Z6

p during the game amounts to the first four rows of the right-hand-side
member in the following linear system


1 a

1 a
1 a

ac · ID ac ac ·M
as1 · ID? as1 as1 ·M?

 ·


av
aw
at
bv
bw
bt

 =


logg(v)

logg(w)

logg(t)

ω′ − ω
s0

 ,

where (ID,M) is the identity-message pair involved in the k-th signing query. We find that A can
only predict a · s1 · (bv · ID? + bt ·M? + bw) with probability 1/p since the above matrix has full rank
whenever (ID,M) 6= (ID?,M?). ut

Lemma 4. In Game 4.q2, any PPT adversary outputting a Type A’ forgery contradicts the DDH
assumption in G. We have Pr[S4.q2 ∧ E4.q2 ] ≤ AdvDDH

G (λ)

Proof. The proof is straightforward and builds an algorithm B for solving the Computational Diffie-
Hellman problem which is at least as hard as the DDH problem. Algorithm B takes as input a tuple
(g, h,Ω = hω) and computes gω. To generate mpk, B picks ĝ R← Ĝ, av, aw, at

R← Zp and computes

v = gav , w = gaw t = gat .

Next, B generates skhsps = {(χi, γi)}8i=1, pkhsps = (ĝz, ĝr, {ĝi}8i=1) and {(zj , rj)}4j=1 as in steps 4-5 of
the real key generation algorithm and runs the adversary on input of

mpk =
(
g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
.

It also retains skhsps = {(χi, γi)}8i=1 to handle signing queries and private key queries. During the
game, all private key queries and signing queries are answered by returning Type B private keys and
Type B signatures, respectively. Using skhsps = {(χi, γi)}8i=1, B can thus answer all queries without
knowing the exponent ω = logh(Ω) which is part of the problem instance.

The results of Lemmas 2 and 3 imply that, although A only obtains Type B private keys and
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Type B signatures, it will necessarily output a Type A’ forgery σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, z̃

?, r̃?, σ̂6
?)

unless the SXDH assumption is false. However, this event allows B to compute the sought-after
solution

gω = σ?1 · σ?2
−av · σ?3

−aw−at·M?

,

which a fortiori contradicts the DDH assumption in G. ut

E Proof of Theorem 2

Proof. We show that an F -unforgeability adversary A implies an equally successful forger B against
the 2-level hierarchical signature.

The reduction B receives as input a master public key

mpk =
(
g, h, ĝ, (t, v, w), Ω = hω, pkhsps =

(
ĝz, ĝr, {ĝi}8i=1

)
, {(zj , rj)}4j=1

)
for the hierarchical signature. From mpk, B constructs a public key pk for the F -unforgeable signature
by defining the underlying homomorphic signature public key pk′hsps =

(
ĝz, ĝr, {ĝi′}6i=1

)
where

(ĝ1
′, ĝ2

′, ĝ3
′, ĝ4

′, ĝ5
′, ĝ6

′) = (ĝ1, ĝ2, ĝ3, ĝ4, ĝ5, ĝ8).

The F -unforgeability adversary A is fed with the public key

pk =
(
g, h, ĝ, (v, w), Ω = hω, pk′hsps, {(zj , rj)}3j=1

)
.

When A queries a signature on a message M , B asks its own challenger for a private keys associated
with the identity ID = M and obtains a private key KID = (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd)
where the first 7 components are of the form

K1 = gω · (vM · w)s, K2 = gs·M , K3 = gs

K4 = hs·M K5 = hs K6 = ts, K̂7 = ĝM .

To answerA’s query, B simply discards (K̂7, zd, rd) and returns the tuple σ = (K1,K2,K3,K4,K5, z, r).
At the end of the game, A outputs a signature σ? =

(
σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, z

?, r?
)

together with
F (M?) = ĝM

?
, which satisfy the equalities e(σ?2, ĝ) = e(σ?3, F (M?)), e(σ?4, ĝ) = e(σ?5, F (M?)) and

e(z?, ĝz) · e(r?, ĝr) = e(σ?1, ĝ1)
−1 · e(σ?2, ĝ2)−1 · e(σ?3, ĝ3)−1 · e(σ?4, ĝ4)−1 · e(σ?5, ĝ5)−1 · e(Ω, ĝ8)−1.

This allows B to defeat the security of the two-level hierarchical signature by producing the signature
σ† =

(
σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, z

?, r?, σ̂6
?
)
, where σ̂6

? = F (M?), for the hierarchical message (M?, 0). (Recall
that a hierarchical signature adversary is only required to output the second-level message, which is
0 here, since the first level message M? appears implicitly in the signature). Since B did not query
the private key for the identity ID? = M? at any time, (σ†, 0) is easily seen to be a valid forgery. ut

F Proof of Theorem 3

To prove the result, it is convenient to use the following assumption which is implied by the XDLIN2

assumption.
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Definition 6. The eXternal Simultaneous Double Pairing problem (XSDP) in (G, Ĝ,GT )
is, given two 4-uples of group elements (gz, gr, hz, hu) ∈ G4 and (ĝz, ĝr, ĥz, ĥu) ∈ Ĝ4 that satisfy the
conditions logĝz(ĝr) = loggz(gr), logĝz(ĥz) = loggz(hz) and logĝz(ĥu) = loggz(hu), to find a non-trivial
triple (z, r, u) ∈ G3\{(1G, 1G, 1G)} such that

e(z, ĝz) · e(r, ĝr) = 1GT , e(z, ĥz) · e(u, ĥu) = 1GT .

The eXternal Simultaneous Double Pairing assumption posits the intractability of the XSDP
problem for any PPT algorithm.

Any algorithm solving XSDP yields an XDLIN2 distinguisher. From an XDLIN2 instance, we can
create an XSDP instance (gac, ga, gbd, gb, ĝac, ĝa, ĝbd, ĝb). If the XSDP solver finds a non-trivial triple
(z, r, u) such that e(z, ĝac) · e(r, ĝa) = 1GT and e(z, ĝbd) · e(u, ĝb) = 1GT , we know that r = z−c and
u = z−d. To decide if η = ĝc+d, it is sufficient to check whether e(r · u, ĝ) · e(z, η) = 1GT .

Proof. The proof considers two kinds of forgeries
(
σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ̂6

?, z?, r?, Z?, R?, U?
)
.

Type I forgeries: are such that σ̂6
? did not appear in any signature produced by the signing oracle.

Type II forgeries: are those for which σ̂6
? is recycled from a signature produced by the signing

oracle.

Type I forgeries immediately imply an chosen-message adversary against the F-unforgeable signature
of Section 3, which contradicts the SXDH assumption. Moreover, this remains true when the signing
oracle outputs randomization tokens (gτ , hτ , vτ , zτ2 , r

τ
2) at each query: indeed, in the game modeling

the security of the F -unforgeable signature, τ is always chosen by the F -unforgeability adversary.
When we reduce the F -unforgeability of the signature scheme of Section 3 to a Type I SPS forger,
the reduction can thus always reveal (gτ , hτ , vτ , zτ2 , r

τ
2) to the Type I forger against the SPS scheme.

In the following, we thus focus on Type II adversaries.
Assuming the existence of a Type II forger, we construct an algorithm B that breaks the XSDP

assumption, which in turn contradicts the XDLIN2 assumption. Algorithm B takes as input an
instance (Gz, Gr, Hz, Hu, Ĝz, Ĝr, Ĥr, Ĥu) of the XSDP assumption with the task of finding a non-
trivial (Z,R,U) such that e(Z, Ĝz) · e(R, Ĝr) = 1 and e(Z, Ĥz) · e(U, ĤU ) = 1. Recall that, in
the definition of the assumption, we have logĜz(Ĝr) = logGz(Gr), logĜz(Ĥz) = logGz(Hz) and

logĜz(Ĥu) = logGz(Hu).

To construct the public key, B chooses wt
R← Zp and defines Ĝt = Ĥu

wt
, Gt = Hwt

u . For each

i ∈ {1, . . . , n}, it also picks χi, γi, δi
R← Zp and sets

Gi = Gχiz ·Gγir , Ĝi = Ĝz
χi · Ĝr

γi
, Hi = Hχi

z ·Hδi
u , Ĥi = Ĥz

χi · Ĥu
δi
.

At step a.1 of the key generation algorithm, it also defines g = G
1/wz
z , ĝ = Ĝz

1/wz
for a randomly

chosen wz
R← Z∗p. It also sets h = ga,Ω = gω, v = gαv , w = gαw for randomly drawn a, ω, αv, αw

R← Zp.
Then, it faithfully conducts steps a.2 to a.4 of the real key generation phase in such a way that it
knows both skfsig = ω, skhsps = {(χ0,i, γ0,i)}6i=1 as well as skpots = {(χi, γi, δi)}ni=1. The adversary A
is run on input of the public key

PK =
(
g, h, ĝ, (v, w), Ω = hω, pkpots, pkhsps, {(zj , rj)}3j=1

)
.

During the attack game, signing queries are answered as follows. At each query M = (M1, . . . ,Mn),
B defines the σ̂6 component of the signature as

σ̂6 = (Ĝz
ζ · Ĝr

ρ
)1/wt ,
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for randomly chosen ζ, ρ R← Zp. It also computes a corresponding “shadow” element in G as

σ6 = (Gz
ζ ·Grρ)1/wt .

Note that, by construction, we have logg(σ6) = logĝ(σ̂6). Then, B computes

Z = Hζ
u ·

n∏
i=1

M−χii , R = Hρ
u ·

n∏
i=1

M−γii , U = H−ζz ·
n∏
i=1

M−δii . (23)

It also chooses s R← Zp and computes

σ2 = σs6, σ3 = gs

σ4 = σa·s6 , σ5 = ga·s

and σ1 = gω · σαv2 · σ
αw
3 . Next, it uses skhsps = {(χ0,i, γ0,i)}6i=1 to compute a linearly homomorphic

signature (z, r) on the vector (σ1, σ2, σ3, σ4, σ5, Ω) by computing

z =
5∏
i=1

σ
−χ0,i

i ·Ω−χ0,6 , r =
5∏
i=1

σ
−γ0,i
i ·Ω−γ0,6 .

We observe that, if we define τ = 1
wt
·(ζ · logĝ(Ĝz)+ρ · logĝ(Ĝr)), (σ1, σ2, σ3, σ4, σ5, σ̂6) can be written

(σ1, σ2, σ3, σ4, σ5, σ̂6) =
(
gω · (vτ · w)s, gτ ·s, gs, hτ ·s, hs, ĝτ

)
,

so that the vector (σ1, σ2, σ3, σ4, σ5, Ω) lives in the row space of the matrix M in (9). Consequently,
the pair (z, r) has the same distribution as if it had been derived from public key components
{(zj , rj)}6j=1 using the coefficients (ω, s · τ, s). Finally, the pair (Z,R) also matches the prescribed
distribution since it satisfies the verification equations (12). Indeed, we have

e(Z, Ĝz) · e(R, Ĝr) ·
n∏
i=1

e(Mi, Ĝi)

= e(Hζ
u, Ĝz) · e(Hρ

u, Ĝr)

· e(
n∏
i=1

M−χii , Ĝz) · e(
n∏
i=1

M−γii , Ĝr) ·
n∏
i=1

e(Mi, Ĝz
χi · Ĝr

γi
)

= e(Hu, Ĝz
ζ · Ĝr

ρ
) = e(Hwt

u , (Ĝz
ζ · Ĝr

ρ
)1/wt) = e(Gt, σ̂6)

and

e(Z, Ĥz) · e(U, Ĥu) ·
n∏
i=1

e(Mi, Ĥi)

= e(Hζ
u, Ĥz) · e(H−ζz , Ĥu)

· e(
n∏
i=1

M−χii , Ĥz) · e(
n∏
i=1

M−δii , Ĥu) ·
n∏
i=1

e(Mi, Ĥz
χi · Ĥu

δi
) = 1.

