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Abstract 

Recognizing a target in synthetic-aperture radar 
(SAR) images is an important, yet challenging, 
application of the model-based vision technique. 
This paper describes a model-based SAR recogni- 
tion system based on invariant histograms and 
deformable template matching techniques. An 
invariant histogram is a histogram of invariant 
values defined by geometric features such as 
points and lines in SAR images. Although a f a v  
invariances are sufficient to recognize a target, we 
build a histogram of all invariant values given by 
all possible target feature pairs. This redundant 
histogram enables robust recognition under severe 
occlusions typical in SAR recognition scenarios. 
Multi-step deformable template matching exam- 
ines the existence of an object by superimposing 
templates over potential energy field generated 
fiom images or primitive features. It determines 
the template configuration which has the minimum 
deformation (deformation energy) and the best 
alignment of the template with features (potential 
energy). The deformability of the template absorbs 
the instability of SAR features. We have imple- 
mented the system and evaluated the system per- 
formance using hybrid SAR images, generated 
from synthesized model signatures and real SAR 
background signutures.1ntroduction 
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1. Introduction 

Recognizing targets in synthetic-aperture radar 
(SAR) images [Tomiyasu, 1978, Chellapa et al., 
19921 is a difficult problem for conventional com- 
puter vision systems. First, all S A R  features are 
non-attached; they are not tightly related with sur- 
face markers nor explicit object geometry such as 
edges. Rather, they are floating over a target sur- 
face. Thus, they suddenly appear, disappear, and 
abruptly change their shapes due to tiny move- 
ments by an observer. Secondly, in SAR image rec- 
ognition, objects are often intentionally hidden 
from an observer. For example, enemy tanks are 
often hidden under trees. A whole tank may be 
camouflaged completely with a camouflage net. 

Historically, target recognition in S A R  images is 
attacked using three different approaches: statisti- 
cal pattern recognition [Novak at al., 19931, model- 
based [Kuno, 1988, Sato, 19921, and artificial neu- 
ral network [Waxman, 19931. Among these three 
approaches, model-based approach [Bolles and 
Cain 1982, Brooks, 1983, Low, 1985, Huttenlocher 
and Ullman, 1987, Grimson, 1990, Gremban and 
Ikeuchi, 1993, Wheeler and Jkeuchi, 19951 is the 
most promising, because of its potential for the 
robust recognition. In essence, a model-based sys- 
tem analyzes each image in detail and identifies 
each part of a signature contribution toward recog- 
nition, while pattern recognition and artificial neu- 
ral network based recognition system handle a 
target signature as a whole. This capability of part 
analysis in the model-based vision approach pro- 
vides the potential for the robustness with respect 
to partial occlusion of target, and cluttered back- 
ground. 

Promising features from S A R  appearances are iso- 
lated peaks. Among several proposed model-based 
techniques, pose clustering is suitable for deter- 
mining the object pose (and identifying the object) 
from such sparse features. Representative pose 
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clustering techniques include: Hough transform 
and geometric hashing. Ballard [1981] generalized 
the Hough transform to detect arbitrary patterns. 
Recently, several alternative techniques have been 
proposed by Lamdan and Wolfson [ 19881, Dhome 
et al. [19861, and Stockman [1987]. Grimson 
[1990] reported that searching pose space with 
Hough transforms is very effective for 2D object 
recognition. Wolfson and Lamdan [1992] also 
reported an effective recognition system using geo- 
metric hashing. These pose clustering techniques 
are highly optimized so that each relation among a 
pair of features can reduce the possible interpreta- 
tions as much as possible. However, pose cluster- 
ing becomes unstable when relative relationships 
among features vary as is the case of non-attached 
S A R  features. 

Recently, several model-based recognition systems 
have been designed using geometric invariants 
[Mundy ans Zisserman, 19921. Geometric invari- 
ants such as the cross-ratio provides very efficient 
clue for identifying 3D objects. In this paper, we 
will denote those geometric invariants as strong 
invariants. Those strong invariants require the cor- 
respondence problem to be solved prior to apply- 
ing such invariants to recognition. Although this 
may be an easy problem when an object contains a 
few feature points, combinatorial explosion occurs 
when handling cluttered images typical of S A R  
images . 

