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ABSTRACT
Virtualization is fundamental to cloud computing because it
allows multiple operating systems to run simultaneously on
a physical machine. However, it also brings a range of se-
curity/privacy problems. One particularly challenging and
important problem is: how can we protect the Virtual Ma-
chines (VMs) from being attacked by Virtual Machine Mon-
itors (VMMs) and/or by the cloud vendors when they are
not trusted? In this paper, we propose an architectural solu-
tion to the above problem in multi-processor cloud environ-
ments. Our key idea is to exploit hardware mechanisms to
enforce access control over the shared resources (e.g., mem-
ory spaces), while protecting VMmemory integrity as well as
inter-processor communications and data sharing. We evalu-
ate the solution using full-system emulation and cycle-based
architecture models. Experiments based on 20 benchmark
applications show that the performance overhead is 1.5%–
10% when access control is enforced, and 9%–19% when VM
memory is encrypted.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General–System
architectures

General Terms
Security, Design
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1. INTRODUCTION
Cloud computing is revolutionizing the information tech-

nology, ranging from personal to enterprise to government
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computing. While cloud computing can provide computa-
tional and storage resources on demand and at a low cost, it
creates new security/privacy problems. This is fundamen-
tally caused by the separation of resource users (i.e., cloud
tenants) from resource owners (i.e., cloud providers).

New threats and concerns include: (i) failures in ensuring
separation between tenants in terms of storage and memory;
(ii) subversion of hypervisor or Virtual Machine Monitor
(VMM) [1]; (iii) attacks launched from one Virtual Machine
(VM) against the host platform or the other colocated VMs
on the same platform [2, 3]; (iv) eavesdropping a tenant’s
VM contents by a compromised VMM, untrusted resource
owners, or malicious insiders. These threats have caused a
large degree of reluctance in adopting the cloud paradigm [4,
5]. According to a survey of more than 500 global executives
and IT managers in 17 countries [6], 20% executives trust
their internal systems over the cloud due to concerns about
security threats and loss of control over data and systems.
Indeed, many data center customers demand their services
to be hosted by dedicated servers that are physically isolated
from other customers’ servers. This would ruin, to a large
extent, the merits of cloud computing that are essentially
based on virtualization and sharing of physical resources.
For example, according to VMWare [7], the number of VMs
executed per core can be up to 16 VMs/core.

There have been studies on solving some of these prob-
lems. However, most studies are based on the assump-
tions that cloud providers are trusted and VMMs are se-
cure. These assumptions are questionable because of in-
sider threats and VMM vulnerabilities [8, 9, 2, 3, 1]. In
this paper, we aim to address: how can we use hardware
architecture to reduce the amount of trust one has to put
in the cloud vendors or VMMs? For this purpose, we pro-
pose a security-enhanced multi-processor cloud server de-
sign, which uses hardware-enforced access control to manage
shared resources and cryptography to protect confidential-
ity to VM images and states (e.g., register states, physi-
cal memory). The main contributions of our work are: (i)
design of an architectural solution for enhancing VM pri-
vacy protection in “untrusted” cloud environments; (ii) ar-
chitectural solution for privacy protection on multi-socket,
multi-processor servers; (iii) hardware approach for protect-
ing VM integrity in multi-core environments; (iv) evaluation
of the proposed solution using system emulation and cycle-
based full-system simulators. To our knowledge, our paper is
the first that tackles the VM privacy and integrity problem



in multi-processor untrusted cloud computing environments,
where the VM memory space is mapped to distributed phys-
ical RAMs of a server.

2. PROBLEM STATEMENT
At a high level, we want to ensure that only the VM owner

can have access to the VM contents in the presence of the
following threats.

Untrusted cloud vendors. Cloud vendors cannot be fully
trusted by the cloud users for many reasons. For example,
cloud vendors might have the incentive to backup, repli-
cate, and store cloud users’ VM contents for purposes such
as optimizing cloud service performance, and therefore may
inadvertently breach privacy of the cloud users. Moreover,
as clouds become increasingly more decentralized and dis-
tributed, there could be phishing clouds or malicious cloud
infrastructures that are set up by the adversaries.

Insufficient VMM security. VMMs have access to the
entire memory space as well as VM states. Even in hardware-
assisted virtualization, system states (e.g., page tables) are
maintained by VMMs using tracing or shadowing technique,
where a shadow copy of the system states (e.g., virtual ma-
chine page tables) are kept and maintained by the VMMs.
Because VMM sees and manages the VM contents, it can
attack the VM memory in any fashion it wants.