The signature
(
σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U

)
is thus returned as the output of the j?-th signing

query. Moreover, since B knows a = logg(h) and αv = logg(v), it can also compute a randomization
token (gτ , hτ , vτ , zτ2 , r

τ
2) by setting

(gτ , hτ , vτ ) =
(
σ6, σ

a
6 , σ

αv
6

)
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and computing (zτ2 , r
τ
2) =

(
(σαv6 )−χ0,1 · σ−χ0,2

6 · (σa6)−χ0,4 , (σαv6 )−γ0,1 · σ−γ0,26 · (σa6)−γ0,4
)

using skhsps.
The latter pair indeed equals (zτ2 , r

τ
2) since it is obtained as a homomorphic signature on the vector

(vτ , gτ , 1, hτ , 1, 1) ∈ G4 obtained by raising the second row of M in (9) to the power τ ∈ Zp.
By hypothesis, A eventually outputs a Type II forgery

σ? =
(
σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ̂6

?, z?, r?, Z?, R?, U?
)

and we denote by j?-th the index of the query that σ̂6
? was recycled from. LetM j? = (Mj?,1, . . . ,Mj?,n)

and (Z(j?), R(j?), U (j?)) denote the message and the signature components of the j?-th signing query
and let M? = (M?

1 , . . . ,M
?
n) and (Z?, R?, U?) be those of the forgery. We know that

e(Z(j?)/Z?, Ĝz) · e(R(j?)/R?, Ĝr) ·
n∏
i=1

e(Mj?,i/M
?
i , Ĝi) = 1

e(Z(j?)/Z?, Ĥz) · e(U (j?)/U?, Ĥr) ·
n∏
i=1

e(Mj?,i/M
?
i , Ĥi) = 1,

so that, if we define the triple (Z†, R†, U †) as

Z† =
Z(j?)

Z?
·
n∏
i=1

(Mj?,i

M?
i

)−χi
, R† =

R(j?)

R?
·
n∏
i=1

(Mj?,i

M?
i

)−γi
,

and U † = U(j?)

U? ·
∏n
i=1

(Mj?,i

M?
i

)−δi , it necessarily satisfies e(Z†, Ĝz) · e(R†, Ĝr) = 1 and e(Z†, Ĥz) ·
e(U †, ĤU ) = 1. The same arguments as in [2] show that Z† = 1G with probability at most 1/p.

Namely, let us consider what A learns about

(χ1, . . . , χn, γ1, . . . , γn, δ1, . . . , δn, ζ1, . . . , ζq, ρ1, . . . , ρq)

in the entire game if (ζj , ρj) denote the random coins of the j-th signing query for each j ∈
{1, . . . , q}. The discrete logarithms {(logĝ Ĝi, logĝ Ĥi)}ni=1 provide A with 2n linear equations and
{(logg Gi, loggHi)}ni=1 only reveal redundant information. In each signature, σ̂6 and (Z,R,U) only
provide 2 new independent linear equations since (R,U) are uniquely determined by (σ̂6, Z) and the
message M ∈ Gn. If we recap what an unbounded adversary A can see about the 3n+ 2q unknowns
χ = (χ1, . . . , χn), γ = (γ1, . . . , γn), δ = (δ1, . . . , δn), ζ = (ζ1, . . . , ζq), ρ = (ρ1, . . . , ρq), it amounts to
the right-hand-side member of the following system of 2n+ 2q equations.


wz · In wr · In
wz · In µu · In

wz · Iq wr · Iq
−QM µu · Iq

 ·

χ

γ

δ

ζ

ρ

 =


logĝ Ĝ

logĝ Ĥ

logĝ Ŝ6

logg Z

,

where (QM )j,i = logg(Mj,i) = mj,i if M j = (Mj,1, . . . ,Mj,n) denotes the j-th queried message,

Ĝ = (Ĝ1, . . . , Ĝn), Ĥ = (Ĥ1, . . . , Ĥn), Ŝ6 = (σ̂6
(1), . . . , σ̂6

(q)) and Z = (Z(1), . . . , Z(q)). It is easy to
see that, as long as there exists i ∈ {1, . . . , n} such that Mj?,i 6= M?

i , the vector

(m?
1 −mj?,1, . . . ,m

?
n −mj?,n, 0, 0, . . . , 0) ∈ Z3n+q

p

is independent of the rows of the above matrix. Consequently,
∏n
i=1

(
Mj?,i/M

?
i

)−χi is completely
unpredictable to A if M j? 6= M?. For this reason, we can only have Z† = 1G with probability 1/p,
as claimed. ut
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G Details on the Underlying CCA2-Secure Encryption Schemes

G.1 Proof of Theorem 4

Proof. The proof considers a sequence of games. For each i, we call Si the event that the adversary
wins in Gamei.

Game0: This is the real game. In this game, the adversary A chooses a target tag τ? at the outset
of the game and obtains a public key pk. Then, A starts invoking the decryption oracle on tag-
ciphertext pairs (τ, C) such that τ 6= τ?. In the challenge phase, A chooses distinct messages
M0,M1 ∈ G and obtains in return an encryption C? of Mβ under the tag τ?, where β R← {0, 1}
is randomly chosen by B. After a new series of decryption queries (τ, C) such that τ 6= τ?, A
outputs a bit β′ ∈ {0, 1} and wins if β′ = β. We denote by S0 the latter event.

Game1: We modify the decryption oracle. At each decryption query,
(
τ, C = (C0, C1, C2, Z,R)

)
, the

challenger B does not only return ⊥ when

e(Z, Ĝz) · e(R, Ĝr) 6= e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1,

but also rejects C if the equalities

Z = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (24)

are not satisfied. Otherwise, it computes and returns M = C0/C1
x.

Clearly, Game1 and Game0 are identical until the event F1 that A rejects a ciphertext (τ, C)
that would not have been rejected in Game0. This only occurs if (τ, C) satisfies (13) but not (24).
We show that event F1 would contradict the DDH assumption in G. Indeed, if F1 occurs, B can
compute its own homomorphic signature

Z† = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R† = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 ,

on the vector (C1, C
τ
1 , C2) which, by construction, satisfies

e(Z†, Ĝz) · e(R†, Ĝr) = e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1

and (Z†, R†) 6= (Z,R). By doing so, B obtains two distinct homomorphic signatures on the vector
(C1, C

τ
1 , C2) and, by dividing them, obtains a pair

(
Z†/Z,R†/R

)
such that

e(Z†/Z, Ĝz) · e(R†/R, Ĝr) = 1GT .

This implies that any occurrence of F1 allows B to solve an instance (Ĝz, Ĝr) of the Double
Pairing problem and also become a DDH distinguisher in Ĝ.

We thus have the inequality |Pr[S1] − Pr[S0]| ≤ Pr[F1] ≤ AdvDDH
Ĝ (λ). Note that event F1

also covers the case of an adversary A that manages to re-randomize the (Z?, R?) components of
the challenge ciphertext C?.

Game2: We modify the generation of pk =
(
g, h,X1, X2, S,W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1). Namely, B

defines

X1 = gx, X2 = hx

for a random x R← Zp. Then, it chooses αs, βs, αt
R← Zp and sets

S = gαs ·Xβs
1 , T = X−βs·τ

?

1 · gαt (25)

W = hαs ·Xβs
2 , V = X−βs·τ

?

2 · hαt .
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Note that public key components (X1, X2, S, T,W, V ) have the same distribution as in Game1
since we are implicitly defining α = αs + βs · x and β = −βs · x · τ? + αt.

In the challenge phase, B picks θ1, θ2
R← Zp and sets

(C?0 , C
?
1 , C

?
2 , Z

?, R?) =
(
Mβ ·Xθ1

1 ·X
θ2
2 , g

θ1 · hθ2 , (gθ1 · hθ2)αs·τ
?+αt , Z?, R

)
where

Z? = C1
? −ϕ1 · (C?τ?1 )−ϕ2 · C2

? −ϕ3 , R? = C1
? −ϑ1 · (C?τ?1 )−ϑ2 · C2

? −ϑ3 .

We remark that (Z?, R?) is computed using sk′hsig = {(ϕi, ϑi)}3i=1 as a simulated QA-NIZK

proof that (C?1 , C
?τ?
1 , C?2 ) belongs to the row space of L. Note, however, that it is a simulated

proof for a true statement, so that (Z?, R?) has the same distribution as a real proof computed
using the witnesses (θ1, θ2) ∈ Z2

p. The challenge ciphertext is thus distributed as in Game1 and
Pr[S2] = Pr[S1].

Game3: In this game, we modify again the decryption oracle. When A queries a pair (τ, C), B parses
C as (C0, C1, C2, Z,R) ∈ G5. If the latter elements satisfy (24), B computes and returns

M = C0 ·
(
C2/C

αs·τ+αt
1

)− 1
βs·(τ−τ?) ,

which is well-defined since τ 6= τ?. If (24) does not hold, B outputs ⊥.
A’s view remains the same as in Game2 until the event F3 that the input-output behavior of

the decryption oracle departs from that of the decryption oracle in Game2. This only happens
if (τ, C) is such that C2 6= Cα·τ+β1 (so that (C1, C

τ
1 , C2) is outside the row space of L) but still

satisfies (24). We claim that this only occurs with negligible probability Pr[F3] ≤ q/(p− q).
Indeed, let us consider what a computationally unbounded adversaryA can infer about sk′hsig =

{(ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3)} during the whole game. In the public key pk, the discrete logarithms of

{Ĝi = Ĝz
ϕi ·Ĝr

ϑi}3i=1 provide 3 linear equations and those of {(Zi, Ri)}4i=1 only provideA with two
additional independent equations. The reason is that, since L has rank 2, the information provided
by (Z2, R2) and (Z4, R4) is redundant with that supplied by (Z1, R1) and (Z3, R3). In addition,
{Ri}4i=1 are uniquely determined {Zi}4i=1 and do not reveal any more information than them. As
a consequence, from A’s point view, the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3) is uniformly distributed in
a one-dimensional subspace. Hence, at the first decryption query such that (C1, C

τ
1 , C2) evades

the row space of L, the equalities

Z = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (26)

can only hold with probability 1/p. However, each query potentially allows A to eliminate one
candidate for the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3). At the k-th query, the equalities (26) thus hold
with probability smaller than 1/(q − k). The inequality |Pr[S3]− Pr[S2]| ≤ q/(p− q) follows.

Game4: This game like Game3 with one last change in the generation of pk. Namely, B defines

X1 = gx, X2 = hx
′

for random x, x′ R← Zp. All other public key components are computed as previously. In particular,
B still obtains (S,W, T, V ) as per (25). Clearly, any significant change in A’s behavior would imply
a DDH distinguisher in G and we find |Pr[S4]− Pr[S3]| ≤ AdvDDH

G (λ).
A consequence of this modified distribution of pk is that the opening oracle now always gives

the correct answer. Indeed, for any ciphertext, (C0, C1, C2, Z,R), there always exist exponents
θ1, θ2 ∈ Zp such that

(C1, C2) =
(
gθ1 · hθ2 , (Sτ · T )θ1 · (W τ · V )θ2

)
,

so that the decryption oracle computes M = C0 ·X−θ11 ·X−θ12 .
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In Game4, we claim that Pr[S4] = 1/2, so that the adversary has no advantage at all. Indeed, the
challenge ciphertext C? is computed as

C̃σ2 = (C?0 , C
?
1 , C

?
2 , Z

?, R?) =
(
σ?2 ·X

θ3
1 ·X

θ4
2 , g

θ3 · hθ4 , (gθ3 · hθ4)αs·τ
?+αt , Z?, R?