This paper introduces an invariant histogram based 
on weak invariants, defined by a pair of features, to 
avoid the difficult correspondence problem. 
Though each invariant is weak for constraining 
possible object classes (and their poses), we dem- 
onstrate that a histogram of weak invariants can be 
used to identify the object uniquely. Moreover, uti- 
lizing all of the weak invariants in an image is 
highly redundant, and provides robust recognition 
under severe occlusion with unstable SAR fea- 
tures. 

We have built a recognition system that consists of 
indexing and verification. The indexing module 
quickly reduces the number of candidates using the 
invariant histogram technique. To select the correct 
candidate, the verification module employs 
deformable template matching to test for the exist- 
ence of each feature. Here, each SAR feature is 
non-attached and can vary its position. Deforma- 

tions are necessary for fine-tuning each feature 
positions locally. 

The system is designed under the vision algorithm 
compilation paradigm [Ikeuchi, 19881. The system 
has two modes: off-line and on-line. In off-line 
mode, model invariant histograms and deformable 
templates are generated from target models using 
XPATCH S A R  simulator. In on-line mode, an 
image invariant and potential fields are computed 
from an input image and our indexing and verifica- 
tion algorithms are applied. 

Section 2 will introduce the concept of our invari- 
ant histogram technique, and section 3 describes 
how to use the technique for designing the index- 
ing module. Our deformable template matching 
method will be discussed in Section 4. Section 5 
presents our experimental results, and in Section 6 
we present our conclusions. 

2. Invariant Histogram 

In order to achieve robust recognition under severe 
occlusion or camouflage with unstable SAR fea- 
ture, our system introduces an invariant histogram 
based on weak invariants, defined by a pair of fea- 
tures. The indexing module employs this invariant 
histogram of weak invariants. The indexing 
quickly reduces the number of the possible candi- 
dates before expensive candidate verification. It 
employs a dictionary lookup method. The dictio- 
nary consists of the invariant histograms, distribu- 
tions of invariant values of an object. By 
comparing the observed invariant histogram with 
model histograms in the dictionary, the module 
decides which candidates are the most likely ones. 
This process requires to measure similarity 
between an input and a model invariant histogram. 
The section will also discusses on the similarity 
measure defined on the invariant histogram. 

2.1. Concept of invariant histogram 

An invariant histogram stores many invariant val- 
ues from a target model, though only a few invari- 
ants are actually necessary for recognition. Thus, 
this invariant histogram is a redundant space. It is 
robust against variation in computed invariant 
value typical of SAR data. 

This paper employs weak invariants, such as dis- 
tance of two points or the slope of the bisecting 
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line of two lines. Strong invariants such as a cross invariant to translation and rotation. An orthogonal 
ratio of four points on a line are convenient for direction from a point to a line segment is also invari- 
object recognition yet difficult to reliably extract ant to translation. We use these orthogonal distance 
from real data. We instead relay on weak invariants and its direction for characterizing a point-line pair4. 
defined using only pairs of primitive features in this 
system. This is because known strong invariants 
requires too many primitive to be extracted reli- 

be identified in an image. Detecting a POUP of fea- (a) displacement & 
tures is rarely possible in the SAR domain, where 
most features are quite unstable. 