Insufficient memory protection. The VM memory con-
tents can be eavesdropped by using simple hardware-based
approach that can bypass the software protection mecha-
nisms. For example, hardware-based RAM capture devices
can scan and dump physical memory contents [10], while
bypassing the guest OS [10].

Insufficient security support for multi-socket plat-
forms. There is no mechanism that protects the communi-
cations between the nodes in an Opteron-like multi-processor
system. Hyper-transport implements a packet-based com-
munication protocol for data transfer. Because hyper-transport
itself does not provide any protection on communications
against tampering, in order to enable security protection on
multi-node based systems, one needs to add extra protection
measures (e.g., message authentication code) to safeguard
inter-node packet communications.

3. ARCHITECTURAL DESIGN
Our goal is to prevent most software-based attacks and

physical eavesdropping attacks against VM memory space.
The design exploits trusted processors and I/O controllers
to achieve hardware-assisted virtualization, while using ad-
ditional safeguards for VM privacy and integrity.

3.1 Assumptions
We assume that the processor hardware is trusted, which

is the minimum assumption any solution might have to make.
This is consistent with the threat model that attacks may
come from a compromised VMM, a cloud insider, or an un-
trusted cloud provider. We assume that a user VM is subject
to eavesdropping attacks by which the adversary can exploit
software or hardware (e.g., a hybrid DDR-SSD RAM) to
compromise the data privacy in a VM. We assume that the
adversary can launch low-cost physical attacks but not so-
phisticated one that are below the computer chip level (e.g.,
attacks that require micro-probing or chip de-packaging);

the sophisticated attacks can be dealt with using solutions
that are orthogonal to our effort. We assume that side-
channel attacks against cryptographic keys are handled sep-
arately by complementary solutions that can be used in con-
junction with our solution. In short, the assumption about
trusted hardware means that security is supported from be-
low the VMM level and cannot be tampered by the VMM
or cloud vendors.

3.2 Basic Ideas
The basic ideas underlying the solution is highlighted as

follows. First, motivated by the observation that current
virtualization grants too much power to the VMM than
what is actually necessary, we aim to reduce the power and
functionality of the VMMs and confine their responsibili-
ties to resource management and scheduling. Second, in-
stead of trusting the large number of cloud vendors, we trust
the micro architectural components. This effectively reduce
the number of parties that we have trust. Third, instead
of adopting a privilege hierarchy, which is the traditional
architecture-design principle, we rely on a fine-grained priv-
ilege system where architectural components, VMMs and
VMs have their unique responsibilities and privileges. Fourth,
conceptually, our solution can be applied to any multi-processor
systems based on distributed shared memory, such as Xeon
servers using QuickPath interconnect and hyper-transport
based multi-processor PowerPC systems.

3.3 Overall Architecture
As shown in Figure 1, we extend hardware-assisted virtu-

alization with additional software and architecture features.
Specifically, a processor vendor can integrate a set of ar-
chitectural components on-chip to safeguard VM memory
space from eavesdroping. Functions of the new architec-
tural components include: (i) security enhancement to the
processor core such as special control registers and support
for special instructions; (ii) hardware mechanism to provide
privacy-enhanced protection of VM contexts; (iii) hardware
memory access control engine (i.e., memory access firewall)
that is integrated into each processor core; (iv) a fine-grained
privilege system; (v) privacy-enhanced SRI to safeguard per-
VM physical memory space via an integrated crypto engines.
In our solution, VMM is still responsible for managing re-
sources and supporting multi-tenant environments, where
multiple VMs can reside on the same physical platform.
However, each VM is responsible for setting its own pri-
vacy policy and for communicating its privacy policy to the
trusted architecture. The new or enhanced components will
be elaborated below.
Cryptographic keys. A hardware vendor (e.g., Intel, AMD)
can create a pair of public/private keys (PKv, SKv), where
the private key SKv is fused into its processors and the public
key PKv is made public. When a VM is bootstrapped, a pair
of symmetric keys (k1, k2) is shared between the processors
P1, . . . , Pm. This can be achieved by letting one processor
(for example) P1 choose (k1, k2) according to some appro-
priate cryptographic algorithms. Then, P1 sends (k1, k2) to
Pj , 2 ≤ j ≤ m, under the protection of PKv over the connec-
tions that couple P1 and Pj . Note that a malicious physical
man-in-the-middle may try to cause different Pi’s to see a
different set of processors. As a consequence, the processors
do not actually share the same (k1, k2) and cannot commu-
nicate effectively. Because the processors are assumed to be
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Figure 1: Quad CPU hyper-transport platform with privacy-
enhanced nodes.