)
where

Z? = C1
? −ϕ1 · (C?τ?1 )−ϕ2 · C2

?−ϕ3 , R? = C1
? −ϑ1 · (C?τ?1 )−ϑ2 · C2

?−ϑ3 .

This means that (C?2 , Z
?, R?) do not reveal any more information about (θ1, θ2) than C?1 does. Hence,

even given (C?2 , Z
?, R?), the pair (C?0 , C

?
1 ) is a perfectly hiding commitment to Mβ.

When putting the above altogether, we can bound A’s advantage by

Adv(λ) ≤AdvDDH
G (λ) + AdvDDH

Ĝ (λ) +
2q

p− q
,

which is negligible. ut

G.2 On the Use of the Boyen-Mei-Waters Technique

Our shortest group signatures are obtained by notably eliminating the randomness of the chameleon
hash function from each signature. To this end, instead of using a tag-based encryption scheme, we
encrypt σ2 using the following CCA2-secure encryption scheme.

Keygen(cp): Given common public parameters cp = (G, Ĝ,GT , p), conduct the following steps.

1. Choose g, h R← G and a collision-resistant hash function H : {0, 1}∗ → {0, 1}`, for some
` = poly(λ).

2. Choose x, α0, α1, . . . , α`
R← Zp and set X1 = gx, X2 = hx and Si = gαi , and Vi = hαi for

i ∈ {0, 1, . . . , `}.
3. Generate a key pair (pk′hsig, sk

′
hsig) for the homomorphic signature of Section in order to sign

vectors in G`+2. Let pk′hsig =
(
Gz, Gr, {Gi}`+2

i=1

)
be the public key and let sk′hsig = {(ϕi, ϑi)}3i=1

be the corresponding private key.
4. Use sk′hsig to generate linearly homomorphic signatures {(Zi, Ri)}2`+2

i=1 on the rows of the
matrix

L =



g S0
h V0

g S1
g S2

. . .
...

g S`
h V1

h V2
. . .

...

h V`



∈ G(2`+2)×(`+2)

which form a subspace of rank `+ 1 spanned by row 1 and rows 3 to `+ 2. The public key

pk :=
(
g, h, X1, X2, {(Si, Vi)}`i=0, pk

′
hsig, {(Zi, Ri)}2`+2

i=1 , H
)

and the secret key is sk = x.
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Encrypt(pk,M): To encrypt M ∈ G, choose θ1, θ2 and compute

C = (C0, C1, C2, Z,R)

=
(
M ·Xθ1

1 ·X
θ2
2 , g

θ1 · hθ2 , (S0 ·
∏̀
i=1

S
τ [i]
i )θ1 · (V0 ·

∏̀
i=1

V
τ [i]
i )θ2 ,

(
∏̀
i=1

Zτi+2 · Z1)
θ1 · (

∏̀
i=1

Zτi+`+3 · Z2)
θ2 , (

∏̀
i=1

Rτi+2 ·R1)
θ1 · (

∏̀
i=1

Rτi+`+2 ·R2)
θ2
)
.

where τ = H(C0, C1). Here, (Z,R) serves as a QA-NIZK argument showing that the vector

(C1, C
τ [1]
1 , . . . , C

τ [`]
1 , C2) ∈ G`+2 is in the row space of L and satisfies

e(Z, Ĝz) · e(R, Ĝr) = e(C1, Ĝ1 ·
∏̀
i=1

Ĝ
τ [i]
1+i ·G2)

−1 · e(C2, Ĝ`+2)
−1 (27)

Decrypt(sk,C): Parse C as above. Return ⊥ if (Z,R) does not satisfy (27). Otherwise, return
M = C0/C

x
1 .

The proof of IND-CCA2 security proceeds in the same way as that of the TBE scheme with the
difference that the reduction uses Waters’ technique [61] as in [19, Theorem 3.1] instead of the all-
but-one technique of Boneh and Boyen [16].

Of course, in the group signature scheme, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3) must
all be hashed in the computation of τ ∈ {0, 1}` in order to guarantee anonymity in the CCA2 sense.

H Definitions for Group Signatures

H.1 Static Groups

In the BMW model [12], a group signature scheme is a tuple (Keygen, Sign,Verify,Open) of efficient
algorithms with the following specifications:

Keygen(λ,N): takes as input a security parameter λ and an integer N ∈ poly(N), which denotes the
maximal number of group members. It outputs a tuple (gpk, gmsk,gsk) where gpk is the group
public key, gmsk is the group manager secret key, and gsk is a vector of secret keys where, for
each j ∈ {1, . . . , N}, gsk[j] is the signing key of the j-th user.

Sign(gpk, gsk[j]): takes as input the group public key gpk, a signing key gsk[j] and a message M ∈
{0, 1}∗. It outputs a signature σ.

Verify(gpk, σ,M): is deterministic and takes as input the group public key gpk, a message M and a
candidate signature σ of M . It outputs either 0 or 1.

Open(gpk, gmsk,M, σ): is deterministic and takes as inputs the group public key gpk, the group
manager secret key gmsk, a message M and a valid group signature σ w.r.t. gpk. It returns an
index j ∈ {1, . . . , N} or a special symbol ⊥ in case of opening failure.

The correctness requirement mandates that, for all integers λ and N , all (gpk, gmsk,gsk) pro-
duced by Keygen with (λ,N) as input, all indexes j ∈ {1, . . . , N} and M ∈ {0, 1}∗, we have
Verify(gpk,M, Sign(gpk, gsk[j],M)) = 1 and Open(gpk, gmsk,M, Sign(gpk, gsk[j],M)) = j, with prob-
ability negligibly close to 1 over the internal randomness of Keygen and Sign.

Bellare et al. [12] gave a rigorous security model where all security properties of group signatures
are subsumed by two notions called full anonymity and full traceability. Informally, traceability refers
to the inability of colluding group members to create a signature that cannot be opened to one of
them. As for the anonymity property, it mandates that it be infeasible to distinguish signatures
produced by distinct group members, even if all group members’ private keys are revealed.
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Expanon-b
GS,A(t,N)

(gpk, gmsk,gsk)← Keygen(1t, 1N )
(st, j0, j1,M)← A(choose, gpk,gsk)
Σ? ← Sign(gpk, gsk[jb],M)
b′ ← A(guess, st, Σ?)
Return b′

Exptrace
GS,A(t,N)

(gpk, gmsk,gsk)← Keygen(1t, 1N )
st← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont← true

while (Cont = true) do
(Cont, st, j)← AGS.Sign(·,gsk[·],·)(choose, st,K)
if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M?, Σ?)← AGS.Sign(·,gsk[·],·)(guess, st)
if Verify(gpk,M?, Σ?) = 0 then Return 0
if Open(gpk, gmsk,M?, Σ?) =⊥ then Return 1
if ∃j? ∈ {1, . . . , N} such that

(Open(gpk, gmsk,M?, Σ?) = j?) ∧ (j? /∈ C)
∧ ((j?,M?) not queried by A)

then Return 1 else Return 0

Fig. 1. Experiments for the definitions of anonymity and full traceability

Anonymity. Anonymity requires that, without the group manager’s secret key, an adversary cannot
recognize the identity of a user given its signature. More formally, the attacker, modeled as a two-
stage adversary (choose and guess), is engaged in the first random experiment depicted in Figure 1.
The advantage of such an adversary A against a group signature GS with N members is defined as

Advanon
GS,A(t,N) =

∣∣Pr[Expanon-1
GS,A (λ,N) = 1]− Pr[Expanon-0

GS,A (λ,N) = 1]
∣∣ .

Definition 7 (Full anonymity, [12]). A group signature is fully anonymous if, for any polynomial
N and any PPT adversaries A (resp. PPT adversaries A with access to an opening oracle which
cannot be queried for the challenge signature), AdvanonGS,A(λ,N) is a negligible function in the security
parameter λ.

Full traceability. Full traceability ensures that all signatures, even those created by a coalition of
users and the group manager, pooling their secret keys together, can be traced to a member of the
forging coalition. Once again, the attacker is modeled as a two-stage adversary who is run within the
second experiment described in Figure 1. Its success probability against GS is defined as

SucctraceGS,A(λ,N) = Pr[Exptrace
GS,A(λ,N) = 1].

Definition 8 (Full traceability, [12]). A group signature scheme GS is said to be fully traceable if
for all polynomial N(t) and all PPT adversaries A, its success probability SucctraceGS,A(t,N) is negligible
in the security parameter λ.

H.2 Dynamic Groups

In the setting of dynamic groups, the syntax of group signatures includes an interactive protocol
which allows users to register as new members of the group at any time. The syntax and the security
model are those defined by Kiayias and Yung [46]. Like the very similar Bellare-Shi-Zhang model
[15], the Kiayias-Yung (KY) model assumes an interactive join protocol whereby a prospective user
becomes a group member by interacting with the group manager. This protocol provides the user
with a membership certificate and a membership secret.

We denote by N ∈ poly(λ) the maximal number of group members. A dynamic group signature
scheme consists of the following algorithms or protocols.
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Setup(λ,N): given a security parameter λ and a maximal number of group members N ∈ N, this
algorithm is run by a trusted party to generate a group public key Y, the group manager’s private
key SGM and the opening authority’s private key SOA. Each key is given to the appropriate
authority while Y is made public. The algorithm also initializes a public state St comprising a
set data structure Stusers = ∅ and a string data structure Sttrans = ε.

Join: is an interactive protocol between the group manager GM and a user Ui where the latter
becomes a group member. The protocol involves two interactive Turing machines Juser and JGM
that both take Y as input. The execution, denoted as [Juser(λ,Y), JGM(λ, St,Y,SGM)], ends with
user Ui obtaining a membership secret seci, that no one else knows, and a membership certificate
certi. If the protocol is successful, the group manager updates the public state St by setting
Stusers := Stusers ∪ {i} as well as Sttrans := Sttrans||〈i, transcripti〉.

Sign: given a membership certificate certi, a membership secret seci and a message M , this algorithm
outputs a signature σ.

Verify: given a signature σ, a message M and a group public key Y, this deterministic algorithm
returns either 0 or 1.

Open: takes as input a message M , a valid signature σ w.r.t. Y , the opening authority’s private
key SOA and the public state St. It outputs i ∈ Stusers ∪ {⊥}, which is the identity of a group
member or a symbol indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.

The correctness requirement basically captures that, if all parties honestly run the protocols, all
algorithms are correct w.r.t. their specification (the formal definition is recalled in Appendix H.2).

The Kiayias-Yung model [46] considers three security notions defined in Appendix H.2. The
notion of security against misidentification attacks requires that, even if the adversary can introduce
users under its control in the group, it cannot produce a signature that traces outside the set of
dishonest users. The security against framing attacks implies that honest users can never be accused
of having signed messages that they did not sign, even if the whole system conspired against them.
The anonymity property is also formalized by granting the adversary access to a signature opening
oracle as in the models of [15].

Correctness for Dynamic Group Signatures. Following the Kiayias-Yung terminology [46], we say
that a public state St is valid if it can be reached from St = (∅, ε) by a Turing machine having oracle
access to JGM. Also, a state St′ is said to extend another state St if it is within reach from St.

Moreover, as in [46], when we write certi �Y seci, it means that there exists coin tosses $ for JGM
and Juser such that, for some valid public state St′, the execution of [Juser(λ,Y), JGM(λ, St′,Y,SGM)]($)
provides Juser with 〈i, seci, certi〉.