In our S A R  recognition system, two kinds of prim- 
itive features are extracted from an image: points 2 . .  2 Implementation of invariant &togram 
and line segments. All feature points are detected 
by applying an interest operator. All line segments A two dimensional invariant histogram is imple- 
are detected by a line detector based on the Canny’s mented as a collection of tessellated bins. Each pair 
edge detecting technique. of geometric features provides a pair of invariant val- 

ues. Those values are then histogrammed to the cor- 
When a target rotates in 3D Space, the responding bins in the corresponding 2D invariant 
of the target in S A R  images drastically changes. On histopam. At the same time, the bin maintains point- 
the other hand, even though a target translates ers to keep track of the original primitive pairs that 
along the ground Plane, the is not Sig- vote for it. Since several pairs may lie in the same 

&w & Gx 
ably; for example a cross ratio needs four points to X X 

angle g, (c) orthogonal 
slope of bisecting direction & orthogonal 
line distance 

direction 

Figure 1 Six invariants used in our implementation 

nificantly altered. Thus, we decide to use transla- bin, each bin may contain multiple pointers. These 
tiOn invariants to COnStIUCt invariant histograms. pointers will be utilized later for establishing initial 
Figure 1 shows six translation inVaIiantS which correspondences for verification between image and 
used for constructing our invariant histograms.’ model features. 

2.1.1. Point-Point (PP) histogram (Figure l(a)) Figure 2 shows a procedure for generating an invari- 
Distance and direction between a pair of points is a ant histogram from an image. First, primitive fea- 
translation invariant. mis invariant is calculated tures, point features in this example, are extracted 
for a pair of primitive feature points, and histo- from an image. From point pairs, invariant values are 
grams are made in the 2D displacement space2. obtained: distance and direction. When making point 

pairs, the system consider only local feature pairs, 
2.1.2. Line-Line (LL) histogram (Figure l(b)) those within a certain threshold, indicated as a circle 

An angle between two line segments and a slope of 
their bisecting line are invariant to translation. We 
use these two invariants for characterizing a line 
pai?. 

2.1.3. Point-Line (PL) histogram (Figure l(c)) 

An orthogonal distance from a point to a line is 

I .  In order to increase the robusmess of the system against 
camouflage and surrounding noise, we do not use properties 
of peaks or edges (such as brightness values of a peak or 
area size of a peak); we only use spatial relations among 
peaks and edges. 

2. The 2D space is composed of a 2D array, of which each 
cell has widths of 2 or 4 pixels along x- and y-axes in our 
implementation. 

3. We do not use all the line segment pairs to make an LL 
histogram. A nearby subset is first generated from all the 
line segment pairs, so that the minimum distance between 
two line segments is less than a threshold. The coupled 
invariant is then calculated over the line pair subset. The 
resulting invariant histogram is in 2D space whose dimen- 
sions correspond to the angle and the slope of bisecting line. 
Both the angle and the slope are quantized to 10 degree 
intervals in our implementation. 

4. To construct a PL histogram, a subset of point-line pairs is 
first made up from all the pairs, so that the foot of the perpen- 
dicular is included in the line segment. Then the coupled 
invariant is calculated over the point-line pair subset. PL histo- 
grams are made in the 2D space of which two axes correspond 
to the distance and the direction. The distance is quantized to 
intervals of 2 or 4 pixels, and the direction is quantized to 10 
degree intervals in our implementation 
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in the figure. The horizontal axes in the indicate 
values of distance and direction, and the vertical 
axis denotes the number of votes for each bin. 

frequency A 

Invariant histogram 

Figure 2 Invariant histogram generation 

To minimize problems due to quantization, we 
smooth the histogram over a small neighborhood. 
We use weighted voting for the four nearest neigh- 
bor bins of the real point in the invariant space. The 
weights are calculated so as to be inversely propor- 
tional to the distance from the centers of the bins to 
the real point. The sum of four weights is normal- 
ized for each occurrence. At the same time, the 
pointers to the feature pair also copied to the four 
bins. 

3. Indexing by Dictionary Lookup 
We have described the details of the invariant his- 
togram representation. Now we will describe how 
we utilize these histograms to eliminate candidate 
hypotheses in our recognition algorithm in the 
indexing module. We can build invariant maps for 
each representative view, and use these maps to 
compute distance measures between an invariant 
map computed from the image and each candidate. 
The candidates can be ranked by this distance mea- 
sure and then pruned accordingly. In this process 
we refer to the collection of invariant histograms as 
a dictionary which represents how a target object 
appears, and thus, invariant values change depend- 
ing on pose parameters. This dictionary is con- 
structed from model appearances at off-line. 