secure, this only causes a kind of denial-of-service attack,
which can always be launched by a powerful adversary who
has full control of the hardware. Each processor uses k1 to
maintain a data structure for storing its data in memory
in encrypted form and the ciphertext can be decrypted by
other processors that are allocated to the same VM. When
a processor needs to communicate with another processor,
k2 is used to protect the communication.
Each cloud user can have a pair of public/private keys

(PKu,SKu), which can be used to digitally sign the (en-
crypted version of) VM images. The VM images are en-
crypted by the cloud users offline before they are executed
by a secure processor, while the image decryption key can
be encrypted using the public key PKv. The encrypted VM
images can be decrypted only by the processors that hold
SKv.
We stress that letting all the processors manufactured by

the same vendor possess the same private key PKv is for the
sake of the system description. The rationale is the follow-
ing: Since we cannot pre-determine which user’s applications
will run in which processor, any trusted processor must be
able to decrypt the encrypted virtual machine image of any
user, which cannot be fulfilled by letting a user and a pro-
cessor conduct a key-exchange protocol so as to encrypt the
virtual machine image that can be decrypted by the proces-
sor. This problem can be solved using a new cryptographic
technique called Proxy Re-Encryption [11, 12, 13]. Putting
into the context of the present paper, we can let each vendor
generate a unique “re-key” for each of the processors it man-
ufactured, denoted by skprocessor. This technique allows the
processor to decrypt the ciphertext that is generated using
PKv, where the plaintext content can be a symmetric key
that is actually used to encrypt the virtual machine image.
Moreover, even if skprocessor is compromised, PKv is still
secure.

VM memory access firewall. We allow a VM to manage
and configure its access control and permission settings for
its physical memory space. This is achieved through a mem-
ory space property table, or memory access firewall table. In
addition to the conventional on-chip processor states, archi-
tectural virtual machine context [14] is expanded to include
this table as part of the VM context. The memory access
firewall table specifies VM’s physical address space, memory
regions that require the access control, sharing permissions,
and cryptographic protections. For example, a VM can in-
dicate that access to a certain memory region is restricted

so that even the VMM cannot access that memory region.
Additionally, the VM can indicate the memory regions that
need to be encrypted (using hardware crypto engines that
integrated together with the SRI) and/or protected with
integrity mechanisms. Further, a VM can describe which
memory regions are shared with the VMM or other VMs.

VM context. A cloud user can can describe VM image
properties and settings via a VM context template that com-
prises the memory space property table. The context tem-
plate is digitally signed by the cloud user with its private key
SKu, so that the signature can be verified by the processor
that is provided with PKu (via an appropriate public key
certifiation mechanism). A VMM can create VM instances
from a VM context template, while the trusted processor will
confirm that the machine memory space allocation is done
properly by the VMM (i.e., there is no violation of memory
space access control policies or inconsistency in host machine
memory allocation).

A VM can access the context signed by the processor us-
ing special instructions. It can verify both the signature and
the memory access firewall table during the boot process. A
VM can terminate the boot process if any suspicious be-
havior or mismatch is detected. For each VM, the trusted
processor uses its memory space property table at runtime
to enforce memory access control and protection policies as
specified. When a VM is scheduled for execution, the firewall
table is buffered in the cache by the trusted microprocessor
core. Access to a VM memory space is verified by consulting
the memory access firewall table. To prevent violation from
other processors or I/O devices, the memory access firewall
table is propagated to other nodes and I/O controllers where
every memory access is checked against the cached memory
access firewall table. If a memory region requires encryp-
tion, the privacy-enhanced SRI will encrypt the memory at
unit of cache line size [15, 16]. The SRI is integrated with
the pipelined crypto engine (see Figure 2).

Each VM is associated to an ID, which is a 16-byte long
UUID, created by the trusted processor, and specified in the
signed VM context. The VMM cannot alter or tamper the
VM ID without being detected by the trusted processor and
the VM. A VMM has its own UUID. Whenever VM enter
(switch from VMM to VM) or VM exit (switch from VM to
VMM) is executed, the trusted processor will automatically
reset the ID register. If the ID register stores the VMM
ID, the VMM is running; otherwise, the ID register stores
UUID of the VM that is currently running. VMM cannot
impersonate a VM; whereas a VM can read its ID using a
special instruction. L1 cache, L2 cache, and TLB entries
are tagged with VM IDs. Since VM IDs are 16-byte long, a
lookup table is used by the trusted processor to map each 16-
byte VM ID to an 8-bit index and then cache lines are tagged
with the 8-bit indices. The index is automatically assigned
to a VM by the trusted processor when its context is created.
The index value is recycled after the VM is terminated. The
maximum number of concurrent guests per server is 256,
which is large enough for a single cloud server [17]. The
index is not used by the VMM and cannot be tampered
by the VMM because the index is part of the VM context,
which is protected with a digital signature of the trusted
processor. Therefore, it poses no security risk.