Definition 9 (Correctness). A dynamic group signature scheme is correct if the following condi-
tions are all satisfied:

1. In a valid state St, |Stusers| = |Sttrans| always holds and two distinct entries of Sttrans always
contain certificates with distinct tag.

2. If [Juser(λ,Y), JGM(λ, St,Y,SGM)] is run by two honest parties following the protocol and 〈i, certi, seci〉
is obtained by Juser, then it holds that certi �Y seci.

3. For each 〈i, certi, seci〉 such that certi �Y seci, satisfying condition 2, it always holds that
Verify

(
Sign(Y, certi, seci,M),M,Y

)
= 1.

4. For any outcome 〈i, certi, seci〉 of the interaction [Juser(., .), JGM(., St, ., .)] for some valid state St,
if σ = Sign(Y, certi, seci,M), then

Open(M,σ,SOA,Y, St′) = i.
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We formalize security properties via experiments where the adversary interacts with a stateful
interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the adversary invokes the
various oracles available in the attack games. It is initialized as stateI = (St,Y,SGM,SOA) ←
Setup(λ,N). It includes the (initially empty) set Stusers of group members and a dynamically
growing database Sttrans storing the transcripts of previously executed join protocols.

– n = |Stusers| < N denotes the current cardinality of the group.

– Sigs: is a database of signatures created by the signing oracle. Each entry consists of a triple
(i,M, σ) indicating that message M was signed by user i.

– Ua: is the set of users that were introduced by the adversary in the system in an execution of the
join protocol.

– U b: is the set of honest users that the adversary, acting as a dishonest group manager, introduced
in the system. For these users, the adversary obtains the transcript of the join protocol but not
the user’s membership secret.

When mounting attacks, adversaries will be granted access to the following oracles.

– Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks up stateI and returns
the group public key Y, the GM’s private key SGM and the opening authority’s private key SOA

respectively.

– Qa-join: allows the adversary to introduce users under his control in the group. On behalf of
the GM, the interface runs JGM in interaction with the Juser-executing adversary who plays the
role of the prospective user in the join protocol. If this protocol successfully ends, the interface
increments n, updates St by inserting the new user n in both sets Stusers and Ua. It also sets
Sttrans := Sttrans||〈n, transcriptn〉.

– Qb-join: allows the adversary, acting as a corrupted group manager, to introduce new honest group
members of his/her choice. The interface triggers an execution of [Juser, JGM] and runs Juser in
interaction with the adversary who runs JGM. If the protocol successfully completes, the interface
increments n, adds user n to Stusers and U b and sets Sttrans := Sttrans||〈n, transcriptn〉. It stores
the membership certificate certn and the membership secret secn in a private part of stateI .

– Qsig: given a message M , an index i, the interface checks whether the private area of stateI
contains a certificate certi and a membership secret seci. If no such elements (certi, seci) exist or
if i 6∈ U b, the interface returns ⊥. Otherwise, it outputs a signature σ on behalf of user i and also
sets Sigs← Sigs||(i,M, σ).

– Qopen: when this oracle is invoked on input of a valid pair (M,σ), the interface runs algorithm
Open using the current state St. When S is a set of pairs of the form (M,σ), Q¬Sopen denotes a
restricted oracle that only applies the opening algorithm to pairs (M,σ) which are not in S.

– Qread and Qwrite: are used by the adversary to read and write the content of stateI . Namely, at
each invocation, Qread outputs the whole stateI but the public/private keys and the private part
of stateI where membership secrets are stored after Qb-join-queries. By using Qwrite, the adversary
can modify stateI at will as long as it does not remove or alter elements of Stusers, Sttrans or
invalidate the public state St: for example, the adversary is allowed to create dummy users as
long as he/she does not re-use already existing certificate tags.

Using this formalism, we can now properly define the three announced security properties.

Security Against Misidentification Attacks In a misidentification attack, the adversary can corrupt
the opening authority using the QkeyOA oracle. Moreover, he/she can also introduce malicious users
in the group via Qa-join-queries. His/her purpose is to come up with a valid signature σ?. He/she is
deemed successful if the produced signature σ? does not open to any adversarially-controlled.
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Definition 10. A dynamic group signature scheme is secure against misidentification attacks if, for
any PPT adversary A involved in the experiment hereunder, we have

Advmis-id
A (λ) = Pr[ Expmis-id

A (λ) = 1] ∈ negl(λ).

Experiment Expmis-id
A (λ)

1. stateI = (St,Y,SGM,SOA)← Setup(λ,N);
2. (M?, σ?)← A(Qpub, Qa-join, Qread, QkeyOA);
3. If Verify(σ?,M?,Y) = 0 returns 0;
4. i = Open(M?, σ?,SOA,Y, St′);
5. If i 6∈ Ua returns 1;
6. Returns 0;

Non-Frameability Framing attacks consider the situation where the entire system, including the group
manager and the opening authority, is colluding against some honest user. The adversary can corrupt
the group manager as well as the opening authority (via oracles QkeyGM and QkeyOA, respectively).
He/she is also allowed to introduce honest group members (via Qb-join-queries), observe the system
while these users sign messages and create dummy users using Qwrite. The adversary eventually aims
at framing an honest group member.

Definition 11. A dynamic group signature scheme is secure against framing attacks if, for any PPT
adversary A involved in the experiment below, it holds that Advfra

A (λ) = Pr[ Expfra
A (λ) = 1] ∈ negl(λ).

Experiment Expfra
A (λ)

1. stateI = (St,Y,SGM,SOA)← Setup(λ,N);
2. (M?, σ?)← A(Qpub, QkeyGM, QkeyOA, Qb-join, Qsig, Qread, Qwrite);
3. If Verify(σ?,M?,Y) = 0 returns 0;
4. If i = Open(M?, σ?,SOA,Y, St′) 6∈ U b returns 0;
5. If

(∧
j∈Ub s.t. j=i (j,M?, ∗) 6∈ Sigs

)
returns 1;

6. Returns 0;

Full Anonymity The notion of anonymity is formalized by means of a game involving a two-stage
adversary. The first stage is called play stage and allows the adversary A to modify stateI via Qwrite-
queries and open arbitrary signatures by probing Qopen. When the play stage ends, A chooses a
message M? as well as two pairs (sec?0, cert

?
0) and (sec?1, cert

?
1), consisting of a valid membership

certificate and a corresponding membership secret. Then, the challenger flips a coin d ← {0, 1}
and computes a challenge signature σ? using (sec?d, cert

?
d). The adversary is given σ? with the task

of eventually guessing the bit d ∈ {0, 1}. Before doing so, he/she is allowed further oracle queries
throughout the second stage, called guess stage, but is restricted not to query Qopen for (M?, σ?).

Definition 12. A dynamic group signature scheme is fully anonymous if, for any PPT adversary
A, Advanon

A (λ) := |Pr[ Expanon
A (λ) = 1]− 1/2| is negligible.

Experiment Expanon
A (λ)

1. stateI = (St,Y,SGM,SOA)← Setup(λ);
2.
(
aux,M?, (sec?0, cert

?
0), (sec

?
1, cert

?
1)
)

← A(play; Qpub, QkeyGM, Qopen, Qread, Qwrite);
3. If ¬(cert?b �Y sec?b) for b ∈ {0, 1}, returns 0;
4. If cert?0 = cert?1, returns 0;
5. Picks random d← {0, 1}; σ? ← Sign(Y, cert?d, sec?d,M?);

6. d′ ← A(guess; σ?, aux,Qpub, QkeyGM, Q
¬{(M?,σ?)}
open , Qread, Qwrite);

7. If d′ = d then returns 1;
8. Returns 0;
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I Deferred Proofs for the Scheme of Section 7

I.1 Proof of Theorem 6

Proof. The result is proved via a sequence of games that begins with the real anonymity game and
ends with a game where no advantage is left to the adversary. In each game, we define Si to be the
event that the adversary wins.

Game0: This is the real game. Namely, the challenger generates the group public key gpk, the group
manager’s secret key gmsk as well as all group members’ private keys {gsk[j]}Nj=1. The adversary

is run on input of gpk and {gsk[j]}Nj=1 and is granted access to a signature opening oracle. In the
challenge phase, A outputs two indices j0, j1 ∈ {1, . . . , N} and a message M?. The challenger
picks b R← {0, 1} and returns a challenge σ? ← Sign(gpk, gsk[jb],M

?) which we denote as σ? =(
C?
σ1 , C̃

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6
,C?

z̃,C
?
r̃ ,π

?
1,π

?
2,π

?
3, r

?
hash

)
. The adversary is allowed further access to

the opening oracle for arbitrary signatures but σ?. When A halts, it outputs a bit b′ ∈ {0, 1} and
wins if b′ = b. We call S0 the latter event.

Game1: In this game, we bring a first modification to the signature opening oracle and do not use
the extraction trapdoor ζ = logû11(û12) of (û1, û2) any longer. Instead, at each opening query

σ =
(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
,

B uses sktbe = x to decrypt C̃σ2 = (C0, C1, C2, Z,R) when interpreting it as a TBE ciphertext.

From the resulting plaintext σ2 = C0/C
x
1 , B checks if σ2 = σ

IDj
3 for a registered user’s identifier

IDj . If so, B returns the resulting user index j ∈ {1, . . . , N}. Note that the perfect soundness of
Groth-Sahai proofs π2, π3 on the CRSes (u1,u2), (û1, û2) ensures that logσ2(σ3) = logĝ(σ̂6).
For this reason, the opening oracle of Game1 is guaranteed to give the same result as the one of
Game0. Hence, A’s view is not modified by this change and we have Pr[S1] = Pr[S0].

Game2: We modify again the opening oracle. When the adversaryA queries the opening of a signature
σ =

(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
, B parses C̃σ2 as (C0, C1, C2, Z,R) and

aborts the game in the event that C1 coincides with the C?1 component of C̃?
σ2 in the challenge

signature σ? (we assume w.l.o.g. that C?1 is chosen at the outset of the game). Since C?1 is
independent of A’s view until the challenge phase, the probability of this failure event F2 is at
most q/p, where q is the number of opening queries. We have |Pr[S2]− Pr[S1]| ≤ Pr[F2] ≤ q/p.

Game3: We modify again the opening oracle and introduce another failure event F3 which also causes
the challenger B to halt and output 0. The latter is defined to be the event that A queries the
opening of a group signature σ =

(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
such that

τ = CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3), rhash)

= CMhash(hk, (C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z̃,C

?
r̃ ,π

?
1,π

?
2,π

?
3), r

?
hash) = τ?

Since event F3 would contradict the collision-resistance of the chameleon hash function, we have
|Pr[S3]− Pr[S2]| ≤ AdvCR-CMhash(λ).

From now on, we are done with relying on the collision-resistance of CMH. We are thus
henceforth free to use tk in the following games.

Game4: We bring yet another modification to the opening oracle. At each signature opening query
σ =

(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
, the challenger B parses the augmented

commitment C̃σ2 as (C0, C1, C2, Z,R). The difference with Game3 is that B does not only return
⊥ when

e(Z, Ĝz) · e(R, Ĝr) 6= e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1,
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but also returns ⊥ if the equalities

Z = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (28)

are not satisfied. Otherwise, it computes σ2 = C0/C1
x and checks if σ2 = σ

IDj
3 for some registered

group member’s identifier IDj . If so, B outputs the corresponding index j ∈ {1, . . . , N}. Otherwise,
it outputs ⊥.