3.1. Structure of a dictionary 

Pose parameters can be decomposed into two cate- 
gories: invariant and variant pose parameters with 
respect to a weak invariant. Invariant pose parame- 
ters do not alter the invariant value; variant pose 
parameters do. In our current implementation. 
translation of a target does not change our invariant 
values, while rotation does change their values. 
Thus, translation and rotation parameters are 
invariant and variant pose parameters respectively. 

We will construct a dictionary, a collection of 
invariant histograms, to cover all of the variant 
parameter space. Rotation parameter spaces are 
evenly sampled, and invariant histograms are con- 
structed at these sampled rotation values. Here, 
each sampled rotation value is denoted as a repre- 
sentative view. 

Variant parameter space (rotation) 

. 
'Ihnslation invariant Invariant histogram 

Figure 3 Invariant and variant space 

For each interval, we compute the average and 
variance histograms over the interval. Some fea- 
tures appear and disappear abruptly, while other 
features may be observable from a wide range of 
viewing directions. Histogram values voted by 
such abrupt pairs are unstable and unreliable for 
indexing, while others are stable and reliable. A 
variance histogram conveys this reliability mea- 
sure. We take a large number of neighboring 
images around each representative view and gener- 
ate histograms for each. Then the average and vari- 
ance histograms are computed from these 
surrounding histograms; this cumulative invariant 
histogram is used as a histogram of the particular 
dictionary entry. 

3.2. Similarity measure for invariant 
histograms 

This section will describe a similarity measure for 
comparison between image and model histograms 
in a dictionary. A model histogram comprises aver- 
age and variance histograms. Basically, average 
values in a model histogram are compared with 
those from input image and, then, the difference 
will be weighted using variance values. 

One simple similarity measure is L1 norm as fol- 
lows: 

' CFI.J-ml,A ' (1) 
1.J 

where is an image value in bin (i .j)  , while m,,, 

is a model value. This difference will be calculated 
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over the all of the histogram. 

Some values in bins are less reliable than other val- 
ues depending on the reliability of values at bins; 
we will adjust the difference using a variance, 
valueol,l at each bin: 

The L ,  norm provides severe penalty, when some 
features are occluded and values disappear from a 
histogram. In order to avoid such effect from 
occlusion, we further modify the measure by intro- 
ducing the saturation factor, Namely, if the 
difference between the observed and model values 
are larger than this saturation factor, the penalty 
imposed is the saturation factor instead of the real 
distance: 

(3) 

When a histogram does not have a value in one bin, 
the variance, u ~ , ~  is zero; we cannot evaluate the 
value. Thus, we will add a constant variance aa : 

(4) 

Here, two constants, aa and i are obtained empiri- 
cally. 

3.3. Implementation of indexing algorithm 

Using this similarity measure, we will design the 
following four step indexing algorithm. Since there 
are three different histograms, PP, LL, and PL, 
their relative weights are adjusted using normaliza- 
tion factors given by the maximum distance values 
over the bins of the histogram. 

3.3.1. Step 1: Absolute distance 

For each of the PP, LL and PL histograms, the 
absolute distance is calculated between an image 
and each model histograms. The absolute distance 
is given by the L1 norm with saturation given by 
the equation (4). 

3.3.2. Step 2: Relative distance 

For obtaining relative distance, the maximum dis- 
tance between corresponding bins of the image and 
model histograms is determined for each of the PP, 

LL and PL histograms using 

LPP For example, we will use + as the relative dis- 

tance between two PP histograms. 
a max 

333. Step 3: Total distance 

The total distance is, thus, defined by: 

PP LL PL 

LL PL (6)  LIalor L I . s a r + L  1 ,rot+L ~ , r a r  
I.101 = pp - - 

a mor a mor a mar 

33.4. Step 4: Candidate screening by total distance 

The most likely representative view is determined 
by the total distance between the input and model 
histograms. Since the indexing is not to determine 
one particular view but to select multiple possible 
candidate views, we select those with distance less 
than a certain threshold value. 