VM contexts include both the virtual CPU state and the
memory property table. During VM context switch (switch
from VM to VMM or one VM to another VM), the cur-
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Figure 2: Architectural support for protecting VM privacy.

rent VM context is preserved by the trusted processor. To
prevent tampering of the saved VM context, the trusted
processor encrypts sensitive states (e.g., register values) and
computes a digital signature for the entire VM context. The
cache lines and TLB entries tagged with the swapped-out
VM ID (8-bit index) are flushed before the execution re-
turns to the VMM.
A VM with privacy protection can share memory regions

with other VMs as long as they share the same cryptographic
keys. In addition, a VM can share memory with the VMM
by declaring multiple regions with different access policies
via the memory access firewall. Similarly, access control
policies can be specified for memory regions that are shared
between I/O devices and VMs. A VM can open up cer-
tain physical address ranges for supporting I/O devices that
are allocated to it under hardware assisted I/O virtualiza-
tion. The settings can be added to the memory access fire-
wall and enforced at runtime. Further, the memory access
firewall can be integrated with a virtualization capable I/O
controller (e.g., AMD I/O MMU) by extending the address
translation mechanism that the I/O MMU already supports.
For memory spaces opened for I/O devices by a VM, the
contents are not encrypted.

3.4 Privacy-Enhanced SRI
To enable VM privacy protection on multi-socket, multi-

processor servers (e.g., dual/quad Opteron processor plat-
forms, Intel dual/quad processor platform based on Quick-
path), a set of architectural features are integrated with the
system request interface (SRI) as shown in Figure 2. SRI
handles and routes requests from processor cores. Pipelined

crypto and hash engines are integrated with the SRI to
provide encryption protections and tamper-evidence capa-
bilities (see Figure 2). The privacy-enhanced SRI ensures
privacy of the VM memory space using hardware-assisted
memory encryption. It protects integrity of VM memory
space through MAC trees and pipelined hash engines. The
MAC trees detect tampering against a VM physical mem-
ory space. In order to support distributed DRAM based,
multi-processor platforms, global MAC trees are split into
sub-trees for the processors (see Figure 3). The sub-tree de-
sign avoids racing conditions and communication overhead
for MAC tree synchronization, while allowing VMs to access
physical resources across multiple processors.

When a VM is scheduled to execute, the trusted processor
will verify and load its context. In addition to caching the
memory firewall table inside a processor core, the table is
also propagated to the SRI and the SRIs of the co-located
processors on the same platform. The SRI contains buffers
for storing the received memory requests. For each request,
the SRI matches the request with the memory access fire-
wall table and finds the corresponding privacy policy. Then,
it executes cryptographic operations according to the pol-
icy. Each request is associated with an ID (i.e., 8-bit VM or
VMM index) that indicates the originator of the request. If
an I/O device is allocated to a VM using hardware-assisted
I/O virtualization (e.g., I/O MMU or hardware I/O virtu-
alization), requests from the I/O device will be associated
with the VM’s ID. The association is done by the I/O MMU
or a processor core.

The privacy-enhanced SRI responds to both local DRAM
access requests (issued from local processor cores) and re-
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quests from the co-located processors that are transmitted
over the hyper-transport bus. Each SRI is only responsible
for integrity of VM memory spaces allocated to the DRAM
it connects to (via a crossbar). To prevent tampering of VM
memory space through attacks against hyper-transport com-
munications, we enhance hyper-transport communications
with tamper-evident integrity protections. The privacy-enhanced
SRI uses a HT integrity engine to protect and verify in-
tegrity of packets transmitted over the hyper-transport bus.
The HT integrity engine computes and appends a message
authentication code to each data payload that is sent to a
hyper-transport interface via the crossbar. For accelerating
MAC tree performance, each SRI further integrates a MAC
tree cache (e.g., [18]). Each MAC tree cache line can store
256-bit hash codes.
A VM index is associated to each cache line tag. The

privacy-enhanced SRI contains a reverse lookup table that
translates machine physical address to the physical address
of a matching VM. This lookup table is needed because the
memory access requests received over the hyper-transport
bus use actual machine physical addresses (instead of VM
physical address). Figure 2 illustrates the processing steps
that occur inside a privacy-enhanced SRI for both local and
remote DRAM read requests.
There is a legitimate concern of VM ID spoofing attacks

by co-located untrusted hardware components, where an
I/O controller or inter-connected processor sends requests
with spoofed VM IDs. To address such threats, each pro-
cessor will verify, during the hardware boot time, credentials
of all the hyper-transport connected I/O controllers and pro-
cessors to ensure that they are all trusted. For example, if a
processor connects to two other processors and one I/O con-
troller, at the boot time, the processor will verify that all
hyper-transport neighbors are trusted by sending a challenge
to each neighbor via an appropriate authentication method.