Clearly, Game4 and Game3 proceed identically until the event F4 that A queries the opening
of a signature where C̃σ2 passes the verification test of Game3 but fails the verification test of
Game4. This means that the TBE ciphertext C̃σ2 = (Ĉ0, C1, C2, Z,R) satisfies (13) but not (28).
We claim that event F3 would contradict the DDH assumption in G. Indeed, if this event occurs,
B can compute its own linearly homomorphic signature

Z† = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R† = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 ,

on the vector (C1, C
τ
1 , C2) which necessarily satisfies

e(Z†, Ĝz) · e(R†, Ĝr) = e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1

and (Z†, R†) 6= (Z,R). This provides B with two distinct homomorphic signatures on the vector
(C1, C

τ
1 , C2), which in turn yield

e(Z†/Z, Ĝz) · e(R†/R, Ĝr) = 1GT .

Hence, if F4 occurs with non-negligible probability, B can solve an instance (Ĝz, Ĝr) of the Double
Pairing problem and also break the DDH assumption in Ĝ.

We thus have the inequality |Pr[S4]−Pr[S3]| ≤ Pr[F4] ≤ AdvDDH
Ĝ (λ). Note that event F4 also

covers the event that the adversaryA somehow manages to re-randomize the (Z?, R?) components
of C̃?

σ2 in the challenge signature σ?.

Game5: We modify the generation of

pktbe =
(
g, h,X1, X2, S,W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1)

in the group public key. Namely, B defines

X1 = gx, X2 = hx

for a randomly chosen x R← Zp. Then, it picks αs, βs, αt
R← Zp and sets

S = gαs ·Xβs
1 , T = X−βs·τ

?

1 · gαt (29)

W = hαs ·Xβs
2 , V = X−βs·τ

?

2 · hαt ,

where τ? is a random element in the range of the chameleon hash function CMhash. Note that
(X1, X2, S, T,W, V ) have the same distribution as in Game4 since, in the private key of the TBE
scheme, we are implicitly defining α = αs + βs · x and β = −βs · x · τ? + αt.

When C̃?
σ2 = (C?0 , C

?
1 , C

?
2 , Z

?, R?) is computed in the challenge phase, B picks θ7, θ8
R← Zp and

sets

(C?0 , C
?
1 , C

?
2 , Z

?, R?) =
(
σ?2 ·X

θ3
1 ·X

θ4
2 , g

θ3 · hθ4 , (gθ3 · hθ4)αs·τ
?+αt , Z?, R?

)
where

Z? = C1
? −ϕ1 · (C?τ?1 )−ϕ2 · C2

? −ϕ3 , R? = C1
? −ϑ1 · (C?τ?1 )−ϑ2 · C2

? −ϑ3 .
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Note that the QA-NIZK proof (Z?, R?) is computed using the trapdoor sk′hsig = {(ϕi, ϑi)}3i=1 as a

simulated QA-NIZK proof that the vector (C?1 , C
?τ?
1 , C?2 ) belongs to the row space of L. However,

it is a simulated proof for a true statement and (Z?, R?) has the same distribution as if it were
computed using the witnesses (θ3, θ4) ∈ Z2

p. Next, B computes C?
σ1 , σ

?
3,C

?
σ4 , σ

?
5,C σ̂6 ,C

?
z̃,C

?
r̃ as

well as the NIWI proofs π?1,π
?
2,π

?
3 and uses the trapdoor tk of the chameleon hash function to

determine r?hash ∈ Rhash such that

τ? = CMhash(hk, (C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z̃,C

?
r̃ ,π

?
1,π

?
2,π

?
3), r

?
hash).

The challenge signature

σ? =
(
C?
σ1 , C̃

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z̃,C

?
r̃ ,π

?
1,π

?
2,π

?
3, r

?
hash

)
is thus distributed as in Game3. It comes that Pr[S5] = Pr[S4].

Game6: In this game, we modify again the opening oracle. When A queries the opening of a signa-
ture σ =

(
Cσ1 , C̃σ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
, B parses the commitment C̃σ2 as

(C0, C1, C2, Z,R) ∈ G5. If the latter tuple satisfies the test (28), B computes

σ2 = C0 ·
(
C2/C

αs·τ+αt
1

)− 1
βs·(τ−τ?) ,

which is well-defined unless the failure event of Game3 occurs, and checks if σ2 = σ
IDj
3 for one of the

registered members’ identifiers IDj . If so, B returns the corresponding user index j ∈ {1, . . . , N}.
Otherwise, B outputs ⊥.

The adversary’s view is identical to its view in Game5 until the event F6 that the opening
oracle gives a different result than the opening oracle of Game5. This only happens if C̃σ2 is such

that C2 6= Cα·τ+β1 (so that (C1, C
τ
1 , C2) is outside the row space of L) but still satisfies the test

(28). We claim that this only occurs with negligible probability Pr[F6] ≤ q/(p− q).
To see this, let us consider what an all powerful adversary A can infer about sk′hsig =

{(ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3)}. In the public key pktbe of the TBE scheme, the discrete logarithms

of {Ĝi = Ĝz
ϕi · Ĝr

ϑi}3i=1 provide 3 linear equations and those of {(Zi, Ri)}4i=1 only provide A
with two more independent equations. Indeed, since L has rank 2, the information provided
by (Z2, R2) and (Z4, R4) is redundant with that revealed by (Z1, R1) and (Z3, R3). Moreover,
{Ri}4i=1 do not reveal any more information than {Zi}4i=1 since they are uniquely determined by
{Zi}4i=1. Consequently, in A’s view the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3) is uniformly distributed in a
one-dimensional subspace. This implies that, at the first opening query such that (C1, C

τ
1 , C2) is

outside the row space of L, the equalities

Z = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (30)

can only hold with probability 1/p. However, each opening query where B returns ⊥ potentially
allows A to rule out one candidate for the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3). At the k-th query, the
equalities (30) thus hold with probability ≤ 1/(q−k). We thus find |Pr[S6]−Pr[S5]| ≤ q/(p− q).

Game7: This game is identical to Game6 with one final change in the generation of the public key
pktbe =

(
g, h,X1, X2, S, Ŵ , T, V, pk′hsig, {(Zi, Ri)}4i=1) of the TBE scheme. Namely, B defines

X1 = gx, X2 = hx
′

for random x, x′ R← Zp. All remaining components are computed as previously. In particular, B
still computes (S,W, T, V ) as per (29). A simple reduction shows that any noticeable change inA’s
behavior would imply a DDH distinguisher in G. It comes that |Pr[S7]− Pr[S6]| ≤ AdvDDH

G (λ).
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As a side effect of this modified distribution of pktbe, we remark that the opening oracle always
gives the correct answer since, for any TBE ciphertext, C̃σ2 = (C0, C1, C2, Z,R), there always
exist exponents θ3, θ4 ∈ Zp such that

(C1, C2) =
(
gθ3 · hθ4 , (Sτ · T )θ3 · (W τ · V )θ4

)
,

so that the opening oracle computes σ2 = C0 ·X−θ31 ·X−θ42 .

Game8: In this game, we modify the distribution of the group public key. Namely, at step 3 of the
group key generation phase, we replace (û1, û2) by a perfectly hiding Groth-Sahai CRS, where
û2 is uniformly random in Ĝ2 instead of being linearly dependent with û1. Clearly, under the
DDH assumption in G, A’s view should not be significantly affected by this change and we have
|Pr[S8]− Pr[S7]| ≤ AdvDDH

Ĝ (λ).

In Game8, we claim that Pr[S8] = 1/2, so that the adversary’s advantage is zero. Indeed, (û1, û2)
is a perfectly hiding Groth-Sahai CRS and the same holds for (u1,u2) since u2 = (X1, X2) is now
linearly independent of u1 = (g, h). Moreover, in the challenge signature σ?, C̃?

σ2 is computed as

C̃σ2 = (C?0 , C
?
1 , C

?
2 , Z

?, R?)

=
(
σ?2 ·X

θ3
1 ·X

θ4
2 , g

θ3 · hθ4 , (gθ3 · hθ4)αs·τ
?+αt , Z?, R?

)
where

Z? = C1
? −ϕ1 · (C?τ?1 )−ϕ2 · C2

?−ϕ3 , R? = C1
? −ϑ1 · (C?τ?1 )−ϑ2 · C2

?−ϑ3 ,

which means that (C?2 , Z
?, R?) do not reveal any more information about the exponents (θ3, θ4)

than C?1 does. Hence, even if (C?2 , Z
?, R?) is publicized, C?

σ2 = (C?0 , C
?
1 ) remains a perfectly hiding

commitment to σ?2 and π1, π2 and π3 remain perfectly NIWI Groth-Sahai proofs.
When combining the above, the adversary’s advantage is at most

Adv(λ) ≤AdvCR-CMhash
G (λ) + AdvDDH

G (λ) + 2 ·AdvDDH
Ĝ (λ) +

2q

p− q
,

which is negligible under the stated assumptions. ut

J Shorter Dynamic Group Signatures under Simple Assumptions

The construction follows the modular design of group signature used in [8,3]. In a nutshell, the
group manager holds a key pair for a structure-preserving signature, which is used to generate users’
membership certificate.

When new members join the group, they thus obtain a structure-preserving signature σΦ on a
group element Φ ∈ G of their choice, which will serve as the public key of a Waters signature [61].
Waters signatures are well-suited to our purposes since they rely on a simple assumption and, when
used in combination with our SPS scheme, they make it possible to prove all statements using only
linear pairing product equations, which allows for shorter proofs.

At each signature generation, users thus re-randomize their membership certificate σΦ and use
the discrete logarithm φ = logg(Φ) – which is only known to the user and serves as a membership

secret – to generate a Waters signature σW = (σW,1, σW,2) = (fφ ·HG(M)ρ, gρ) on the message M .
The group signature is eventually comprised of commitments to Φ, σΦ and σW (or, more precisely,
their components that still carry information on the signer’s identity after re-randomization) and
NIWI proofs that they satisfy the appropriate verification equations.

In order to achieve anonymity in the CCA2 sense, the commitment CΦ to Φ is computed using
the TBE encryption scheme of Section 6 where the tag is obtained by hashing all other commitments
and proof elements using a chameleon hash function.
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Setup(λ,N): given a security parameter λ ∈ N and the permitted number of users N ∈ poly(λ),

1. Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ and define cp = (G, Ĝ,GT , p). Choose
generators g, f R← G, ĝ, f̂ R← Ĝ such that logg(f) = logĝ(f̂).

2. Generate a key pair (SKSPS, PKSPS) for the structure-preserving signature of Section 5 in
order to sign messages of n = 1 group elements. The public key is

PKSPS =
(
g, h, ĝ, (v, w), Ω = hω, pkpots, pkhsps, {(zj , rj)}3j=1

)
,

where pkhsps :=
(
ĝz, ĝr, {ĝi}6i=1

)
and

pkpots :=
(
Gz, Gr, Gt, Hz, Hu, Ĝz, Ĝr, Ĝt, Ĥz, Ĥu, {Ĝ1, Ĥ1}

)
.

The private key is SKSPS = (ω, skpots), where skpots := {(χi, γi, δi)}ni=1.
3. Generate a key pair (sktbe, pktbe) for the TBE scheme of Section 6. The public key consists of

pktbe :=
(
g, h, X1, X2, S, W, T, V, pk

′
hsig, {(Z

(0)
i , R

(0)
i )}4i=1

)
and the secret key is sktbe := x. For simplicity, the generator g of pktbe can be recycled from
step 1.

4. Choose a vector û1 = (û11, û12)
R← Ĝ2 and set û2 = û1

ξ, where ξ R← Zp. Also, define the
vectors u1 = (g,X1) and u2 = (h,X2). These vectors will form Groth-Sahai CRSes (u1,u2)
and (û1, û2) in the perfectly binding setting. The private key sktbe of the TBE scheme will
serve as an extraction trapdoor for commitments generated on the CRS (u1,u2).

5. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch) with a key pair (hk, tk)
and randomness space Rhash.

6. Choose vectors ĥ = (ĥ0, . . . , ĥ`) ∈ Ĝ` and h = (h0, . . . , h`) ∈ G`, where ` ∈ poly(λ), such that
logg(hi) = logĝ(ĥi) for each i ∈ {0, . . . , `}. These will be used by group members to generate
Waters signatures.

7. Set SGM := SKSPS, SOA := sktbe as authorities’ private keys and the group public key is

Y :=
(

(G, Ĝ,GT ), g, ĝ, f, f̂ , h, ĥ, PKSPS, pktbe, CMH, hk, (u1,u2), (û1, û2)
)
.

Join(GM,Ui): the group manager and the prospective user Ui run the following interactive protocol
[Juser(λ,Y), JGM(λ, St,Y,SGM)]:

1. Juser(λ,Y) draws φ R← Zp and computes Φ = gφ, which is sent to JGM with a signature
sigi = Signusk[i](Φ) to JGM. JGM checks that Φ ∈ G and Verifyupk[i]

(
Φ, sigi

)
= 1. If not JGM

aborts and returns ⊥. If Φ ∈ G already appears in some entry transcriptj of the database
Sttrans, JGM halts and returns ⊥ to Juser.

2. JGM uses SKSPS to certify Ui as a group member by generating a structure-preserving signature

σΦ = (σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U) ∈ G5 × Ĝ×G5

on Φ ∈ G with a randomization token σΦ,r = (σ2,r, σ4,r, σ1,r, zr, rr) ∈ G5. The first part of σΦ
is of the form

σ1 = gω · (vτ · w)s, σ2 = gs·τ , σ3 = gs, z = zω1 · (zτ2 · z3)s

σ4 = hs·τ σ5 = hs, σ̃6 = ĝτ , r = rω1 · (rτ2 · r3)s,

for some s, τ R← Zp, and the randomization token is

σΦ,r = (σ2,r, σ4,r, σ1,r, zr, rr) = (gτ , hτ , vτ , zτ2 , r
τ
2).
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3. JGM stores transcripti = (Φ, σΦ, σΦ,r, i, upk[i], sigi) in the database Sttrans, sends (σΦ, σΦ,r) to
Juser. Juser halts if σΦ is an invalid SPS or if σΦ,r is not consistent with σ̃6 = ĝτ (this requires
to test that e(σ2,r, ĝ) = e(g, σ̂6) and similarly for other components of σΦ,r). Otherwise, Juser
defines the membership certificate as certi =

(
Φ, σΦ, σΦ,r

)
∈ G× (G5 × Ĝ×G5)×G5, where

Φ will serve as the tag identifying Ui. The membership secret seci is defined as seci = φ ∈ Zp.

Sign(Y, certi, seci,M): To sign M ∈ {0, 1}`, parse the membership certificate certi as
(
Φ, σΦ, σΦ,r

)
,

where σΦ = (σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U) ∈ G5×Ĝ×G5 and σΦ,r = (σ2,r, σ4,r, σ1,r, zr, rr) ∈ G5.
Parse the membership secret seci as φ ∈ Zp and do the following.

1. Re-randomize σΦ = (σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R, U) by randomly choosing s′′ R← Zp and
computing

(σ′1, σ
′
2, σ
′
3, σ
′
4, σ
′
5, σ̂6, z

′, r′, Z,R, U)

= (σ1 · σs
′′

1,r · ws
′′
, σ2 · σs

′′
2,r, σ3 · gs

′′
, σ4 · σs

′′
4,r, σ5 · hs

′′
, σ̂6, z · zs

′′
r , r · rs

′′
r , Z,R, U)

which satisfies

σ′1 = gω · (vτ · w)s
′
, σ′2 = gs

′·τ , σ3 = gs
′
, z′ = zω1 · (zτ2 · z3)s

′

σ′4 = hs
′·τ σ′5 = hs

′
, σ̃6 = ĝτ , r′ = rω1 · (rτ2 · r3)s

′

where s′ = s+ s′′.

2. Using seci = φ ∈ Zp, generate a Waters signature

(σW,1, σW,2) =
(
fφ ·HG(M)ρ, gρ

)
∈ G2

on the message M ∈ {0, 1}`, where ρ R← Zp and HG(M) = h0 ·
∏`
i=1 h

M [i]
i .

3. Using the CRSes (u1,u2) and (û1, û2), compute Groth-Sahai commitments Cσ1 , Cσ2 , Cσ4 ,
C σ̂6 , Cz, Cr, CZ CR and CU to the variables (σ′1, σ

′
2, σ
′
4, σ̂6, z

′, r′, Z,R, U). Also, compute
Groth-Sahai commitments CΦ and CσW,1 to Φ ∈ G and σW,1 ∈ G. Note that CΦ can be

written as (C1, C0) = (gθΦ,1 · hθΦ2 , Φ ·XθΦ,1
1 ·XθΦ,2

2 ) for some θΦ,1, θΦ,2 ∈R Zp.
4. Generate Groth-Sahai NIWI proofs π1 ∈ Ĝ2, π2,π3,π4 ∈ G2 × Ĝ2 and π5 ∈ Ĝ2 that

committed variables (z′, r′, σ′1, σ
′
2, σ
′
4, σ̂6, Z,R, U, Φ) satisfy the pairing product equations

e( z ′, ĝz) · e( r ′, ĝr) ·
∏

i∈{1,2,4}

e( σ′i , ĝi) =
∏

i∈{3,5}

e(σ′i, ĝi)
−1 · e(Ω, ĝ6)−1

e( σ′2 , ĝ) = e(σ′3, σ̂6 ), e( σ′4 , ĝ) = e(σ′5, σ̂6 ).

and

e(Gt, σ̂6 ) = e( Z , Ĝz) · e( R , Ĝr) · e( Φ , Ĝ1)

1GT = e( Z , Ĥz) · e( U , Ĥu) · e( Φ , Ĥ1).

5. Generate a NIWI proof π6 ∈ Ĝ2 that variables (Φ, σW,1) ∈ G×G satisfy

e( σW,1 , ĝ) = e( Φ , f̂) · e(σW,2, HĜ(M)),

where HĜ(M) = ĥ0 ·
∏`
i=1 ĥ

M [i]
i .
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6. Compute a chameleon hash value

τ = CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,Cz,Cr,CZ ,

CR,CU ,CΦ,CσW,1 , σW,2,π1,π2,π3,π4,π5,π6), rhash), (31)

where rhash
R← Rhash. Then, using the tag τ and the random coins (θΦ,1, θΦ,2) ∈ Z2

p of CΦ,

compute C2 = (Sτ ·T )θΦ,1 ·(W τ ·V )θΦ,2 . Using pk′hsig as a CRS, generate a QA-NIZK argument

(Z(0), R(0)) =
(
(Z

(0)
3

τ
· Z(0)

1 )θΦ,1 · (Z(0)
4

τ
· Z(0)

2 )θΦ,2 , (R
(0)
3

τ
·R(0)

1 )θΦ,1 · (R(0)
4

τ
·R(0)

2 )θΦ,2
)

that the vector (C1, C
τ
1 , C2) ∈ G3 is in the row space of L. This allows transforming CΦ into

a TBE ciphertext C̃Φ = (C0, C1, C2, Z
(0), R(0)) as

C̃Φ =
(
Φ ·XθΦ,1

1 ·XθΦ,2
2 , gθΦ,1 · hθΦ,2 , (Sτ · T )θΦ,1 · (W τ · V )θΦ,2 ,

(Z
(0)
3

τ
Z

(0)
1 )θΦ,1(Z

(0)
4

τ
Z

(0)
2 )θΦ,2 , (R

(0)
3

τ
R

(0)
1 )θΦ,1(R

(0)
4

τ
R

(0)
2 )θΦ,2

)
for the tag τ , which contains the original commitment CΦ in its first two coordinates.

Return the signature

σ =
(
Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,Cz,Cr,CZ ,CR,CU ,

C̃Φ,CσW,1 , σW,2,π1,π2,π3,π4,π5,π6, rhash
)

(32)

Verify(σ,M,Y): Parse σ as above. Return 1 if and only if: (i) C̃Φ is a valid TBE ciphertext (i.e.,
(13) holds) for the tag (31); (ii) The NIWI proofs π1,π2,π3,π4,π5,π6 verify.

Open(M,σ,SOA,Y, St): parse the signature σ as in (32). If Verify(σ,M,Y) = 0, return ⊥. Otherwise,
use SOA = sktbe to decrypt the Elgamal ciphertext CΦ ∈ G2 contained in C̃Φ. Then, check if
the resulting plaintext Φ appears in a record transcripti = (Φ, σΦ, σΦ,r, i, upk[i], sigi) of the user
database. If so, return the corresponding i. Otherwise, return ⊥.

The signature consists of 32 elements of G1, 14 elements of G2 and one element of Zp. In compar-
ison, combining the Abe et al. [1] signatures with previous approaches for achieving full anonymity
would require at least 40 elements of G and 26 elements of Ĝ. If each element of G1 (resp. G2) has a
256-bit (resp. 512-bit) representation, our total signature length is 15616 bits (or 1.9 kB) which saves
33% w.r.t. [1]. If we use the Jutla-Roy technique [44] to optimize our structure-preserving signature,
we can eliminate Cr from the signature so as to save 2 elements of G1. The Boyen-Mei-Waters
technique [19] further allows dispensing with the randomness rhash of the chameleon hash function.
In this case, our signature size drops to 14848 bits (1.81 kB), or 63% of the length enabled by the
structure-preserving signatures of Abe et al. [1].

Table 2. Comparison between Type-III pairing-based group signatures

Schemes Group public Signature Signature Simple

static/dynamic key size (G, Ĝ)-size∗ bit-size† assumptions?

Boyen-Waters [21]‡ (CPA) O(λ) (10, 8) 6 656 7

Section 7 (28, 20)� (20, 8) 9 216 X
Section 7 + [44,19] O(λ) (17, 8) 8 448 X

Groth07 [38]‡ O(1) (27, 12) 13 056 7

(Known results) [1] + [53,44] O(λ) (40, 26) 23 552 X
Appendix J O(λ) (33, 14) 15 616 X
Appendix J + [44,19] O(λ) (30, 14) 14 848 X

∗ We assume that Zp elements are as long as elements of G for simplicity.
� The key size of the chameleon hash function should be added here.
† At a 256-bit (resp. 512-bit) representation of G1 (resp. G2) and counting scalars.
‡ Adapted from type-I to type-III pairings.

47



For the same security level, adapting Groth’s efficient construction [38] using in asymmetric pairings
would require 27 elements of G and 12 elements of Ĝ. Its signature size would amount to 13056
bits (or 1.59 kB). However, it relies on the non-standard q-U assumption [38, Section 2] and, unlike
constructions based on structure-preserving signatures [8], it does not support round-optimal concur-
rent joins [45]. Our optimized construction is thus almost as efficient as the state-of-the-art standard
model realization [38] with the benefit of relying on well-established constant-size assumptions.

The security of the scheme is proved in the model of Kiayias and Yung [46], which is recalled in
Appendix H.2. Note that, while the model of [46] does not require the opening authority to prove that
it correctly opens signatures, our construction readily extends to provide proofs of correct opening as
in the model of Bellare et al. [15]. By combining the encryption scheme of Section 6 and NIZK proofs
for multi-exponentiation equations, the opening authority can convince a judge that ciphertexts are
properly decrypted. This can be achieved by having the OA publicize a Groth-Sahai commitment
to sktbe and a NIZK proof that the decrypted value C0/C

x
1 is consistent with the commitment and

pktbe. This approach makes it possible to obtain the opening soundness property of Sakai et al. [58].