4. Pose Clustering using Invariant 
Histogram 

After obtaining variant pose parameters (rotation 
parameters), we will determine the invariant pose 
parameters (translation parameters) using the cor- 
respondences between image and dictionary fea- 
tures through an invariant histogram. First, we will 
explain how to establish these correspondences 
using invariant histograms. Then, we will describe 
our method for obtaining invariant pose parameters 
by pose clustering. 

4.1. Sampling correspondences 

Each bin of an invariant histogram has pointers to 
the primitive features that vote for this bin. By 
retrieving the pointers of corresponding bins of the 
input and model histograms, we can establish cor- 
respondences between image and model primitive 
features. 

Let us consider a case of the LL histogram as an 
example as shown in Figure 4. By tracking point- 
ers, three line pairs are retrieved in a image as can- 
didates of one line pair of a model. The two 
translation values are computed for each candidate. 
These translation values are computed by compar- 
ing between the middle points of lines. If these two 
translation values are near to each other, the corre- 
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spondence can be established. Then their average 
is combined, yielding the average translation 
parameters and the transformation is given to the 
pose clustering algorithm. Otherwise, the line pair 
correspondence is removed as a false correspon- 
dence. 

Assume that n image feature pairs are referenced 
from a bin, and m model feature pairs are refer- 
enced from the corresponding bin. We will con- 
sider mn possible correspondences in this bin. It is 
noted that no more than Min(m,n) ones are correct 
among the mn correspondences, if the one-to-one 
mapping holds between the input and the model 
features. These correct correspondences generate 
the correct pose candidates in the invariant param- 
eter space, while the other correspondences gener- 
ate false pose candidates. When the number of 
possible correspondences is too large, we do not 
have to consider all of them. The possibility that 
the values of the model’s invariants randomly 
occur in the input image is very low compared to 
actual occurrences due to the model’s presence in 
the image. Thus, random sampling can achieved a 
large reduction of the computation time with little 
or no loss in the detection rate. 

Image histomam Model histomam I 

If I \ 

I Compute translation \ 1 I 

I I Image feature pairs M h e l  feature p h s  I I 
t this cornsDonden + Yes 1 

Figure 4 Pose clustering througb an invariant histogram 

4.2. Successive pose clustering 

Several kinds of techniques are used for pose clus- 
tering [Ballard, 1981, Dhome et al, 1986, Lamdan 
and Wolfson 1988, Clemens and Jacobs, 19911. 
The most popular technique is the generalized 
Hough transform in which voting is applied to the 

quantized pose space. Although these voting meth- 
ods are easy to implement, we have to determine 
the size of each cell in the quantized space before 
execution. The quantization is closely related to 
uncertainty which is difficult to estimate. 

We implement a successive clustering algorithm to 
avoid the difficulty of quantization. This method 
successively generates clusters without voting. By 
tracking pointers in bins, some feature correspon- 
dences are established and a candidate pose can be 
obtained. This pose candidate is examined whether 
it is within a certain distance to one of the existing 
clusters. If it is within distance from several clus- 
ters, the largest cluster will be selected to include 
the new candidate. The average pose and the size 
of the cluster will be updated at each iteration. 

The clustering process terminates either when the 
size of the largest cluster is large enough or when 
the total number of generated pose candidates 
reaches a threshold. In both cases, the largest clus- 
ter is selected as giving the final results. 

Pose clustering provides a rough estimate of trans- 
lation parameters (invariant parameters), while a 
dictionary lookup gives a rough estimate of rota- 
tion parameters (variant parameters). Using these 
estimates of the pose parameters, the pose is 
refined using deformable template matching before 
final verification. 