3.5 Distributed MAC Trees
In order to protect VM integrity from malicious VMM or

untrusted cloud operator, we ensure that VM memory space
cannot be tampered by any of them. Merkle tree [19] is a
useful data structure for this purpose. However, conven-
tional Merkle trees cannot be applied for our purpose be-
cause the VM memory space across multiple RAMs that are
controlled by different processors. We design a distributed
Merkle tree scheme for our purpose.

The key idea in the design is that each VM has a sub-
tree per CPU and RAM. There is no global root for all the
subtrees as shown in Figure 3. When a VM runs on multi-
ple processors, each processor will maintain one sub-Merkle
tree for it. The collection of Merkle trees from all proces-
sors work together to assure the VM memory integrity. For
a specific VM, the processor constructs its Merkle tree as
follows (assuming chunk is the minimum data block that is
verified by integrity checking for both the VM memory and
physical RAM): Let the leaves in the Merkle tree denote the
chunks in VM memory ( # of leaves equals to # of chunks),
and let the leaf be the content in the chunk of VM memory
if the corresponding chunk in VM memory is mapped to the
physical RAM that is directly controlled by the processor,
and the other leaves with a special value that indicates that
these chunks are mapped to the RAMs of other processors.
A processor can build a Merkle tree based on the leaves,
and store the hash values of the tree in its local DRAM. As
shown in Figure 3, the illustrated VM runs on four proces-
sors where the VM has four Merkle subtrees maintained by
the four processors. The MAC tree cache temporarily stores
the hash codes of a local Merkle subtree. Note that the four
Merkle subtrees have the same structure that is static during
the VM’s lifetime.



In order to verify the integrity of data in a chunk, the
entire chunk is brought into the processor together with the
sibling nodes along the path from that leaf to the root, so
that the processor can verify it with the stored hash value of
the root. When a chunk of data is modified, the processor
only needs to update the path from that leaf to the root
and stores the hash value of newly updated root in the on-
chip secure memory. When a chunk of data in one RAM
(say RAM 1) is migrated to another RAM (say RAM 2),
processor 1 will set the corresponding leaf with the special
value in its Merkle tree to indicate that the data is not stored
locally, and update the Merkle tree along the path, while
Processor 2 will update its local Merkle tree in a similar
fashion.
When a VM is paused, its MAC tree Cache entries need to

be flushed and the MAC tree roots need to be swapped out of
the secure processor as well. A VM context contains states of
virtual CPU. For secure processors, the virtual CPU states
are extended to include MAC tree roots and RAM locations
of MAC trees. When a VM is paused, its virtual CPU states
are saved, certified, and signed by the processor. When VM
execution resumes, the secure CPU first verifies integrity of
the virtual CPU states (e.g., MAC tree locations and roots)
and then restores the states. Consequently, any tampering
of the MAC trees will be detected.
However, a malicious VMM may try to violate this de-

signed behavior. For example, it does not copy the contents
correctly when a leaf-node is re-allocated. To deal with this,
we need to add tamper-evidence to cross-validate the mi-
grated MAC tree branches. In order to detect a malicious
VMM that tries to tamper integrity of VM memory space
during physical memory migration, we check the hash value
of the newly added nodes against the old hash values in
the MAC tree it comes from. If they do not match, there
is an integrity violation. Leaf-node migration and the as-
sociated integrity verification are performed by the trusted
CPU using emulated instructions that run under SMM (sys-
tem management mode), a special mode beyond the reach
of operating system and VMM. This procedure is treated as
one atomic operation. Whenever an error occurs during the
procedure, the whole operation is aborted and the involved
MAC trees are restored to the original states.