Theorem 7 (Security against Misidentification attacks). The scheme is secure against misiden-
tification attacks assuming that the SXDH and XDLIN2 assumption hold in (G, Ĝ,GT ).

The proof of Theorem 7 relies on the unforgeability of the structure-preserving signature of
Section 5 in a standard manner. The proof is rather straightforward and omitted here.

The non-frameability of the scheme relies on the unforgeability of Waters signatures in asymmetric
bilinear groups. More precisely, we use a variant of Waters signature where the public key is of the
form

pkW =
(
g, ĝ, Φ = gφ, f = gαf , f̂ = ĝαf , h = (h0, . . . , h`) = gβ, ĥ = (ĥ0, . . . , ĥ`) = ĝβ

)
,

for random φ, αf ∈R Zp, β ∈R Z`+1
p , and the signature consists of

(σW,1, σW,2) =
(
fφ · (h0 ·

∏̀
i=1

h
M [i]
i )ρ, gρ

)
.

The security of this variant relies on a variant of the Computational Diffie-Hellman assumption
(CDH) which asserts the hardness of computing gab ∈ G given (g, ĝ, ga, gb, ĝb). This assumption is a
natural variant of CDH that is implied by the XDLIN2 assumption.

Theorem 8 (Non-frameability). The scheme is secure against framing attacks assuming that the
XDLIN2 assumption holds in (G, Ĝ,GT ).

Proof. Let us assume that a PPT adversary A can create a forgery (M?, σ?) that opens to some
honest user i ∈ U b who did not sign M?. We give a simple reduction B that uses A to break the
unforgeability of Waters signature.

Algorithm B takes as input a public key

pkW =
(
(G, Ĝ,GT ), g, ĝ, Φ†, f, f̂ = ĝ, h = (h0, . . . , h`), ĥ = (ĥ0, . . . , ĥ`)

)
,

for the Waters signature and interacts with the adversary A to mount a chosen-message attack. To
generate the group public key Y, B runs steps 2-5 of the real setup algorithm. As a result, B knows
SGM = SKSPS, SOA = sktbe and the extraction trapdoor logû11(û12) of the Groth-Sahai CRS (û1, û2).
The adversary B is run on input of the group public key

Y :=
(

(G, Ĝ,GT ), g, ĝ, f, f̂ , h, ĥ, PKSPS, pktbe, CMH, hk, (u1,u2), (û1, û2)
)
.

If the adversary A decides to corrupt the group manager or the opening authority during the
game, B can reveal SGM = SKSPS and SOA = sktbe. At the outset of the game, B picks a random
j? R← {1, . . . , qb} and interacts with A as follows.
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- QkeyGM-queries: if A decides to corrupt the group manager, B surrenders SGM = (sk
(0)
W , sk

(1)
W ).

- Qb-join-queries: At any time A can act as a corrupted group manager and introduce a new honest
user i in the group by invoking the Qb-join oracle. Then, B runs Juser on behalf of the honest user
in an execution of Join protocol. The actions taken by B are dictated by the index j ∈ {1, . . . , qb}
of the Qb-join-query.

- If j 6= j?, B follows the exact specification of Juser.
- If j = j?, B sends the value Φ† (which it received as part of pkW) to JGM at step 1 of Join. User
j?’s membership secret is thus defined to be the unknown underlying secj? = φ ∈ Zp. In the
rest of the join protocol, B proceeds like the actual Juser algorithm and obtains a membership
certificate certj? =

(
Φ†, σ†Φ, σ

†
Φ,r

)
.

- Qpub-queries: These can be answered as in the real game, by having the simulator return Y.
- Qsig-queries: When the adversary A requests user i ∈ U b to sign a message M , B can answer the

query by faithfully running the actual signing algorithm if i 6= j?. Otherwise (namely, if i = j?),
B invokes its own challenger to obtain a Waters signature (σW,1, σW,2) ∈ G2 on the message M .

It also recalls user j?’s membership certificate certj? =
(
Φ†, σ†Φ, σ

†
Φ,r

)
that it obtained from the

adversary at the j?-th Qb-join-query. Using (σW,1, σW,2) and certj? , it can easily run steps 1 and
3-6 of the signing algorithm to generate a valid group signature for M on behalf of user j?.

When A halts, it presumably frames some honest user i? ∈ U b by outputting a signature

σ? =
(
C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z,C

?
r ,C

?
Z ,C

?
R,C

?
U ,

C̃?
Φ,C

?
σW,1

, σ?W,2,π
?
1,π

?
2,π

?
3,π

?
4,π

?
5,π

?
6, r

?
hash

)
,

for some message M?, that opens to i? ∈ U b although user i? was never requested to sign M?. At
this point, B halts and declares failure if C̃?

Φ does not decrypt to Φ† under sktbe since, in this case, B
was unlucky when choosing j? ∈R {1, . . . , qb}. However, with probability 1/qb, σ

? does open to the
user introduced at the j?-th Qb-join-query. In this case, the perfect soundness of Groth-Sahai proofs
guarantees that C?

σW,1
is a commitment to a group element σ?W,1 such that

e(σ?W,1, ĝ) = e(Φ†, f̂) · e(σ?W,2, HĜ(M)),

which means that (M?, (σ?W,1, σ
?
W,2)) is a valid forgery for the Waters signature. The result of [61] tells

us that, if A has advantage ε as a framing adversary making at most qb Qb-join-queries and qs signing
queries, then B implies an algorithm solving the aforementioned variant of the CDH problem with
advantage ε/(8 ·qb ·qs ·(`+1)). In turn, the latter algorithm implies an efficient XDLIN2 distinguisher
with the same advantage. ut

Theorem 9. The scheme provides full anonymity assuming that: (i) The SXDH assumption holds
in (G, Ĝ,GT ); (ii) CMhash is a collision-resistant chameleon hash function.

The proof of the above theorem is very similar to the proof of Theorem 6 except that we need to
additionally rely on the security of the homomorphic signature (which does not introduce any other
assumption) of Section 2.2 to eliminate an annoying case. Specifically, given that σ3 and σ5 appear
in the clear in each group signature, we must worry about the event that the adversary chooses
to be challenged on two membership certificate cert?0, cert

?
1 such that exactly one of these contains

a maliciously formed structure-preserving signature σΦ = (σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U) where
logg(σ3) 6= logh(σ5).

Proof. The result is proved via a sequence of games that begins with the real anonymity game and
ends with a game where no advantage is left to the adversary. In each game, we define Si to be the
event that the adversary wins.
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Game0: This is the real game. Namely, the challenger generates the group public key Y as well as
secret keys SGM, SOA for the group manager and the opening authority. The adversary is run on
input of Y and A and is granted access to the same oracles as in the real game. In the challenge
phase, A outputs two pairs (sec?0, cert

?
0), (sec

?
1, cert

?
1) and a message M?. Recall that A is able

to create valid such pairs on its own since it can obtain SGM by invoking the QkeyGM oracle. If

¬(cert?b �Y sec?b) for each b ∈ {0, 1}, the challenger B flips a coin d R← {0, 1} and returns a
challenge σ? ← Sign(gpk, cert?b , sec

?
b ,M

?) which we denote as

σ? =
(
C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z,C

?
r ,C

?
Z ,C

?
R,C

?
U ,

C̃?
Φ,C

?
σW,1

, σ?W,2,π
?
1,π

?
2,π

?
3,π

?
4,π

?
5,π

?
6, r

?
hash

)
.

The adversary is allowed further access to the opening oracle for arbitrary signatures but σ?.
When A halts, it outputs a bit b′ ∈ {0, 1} and wins if b′ = b. We call S0 the latter event.

Game1: This game is like Game0 except that the challenger B aborts the experiment if a certain
event F1 comes about. This event F1 is defined to be the event that, in the challenge phase,
the adversary A chooses two membership certificates cert?0, cert

?
1 for which at least one of the

underlying structure-preserving signatures σ?Φ,0, σ
?
Φ,1 – say

σ?Φ,d = (σ?1,d, σ
?
2,d, σ

?
3,d, σ

?
4,d, σ

?
5,d, ˆσ6,d

?, z?d, r
?
d, Z

?
d , R

?
d, U

?
d ) ∈ G5 × Ĝ×G5

for some d ∈ {0, 1} – is such that logg(σ
?
3,d) 6= logh(σ?5,d). Note that this implies that the vector

(σ?1,d, σ
?
2,d, σ

?
3,d, σ

?
4,d, σ

?
5,d, Ω) is outside the row space of the matrix M in (9). For this reason, event

F1 would imply a breach in the security of the instance of the linearly homomorphic signature
included in the public key of the SPS scheme. Recall that the private key SGM = SKSPS consists
of (ω, skpots) and does not include the LHSPS private key skhsps chosen at step a.3 of the key
generation algorithm of the SPS scheme. Hence, even if the adversary obtains SGM = SKSPS, it
can only create structure-preserving signatures σ?Φ,b where z?b , r

?
b are obtained by homomorphically

deriving signatures from the pairs {(zj , rj)}3j=1 included in PKSPS (in which case, we always have
logg(σ

?
3,d) = logh(σ?5,d)).

More formally, assuming that F1 occurs with non-negligible probability, we build a LHSPS
forger B that receives as input a public key pkhsps. It generates the SPS public key by faithfully
running steps a.1 and a.2 of the key generation algorithm. It then invokes its own challenger to
obtain homomorphic signatures {(zj , rj)}3j=1 on the rows of M ∈ G3×6. It then conducts step
b of the real SPS key generation algorithm to obtain PKSPS and faithfully runs steps 3-7 of
the setup algorithm to obtain a group public key Y. Since B knows SOA = sktbe can perfectly
simulate the opening oracle as well as all other oracle. By hypothesis, one of the two membership
certificates cert?d of the challenge phase must contain a structure-preserving signature σ?Φ,d such
that logg(σ

?
3,d) 6= logh(σ?5,d). At this point, B can win the game against its own challenger by

outputting the vector (σ?1,d, σ
?
2,d, σ

?
3,d, σ

?
4,d, σ

?
5,d, Ω) and the homomorphic signature (z?d, r

?
d). Since

the LHSPS scheme is secure under the DDH assumption in Ĝ, we thus obtain the inequality
Pr[F1] ≤ AdvDDH

Ĝ (λ), so that |Pr[S1]− Pr[S0]| ≤ Pr[F1] ≤ AdvDDH
Ĝ (λ).

Game2: We modify the opening oracle. When the adversary queries the opening of a signature

σ =
(
Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,Cz,Cr,CZ ,CR,CU ,

C̃Φ,CσW,1 , σW,2,π1,π2,π3,π4,π5,π6, rhash
)
,

B parses the commitment C̃Φ as (C0, C1, C2, Z
(0), R(0)) and aborts the game in the event that C1

coincides with the C?1 component of C̃?
Φ in the challenge signature σ? (we assume w.l.o.g. that

C?1 is chosen at the outset of the game). Since C?1 is independent of A’s view until the challenge
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phase, the probability of this failure event F2 is at most q/p, where q is the number of queries to
the opening oracle. We have |Pr[S2]− Pr[S1]| ≤ Pr[F2] ≤ q/p.

Game3: We modify again the opening oracle and introduce a new failure event F3 which also causes
the challenger B to halt and output 0. The latter is defined to be the event that A queries the
opening of a signature such that

τ = CMhash(hk, (Cσ1 , . . . ,π6), rhash) = CMhash(hk, (C?
σ1 , . . . ,π

?
6), r

?
hash) = τ?