5. Verification through Deformable 
Template Matching 

Deformable template matching examines the exist- 
ence of a target by superimposing deformable tem- 
plates over potential energy fields given by features 
by obtaining the template configuration of the min- 
imum deformation (deformation energy) and the 
best alignment of the template with features 
(potential energy). A S A R  image often contains a 
large number of non-attached features. We employ 
multi-step deformable template matching to avoid 
local minima given by these erroneous features. 
We start to examine the existence of a target object 
in the position given by the translation parameter 
from the previous pose clustering. Then, our recog- 
nition system uses multiple-level template and 
potential fields progressively from the coarse to the 
fine level. 
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5.1. Template generation 

Templates are generated from model appearances 
generated by XPATCH simulator in off-line mode. 
The first two level of template matching, the coarse 
and medium level, shares the same nondeformable 
template, while the fine level matching employs a 
deformable template. These templates are gener- 
ated at each representative view over the evenly 
sampled rotation space as used to sample the rota- 
tion parameter for the indexing dictionaries. 

5.1.1. CoarsdMedium level Template 

Non-deformable templates are generated from 
binarized model images. First, we threshold noise- 
free model images and binarize the output, I(X,Y) . 
Then, we repeat this process eleven times around a 
representative view and superimpose them taking 
the union. The resulting superimposed binarized 
point distribution, T 8 " ( x . ~ )  is the template at the 
central viewing direction, eo (representative view). 

/eo - SA 00 00+5A 
(x,y)U ... I ( x , y )  ... VI (x.).). (7) 

Combining the templates is necessary to absorb all 
unstable S A R  non-attached features in one tem- 
plate. 

For the coarse and medium templates, only transla- 
tion is allowed; there is no relative move- 
ment of each point. The total energy is provided as 
the sum of potential energy values at each point 
position and the translation energy of the entire 
template: 

e0 T (X.P) = 

where 

I 

Eirans = t,(x,2+y,l)i. 

P(X,Y) is the potential field function given from an 
input image and L, is a spring constant. Both the 
coarse and medium level matching uses the same 
value for this spring constant. This translation term 
is introduced to give the priority to positions close 
to the one given by feature correspondences. 

5.1.2. Fine level template 

The fine level matching employs deformable tem- 
plates: each feature point moves freely relative to 
other points. At this level, there is no translation of 
the entire template. The deformations are neces- 
sary to account for typical perturbations in position 
of SAR features. 

These deformable templates are generated using a 
point feature extractor. First, a noise-free model 
image of a target object, I(X.~) , is convolved with a 
Gaussian filter. From this smoothed image, 
isnu,, (x, Y) , we extract isolated brightness peaks, 
I~~~~~ ( x , ~ )  using our regular point feature extractor. 
This is a binary distribution; = I at a peak and 
0 otherwise. In the same way as the non-deform- 
able templates, eleven such point distributions 
around a representative view, eo, are superim- 
posed. 

DB-3X,Y) = 6(x--Ipy-y;) , (11) 
i =  I 

where p is the total number of points over eleven 
point distributions. 

The total energy of this template is: 

where 

5.13. Diff'erence template 

Confusion often occurs between one pose and its 
counter pose (rotated 180 degrees from the original 
pose). In order to avoid confusion between a pair 
of poses, our system employs a difference-template 
as the fourth step of matching. This template sup- 
presses common parts and emphasizes conflicting 
parts between the pair. This difference templates 
are used only when it is necessary to disambiguate 
a pair candidates of close score. 

In order to make a difference template prior to exe- 
cution, first, the best possible alignment of a pair of 
coarse-level templates is obtained. Let us denote a 
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pair of poses as A and B . A coarse-level potential 
field, pg is generated from a template T ~ .  Then, 
the ternplate rA will be applied to the potential 
field, pg to obtain necessary translation ( A X ~ . A Y ~ )  

for optimally superimposing template, T~ over the 
template, T ~ .  See Figure 5 .  

Using this translation value, we superimpose a pair 
of fine-level templates to extract the common 
points in fine-level template, D ~ .  Then, the com- 
mon points are suppressed in the template and the 
difference template for pose A is: 

SA (I+ AXA. Y + byA) 

= DA (I+ h r A .  Y+ AYA) -DB (I. Y) @ DA ( x + A x A * Y  +AYA) - 
By exchanging A and B, we will also obtain the 
difference template of pose B. 