3.6 Privilege Handling
Our design is a fine-grained privilege system, which is in

contrast to the conventional ring-based privilege system in
commodity processors. This is necessary because in a ring-
based privilege system, VMMs are granted with all of the
privileges that a VM can have (inclusive). A VMM can exe-
cute any privileged instruction that a VM can execute [14].
As a consequence, the VMM can do everything that a VM
can do (including peeking into the VM’s contents). In our
design, VMMs and VMs have different roles and therefore
different privileges. For example, a VM can alter its memory
firewall table (i.e., adding or removing property rows, chang-
ing policies) using special instructions. A VMM can modify
its own memory access firewall table. However, VMM is
prohibited from modifying the tables of the hosted VMs;
otherwise, the VMM can compromise the VM’s privacy by
altering the VM’s memory access firewall table.

4. PERFORMANCE EVALUATION

We evaluate the proposed design using functional system
emulation and cycle-based architecture models. In order to
tune up our simulation models, we consider the latency by
using the reference RTL implementations.

4.1 Implementations
Crypto unit for memory/HT encryption. We use the
Advanced Encryption Standard (AES) for encryption. AES
deals 128-bit data blocks with a key of 128/192/256 bits.
Specifically, we evaluate the Verilog RTL pipelined imple-
mentation [20]. This implementation takes around 30 cycles
to encrypt a 128-bit data block, operates at around 330MHz
with cost of around 14K LUT, and can achieve over 40Gbps
throughput. AES is integrated with the system request in-
terface (SRI). The total area cost is 1,000k gates. Synthesis
of the SRI crypto logics using Synopsys design compiler with
45nm technology shows that the total area overhead of the
crypto unit is negligible when compared to the size of COTS
microprocessors. Details of memory encryption design based
on streaming operations of AES can be found in some re-
lated work [21, 18]. Reference implementation of the secure
hyper-transport is based on an open source hyper-transport
core [22].

Integrity verification and MAC tree. In the reference
implementation, we use a hierarchical message authentica-
tion code tree as described in the earlier sections. A MAC
value is generated using SHA-256 hash function [23] for each
cache line size memory block of a VM. All the MACs form
one layer of nodes and are stored linearly. Similarly, a new
MAC value for the next level in the MAC tree is computed
by concatenating the new MAC line and the secret key of the
application as the inputs to the SHA-256 function until the
root MAC is generated. The root MAC is stored inside the
processor once the program enters the trusted environment
to avoid any potential tampering of the root node. When-
ever the external memory of a cache line is modified, the
root is updated through a specific path from the leaf node
to itself. The MAC tree is 8-way. The leaf level MAC is
stored as part of the L2 cache lines. So only the internal
MAC tree nodes are cached by the MAC tree cache. Oper-
ation and design details of the MAC tree can be found in
the related work [24, 25]. Performance simulation of the
MAC tree is based on Verilog implementation of SHA-256,
synthesized using Synopsys compiler. This design is totally
asynchronous and has a gate count of 19,000 gates. The
latency for this design is 74ns for 512 bits of padded input
(required padding in SHA-256).

Onchip hardware overhead. The onchip hardware re-
sources required include memory access firewall tables, MAC
tree cache, virtual machine ID tables, and pipelined crypto
engines. Assuming 48-bit physical address space and mem-
ory access firewall table size of 96 entries, the hardware cost
is about 10.2K bits per core. For 128-bit VM ID and VM ID
table of 64 entries (64 VM per server), the hardware cost is
about 8K bits per core. The reverse lookup table integrated
with the SRI has 64 entries by default. The table is fully
associated with 18 bits tag and data. The overall onchip
hardware cost remains small when considering the typical
transistor count of today’s server processors (e.g., commer-
cial Xeon processor has over 2.6 billion transistors).

4.2 Simulation Environment



We use Bochs [26], Simics [27] and FeS2 [28] for functional
emulation and performance evaluation. Bochs is used for
functional validation, focusing on correctness. Simics+FeS2
are used for performance verification and modeling, focus-
ing on performance evaluation using detailed architectural
models.
Bochs models an entire platform including network device,

hard drive, VGA, multiple processors, and other devices to
support the execution of a complete OS and its applications.
It emulates x86 instructions and supports emulation of Intel
VMX hardware support for virtualization. For functional
verification, Bochs is extended to emulate new instructions
and architectural designs including these described in the
present paper. Further, VMX support of Bochs is modified
to support the proposed features including VM context ex-
tension, memory access permission attribute table, etc. We
emulate a multi-processor platform, which supports Xen 3.3
and run Ubuntu 8.04 Linux distribution as guest operating
systems.
FeS2 provides a detailed architectural model for x86. It

supports accurate execution-driven timing-model that in-
cludes cache hierarchy, branch predictors, and superscalar
x86 out-of-order core. It is implemented as a module for
Simics. The memory model is provided by GEMS [29]. FeS2
can decode x86 instructions into uops. Implementation of
the uops is based on [30]. Architectural support for hyper-
transport platform with privacy-enhanced nodes such as SRI
and I/O MMU are implemented in the FeS2. Architectural
models of memory encryption and integrity verification are
added to the FeS2 architecture model with performance set-
tings derived from the actual Verilog implementations of the
memory encryption and MAC tree integrity engines. For
hyper-transport, it is based on [22] with encryption and
integrity protection support.