We have |Pr[S3]−Pr[S2]| ≤ AdvCR-CMhash(λ) since F3 would imply a collision for the chameleon
hash function.

From here on, we are free to use tk in the following games since we will not rely on the
collision-resistance of CMH anymore.

Game4: We further modify the opening oracle. At each opening query, the challenger B parses C̃Φ

as (C0, C1, C2, Z
(0), R(0)). The difference with Game3 is that B does not only return ⊥ when

e(Z(0), Ĝz) · e(R(0), Ĝr) 6= e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1,

but also returns ⊥ if the equalities

Z(0) = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R(0) = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (33)

are not satisfied. Otherwise, it computes Φ′ = C0/C1
x and checks if Φ′ = Φ for some registered

group member’s public value Φ ∈ G. If so, B outputs the corresponding index j. Otherwise, it
outputs ⊥.

Clearly, Game4 and Game3 proceed identically until the event F4 that A queries the opening
of a signature where C̃Φ passes the verification test of Game3 but fails the test of Game4. This
means that the TBE ciphertext C̃Φ = (C0, C1, C2, Z

(0), R(0)) satisfies (13) but not (33). We claim
that event F4 would contradict the DDH assumption in G. Indeed, if this event occurs, B can
compute its own linearly homomorphic signature

Z† = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R† = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 ,

on the vector (C1, C
τ
1 , C2) which necessarily satisfies

e(Z†, Ĝz) · e(R†, Ĝr) = e(C1, Ĝ1
τ · Ĝ2)

−1 · e(C2, Ĝ2)
−1

and (Z†, R†) 6= (Z(0), R(0)). This provides B with two distinct homomorphic signatures on the
vector (C1, C

τ
1 , C2), which in turn yield

e(Z†/Z(0), Ĝz) · e(R†/R(0), Ĝr) = 1GT .

If F4 occurs with noticeable probability, B can solve an instance (Ĝz, Ĝr) of the Double Pairing
problem and also defeat the DDH assumption in Ĝ.

We thus have the inequality |Pr[S4]−Pr[S3]| ≤ Pr[F4] ≤ AdvDDH
Ĝ (λ). Note that event F4 also

covers the event that the adversary A manages to re-randomize the (Z(0)?, R(0)?) components of
C̃?
Φ in the challenge σ?.

Game5: The generation of pktbe =
(
g, h,X1, X2, S,W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1) is modified in the

group public key. Namely, B defines

X1 = gx, X2 = hx

for a randomly drawn x R← Zp. Then, it picks αs, βs, αt
R← Zp and sets

S = gαs ·Xβs
1 , T = X−βs·τ

?

1 · gαt (34)

W = hαs ·Xβs
2 , V = X−βs·τ

?

2 · hαt ,
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where τ? is a random element in the range of the chameleon hash function CMhash. Note that
(X1, X2, S, T,W, V ) have the same distribution as in Game4 since, in the TBE scheme, we are
implicitly defining α = αs + βs · x and β = −βs · x · τ? + αt.

When the commitment C̃?
Φ = (C?0 , C

?
1 , C

?
2 , Z

(0)?, R(0)?) is computed in the challenge phase, B
picks θΦ,1, θΦ,2

R← Zp and sets

(C?0 , C
?
1 , C

?
2 , Z

(0)?, R(0)?) =
(
Φ?b ·X

θΦ,1
1 ·XθΦ,2

2 , gθΦ,1 · hθΦ,2 , (gθΦ,1 · hθΦ,2)αs·τ
?+αt , Z(0)?, R(0)?

)
,

where Φ?b is part of cert?b , and

Z(0)? = C1
?−ϕ1 · (C?τ?1 )−ϕ2 · C2

? −ϕ3 , R(0)? = C1
?−ϑ1 · (C?τ?1 )−ϑ2 · C2

? −ϑ3 .

Note that the pair (Z(0)?, R(0)?) is computed using the simulation trapdoor sk′hsig = {(ϕi, ϑi)}3i=1

as a simulated QA-NIZK proof that (C?1 , C
?τ?
1 , C?2 ) belongs to the row space of L. However, it

is a simulated proof for a true statement and, by the quasi-adaptive zero-knowledge property,
(Z(0)?, R(0)?) has the same distribution as if it were computed using the witnesses (θ3, θ4). Next,
B computes C?

σ1 , σ
?
3,C

?
σ4 , σ

?
5,C σ̂6 ,C

?
z̃,C

?
r̃ as well as C?

σW,1
, σ?W,2 and the NIWI proofs π?1,π

?
2,π

?
3

and uses the trapdoor tk of the chameleon hash function to determine r?hash ∈ Rhash such that

τ? = CMhash(hk, (C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z,C

?
r ,C

?
Z ,

C?
R,C

?
U ,C

?
Φ,C

?
σW,1

, σ?W,2,π
?
1,π

?
2,π

?
3,π

?
4,π

?
5,π

?
6), r

?
hash),

where C?
Φ = (C?0 , C

?
1 ). The challenge signature

σ? =
(
C?
σ1 ,C

?
σ2 , σ

?
3,C

?
σ4 , σ

?
5,C

?
σ̂6 ,C

?
z,C

?
r ,C

?
Z ,C

?
R,C

?
U ,

C̃?
Φ,C

?
σW,1

, σ?W,2,π
?
1,π

?
2,π

?
3,π

?
4,π

?
5,π

?
6, r

?
hash

)
.

is thus distributed as in Game4. It comes that Pr[S5] = Pr[S4].

Game6: We modify again the opening oracle. When A queries the opening of a signature, B parses
C̃Φ as (C0, C1, C2, Z

(0), R(0)) ∈ G5. If the latter tuple satisfies the test (33), B computes

Φ′ = C0 ·
(
C2/C

αs·τ+αt
1

)− 1
βs·(τ−τ?) ,

which is well-defined unless the failure event of Game2 occurs, and checks if Φ′ = Φ for one of the
registered members’ identifiers Φ ∈ G. If so, B returns the corresponding user index j. Otherwise,
B outputs ⊥.

The adversary’s view remains identical to its view in Game5 until the event F6 that the opening
oracle gives a different result than the opening oracle of Game5. This only happens if C̃Φ is such
that C2 6= Cα·τ+β1 (so that (C1, C

τ
1 , C2) is outside the row space of L) but still satisfies the test

(33). We claim that this only occurs with negligible probability Pr[F6] ≤ q/(p− q).
To see this, let us consider what an unbounded adversary A can observe about sk′hsig =

{(ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3)}. In the public key pktbe of the TBE scheme, the discrete logarithms of

{Ĝi = Ĝz
ϕi · Ĝr

ϑi}3i=1 provide 3 linear equations and those of {(Z(0)
i , R

(0)
i )}4i=1 only provide

A with two more independent equations. Indeed, since L has rank 2, the information supplied

by (Z
(0)
2 , R

(0)
2 ) and (Z

(0)
4 , R

(0)
4 ) is redundant with that revealed by (Z

(0)
1 , R

(0)
1 ) and (Z

(0)
3 , R

(0)
3 ).

Furthermore, {R(0)
i }4i=1 do not reveal any more information than {Z(0)

i }4i=1 since they are uniquely

determined by {Z(0)
i }4i=1. FromA’s view, the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3) is uniformly distributed

in a one-dimensional subspace. This implies that, at the first opening query such that (C1, C
τ
1 , C2)

is outside the row space of L, the equalities

Z(0) = C1
−ϕ1 · (Cτ1 )−ϕ2 · C2

−ϕ3 , R(0) = C1
−ϑ1 · (Cτ1 )−ϑ2 · C2

−ϑ3 (35)
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can only hold with probability 1/p. However, each opening query where B returns ⊥ potentially
allows A to rule out one candidate for the vector (ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3). At the k-th query, the
equalities (35) thus hold with probability ≤ 1/(q−k). We thus find |Pr[S6]−Pr[S5]| ≤ q/(p− q).

Game7: This game is identical to Game6 with one final change in the generation of the public key

pktbe =
(
g, h,X1, X2, S, Ŵ , T, V, pk′hsig, {(Z

(0)
i , R

(0)
i )}4i=1) of the TBE scheme. Namely, B defines

X1 = gx, X2 = hx
′

for randomly chosen x, x′ R← Zp. All remaining components are computed as previously. In par-
ticular, B still computes (S,W, T, V ) as per (29). Any significant change in A’s behavior would
imply a DDH distinguisher in G. It follows that |Pr[S7]− Pr[S6]| ≤ AdvDDH

G (λ).
As a side effect of this modified distribution of pktbe, we remark that the opening oracle al-

ways gives the correct answer since, for any TBE ciphertext, C̃σ2 = (C0, C1, C2, Z
(0), R(0)), there

always exist exponents θΦ,1, θΦ,2 ∈ Zp such that

(C1, C2) =
(
gθΦ,1 · hθΦ,2 , (Sτ · T )θΦ,1 · (W τ · V )θΦ,2

)
,

so that the opening oracle always computes Φ′ = C0 ·X
−θΦ,1
1 ·X−θΦ,22 .

Game8: We modify the distribution of the group public key. At step 3 of the group key generation
phase, we replace (û1, û2) by a perfectly hiding Groth-Sahai CRS, where û2 is random in Ĝ2

instead of being linearly dependent with û1. Clearly, under the DDH assumption in G, A’s view
should not be significantly affected by this change and we have |Pr[S8]−Pr[S7]| ≤ AdvDDH

Ĝ (λ).

In Game8, we claim that Pr[S8] = 1/2, so that the adversary’s advantage is zero. Indeed, (û1, û2)
is a perfectly hiding Groth-Sahai CRS and the same holds for (u1,u2) since u2 = (X1, X2) is
now linearly independent of u1 = (g, h). Also, unless the failure event F1 of Game1 occurs, the
distribution of (σ?3, σ

?
5) (which are given in the clear in the challenge signature σ?) does not depend

on the challenge bit b ∈ {0, 1}. Moreover, C̃?
Φ is computed as

C̃?
Φ = (C?0 , C

?
1 , C

?
2 , Z

(0)?, R(0)?)

=
(
Φ?b ·X

θΦ,1
1 ·XθΦ,2

2 , gθΦ,1 · hθΦ,2 , (gθΦ,1 · hθΦ,2)αs·τ
?+αt , Z?, R?

)
where

Z(0)? = C1
? −ϕ1 · (C?τ?1 )−ϕ2 · C2

?−ϕ3 , R(0)? = C1
? −ϑ1 · (C?τ?1 )−ϑ2 · C2

?−ϑ3 ,

which means that (C?2 , Z
(0)?, R(0)?) do not reveal any more information about (θΦ,1, θΦ,2) than C?1

does. Hence, even if the information (C?2 , Z
(0)?, R(0)?) is publicized, C?

Φ = (C?0 , C
?
1 ) remains a per-

fectly hiding commitment to Φ?b and π1, π2 and π3 remain perfectly NIWI Groth-Sahai proofs.
When combining the above, the adversary’s advantage is at most

Adv(λ) ≤AdvCR-CMhash
G (λ) + AdvDDH

G (λ) + 3 ·AdvDDH
Ĝ (λ) +

2q

p− q
,

which is negligible under the stated assumptions. ut

We note that the transition from Game0 to Game1 still works in the variant of the scheme where
the SPS scheme is optimized via the QA-NIZK proof of Jutla and Roy [44]. Indeed, we can simply
rely on the soundness of the QA-NIZK argument and exploit the fact that, in the reduction, B is
allowed to know the discrete logarithms of all entries of the matrix M w.r.t. the base element g ∈ G.
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