4.3 Benchmarks and Machine Parameters
For performance evaluation, we use 20 benchmarks from

the Phoronix Benchmark Test Suite [31] and additional bench-
mark applications, including:

• clamav, diff, gzip, jpython, luindex, snort, sphinx, and
xalan from the Phoronix Test Suite, which includes a
comprehensive set of applications, covering application
domains of scientific computing, compression, cryptog-
raphy, media encoding, web serving, database query
processing, and graphics rendering;

• npbbt, npbft, npbep, npblu, npbmg and npbsp from
NASA parallel benchmarks [32];

• php and python from the benchmark suite for PHP
and Python; and

• 7zip, gcypt, openssl and vpxenc.
The simulation is performed with a 4-wide out-of-order su-

perscalar processor running at 2GHz and x86 ISA. The simu-
lated platform has four x86 processors that are connected via
hyper-transport links. Each x86 processor has its own local
physical memory and uses a bimodal branch predictor. Each
processor has a 32-entry load/store queue, 128-entry reorder
buffer, and non-blocking caches with 16-entry MSHR. The
I-TLB and D-TLB have 64 fully associative entries. The
memory bus width is 128-bit. The memory firewall has 64
entries, with 32MB minimum setting and 4GB maximum
setting. Each region has its own access permission setting.
Lookup of the memory firewall table takes 2 cycles. Machine
physical memory space is divied into 256MB size regions and

allocated to a virtual machine. The simulated SRI with pri-
vacy protection uses 64-entry reverse lookup table and 64KB
MAC tree cache. The hash cache is configured with 4-way
associativity, 32-byte block size, and 6-cycle access latency.
Processors are connected via bidirectional hyper-transport
links. The maximum bandwidth of the latest 32-bit bidi-
rectional hyper-transport is more than 50 GB/s. The sim-
ulation starts when the application passed the initialization
stage (using Simics checkpoint support). The cycle-based
simulation executes each benchmark application for one bil-
lion instructions or until it is completed, depending on which
condition is met first.

4.4 Results
First, we consider the impact of hyper-transport for the

20 benchmark applications in Opteron-like multi-processor
system in three settings: 0 hop, 0−1 hop (70%:30%), and
0−1−2 hop (70%:20%:10%). In the 0 hop setting, all physi-
cal memory pages of a VM are mapped to the DRAM man-
aged by a specific processor. In the 0−1 hop (70%:30%)
setting, 70% of the physical memory pages are loaded into
the DRAM managed by a specific processor and 30% are
loaded into the DRAMs managed by other processors of 1
hop distance. In the 0−1−2 hop (70%:20%:10%) setting,
a specific processor manages 70% of the physical memory
pages on its DRAM and each DRAM of other processors of
1 and 2 hop distance has 10% of the physical memory pages
of a VM. In the experiment, we assume that firewall lookup
and TLB translation take 2 cycles. Figure 4 shows the per-
formance overhead of hyper-transport in comparison with
0 hop. On average, the overheads of 0−1 hop and 0−1−2
hop are about 2.7% and 3.7%, respectively. The overhead
is caused by accessing physical memory pages in DRAM of
other processors.
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Figure 4: Performance overhead of hyper-transport with dif-
ferent numbers of hops with 0 Hop as the baseline.

Second, we consider the performance of memory access
firewall table and the memory space encryption engine via
the 20 benchmark applications. Figure 5 shows the perfor-
mance overhead of hyper-transport and firewall at the same
time. We observe that the average performance overheads of
0 hop, 0−1 hop, and 0−1−2 hop are about 0.5%, 3.2%, and
4.1%, respectively. Compared with the overhead of hyper-
transport, the overhead of memory firewall is about 0.5%.

Figure 6 shows the performance overhead of hyper-transport,
firewall, and privacy protection. We observe that the aver-
age performance overheads of 0 hop, 0−1 hop, and 0−1−2
hop are about 1.5%, 4.2%, and 5.2%, respectively. In com-
parison with the overhead of hyper-transport and firewall,
the overhead of encryption is about 1.0%. The privacy-
protection overhead depends on the cache miss rates. As
shown in Figure 7, the cache miss rates of the benchmark
applications are usually low. Figure 8 shows the percentage
of each overhead of hyper-transport, firewall, and encryp-



tion under 0−1−2 hop. We observe that overheads of the
applications vary significantly.

���

���

���

�

�
�
�
�
��

�
�
�
	
�

���	
���
����� �����	
���
����� �������	
���
�����

Figure 5: Performance overhead of hyper-transport and
memory firewall with different hops.
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Figure 6: Performance overhead of hyper-transport, memory
firewall, and memory encryption with different hops.
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Figure 7: Data cache miss rates.

Third, we consider the performance of the cached memory
access firewall tables. Larger firewall cache often has longer
lookup latency. In the case that the latency of checking
memory access permission is longer than the L1 hit latency,
a significant impact on the application performance may oc-
cur. Figure 9 shows benchmark performances when the la-
tency of checking memory access permission takes 3 cycles
in total (including TLB access time) and the L1 cache la-
tency takes 2 cycles. In our design, data is not returned to
the processor core unless the firewall lookup confirms that
the memory access is permitted. Under this design, almost
every benchmark applications suffer significant performance
degradation. This issue can be addressed by two possible
solutions. One solution is to design two firewall table caches
such that one large but slower firewall table cache is paired
with one small but faster firewall table cache. For each mem-
ory access, the two firewall table caches are looked up in
parallel. The small firewall table cache stores the frequently
used lookup entries and can use the LRU policy. For an
eight-entry firewall table cache, the access time can be 1
cycle. As shown in Figure 9, this solution can reduce the
maximum overhead for all benchmark applications to 1.5%.
The other solution is to return data immediately after a
cache hit and allow the program to execute speculatively,
but only commit the memory access instruction after the
permission is verified. We defer a full-fledged investigation
of this solution to future work.
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Figure 8: Percentage of each overhead of hyper-transport,
memory firewall, and memory encryption with 0−1−2 hop.
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Figure 9: Performance impact of memory firewall table
lookup time.

5. RELATED WORK
Trusted computing and related research. There is a
body of literature on trusted computing and its applications
to secure systems. Trusted computing is centered on the
concept of TPM (trusted platform module), which assures
secure boot but does not protect confidentiality and integrity
of the physical memory space. Therefore, the problem we
aim to tackle cannot be solved by using a solution that is
centered on TPM. Although systems such as Flicker [33]
can be used to protect security-sensitive applications from
the underlying malicious software modules (e.g., operating
system), it requires to freezing the entire software stack,
which makes it inappropriate for cloud computers.

Architectural support for physical RAM privacy. There
have been many designs for encrypting physical memory to
counter physical attacks (e.g., [34, 35, 36, 21, 37, 18, 38,
39, 40, 41]). Representation examples are: 1) protecting
data privacy by performing decryption in parallel to mem-
ory access [21]; 2) protecting data privacy and integrity in
distributed shared memory multi-processors systems [39] by
adapting the Galois/Counter Mode of operation with the
counter-mode encryption [38], or by using the address inde-
pendent counter-mode encryption and Merkle tree built on
top of the counters [42]; 3) preventing secret leakage against
intrusive memory attack by integrating secret sharing and
coding based schemes [40]; 4) a hybrid hardware-software
approach to full system security named SecureME [41].
However, it is not clear at all how these solutions can be
retrofitted to solve the problem we aim to tackle. More-
over, these solutions do not deal with running VMs in multi-
processor servers of distributed physical memory.

Architectural support for VM security. There have
been architectural solutions to protecting applications and
data from powerful software attacks [43, 44]. Recent efforts
[45, 46] try to address this issue by means of architectural
support. However, these architectural solutions primarily
deal with software-based exploits from malicious hypervi-
sors, but do not deal with malicious cloud insiders that can
launch physical attacks against the DRAM. Moreover, our
solution targets multi-processor server platforms (e,g., AMD



Opteron-like systems), which cannot not be handled by these
solutions in their current design.

6. CONCLUSION
We have presented the design of architectural support to

protect VMs from untrusted cloud vendors and malicious
VMMs in multi-processor platforms. The design exploits
hardware mechanism (e.g., memory access firewall, privacy
enhanced SRI) to enforce VMs’ access control and protection
policies of their resources. The design uses cryptographic
mechanisms to protect the confidentiality of VM memory
spaces and system states, and provide secure inter-processor
communications and data sharing. Evaluations using cycle-
based architecture models show that performance overhead
is compatible to the security gains.
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