5.2. Generating the potential fields 

Three potential fields, coarse, medium, and fine, 
are generated at on-line mode from an input image. 
For all these three potential fields, a threshold oper- 
ation is applied to the original intensity distribution 
of the input image and then, a Gaussian filter is 
applied to the threshold image I ,* .  Figure 5 shows 
the overview of this module 

1.1+"1 

2 0 2  
_- - 

dudv I,,.,, (1. Y) = J~I,,, (1 - u. Y - v) e 

5.2.1. Coarse level potential field 

To generate the coarse level potential fields, we 
first apply the median filter; the median value is 
obtained among nine neighboring pixels, and then, 
is assigned to the central pixelimrdlon. This process 
removes isolated bright pixels. Finally, we apply an 
exponential function with the width kcoorrr,  to this 
output: 

We prefer to the exponential function than the 
Gaussian function, for emphasizing the central 
value and suppressing peripheral areas. 

5.2.2. Medium level potential field 

For this level, we directly apply the exponential 
function to the output of the Gaussian filter. kmtdium 

is selected to make this exponential function nar- 
rower: 

5.23. Fine level potential field 

The third step is deformable template matching. 
This step allows each point to move to further 
reduce the potential energy. For this step, we 
extract isolated brightness peaks, I ~ ~ ~ ~ ,  (I. y )  using 
our regular point feature extractor. Then, we apply 
the exponential function to the binary distribution: 

Input Image 

+ Convolution +Convolution +Convolution 

Coarse level Medium level Fine level 

Figure 5 Potential Field Generation 

6. Experiments 

6.1. Outline of the system 

Figure 6 shows the overview of the S A R  recogni- 
tion system. It has two modes: off-line and on-line 
mode. In off-line mode, the system generates dic- 
tionaries for targets using XPATCH SAR simulator 
and target models. It also generates templates for 
verification module. In on-line mode, the system 
generates an invariant histogram and potential 
fields from the input image. By using the invariant 
histogram, the indexing module selects possible 
candidates. Then, the final decision is made by the 
verification module using the potential fields and 
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templates. line, and point-line as shown in Figure 8. 

Figure 6 System overview 

6.1.1. Off-line mode 

In typical S A R  image scenarios, the depression 
angle and resolution are fixed during image acqui- 
sition. In this paper, we use 22.5 degrees as the 
depression angle and 30cdpixel as a scale. We 
employ the XPATCH SAR simulator, developed at 
Wright-Patterson Air Force Base, to generate simu- 
lated S A R  images for the dictionary generation. 
Figure 7 shows three series of 36 images: KTANK, 
BMP, and BTR60 generated. A dictionary is con- 
structed for 36 views rotated around the axis per- 
pendicular to the ground plane, sampled every 10 
degrees. 

Figure 7 Model SAR images lor dictionary generation 

In order to obtain an estimate of the variance of 
each invariant value around a representative view, 
19 images around each representative views are 
generated within 1 degree (0.1 degree intervals). 
Each representative view of a dictionary consists 
of three invariant histograms: point-point, line- 

II 
.- 

‘ I  I View B C320i I 

Figure 8 Generating a dictionary 

In off-line mode, coarse, medium and fine tem- 
plates are also generate at each representative view. 
For each template, eleven images around a repre- 
sentative view are utilized. 

6.1.2. On-line model 

For the recognition experiments, hybrid SAR 
images, synthesized S A R  simulated signatures of 
target objects on real SAR background signatures 
(Lincoln Stockbridge Data), are used. The ratio of 
signal level between simulated and real signatures 
are determined using a car parked in a parking lot 
observed in the Stockbridge Data (M90P5F8HH). 
Figure 9 shows the KTANK model at a rotation of 
312 degrees superimposed in the lawn area in the 
Stockbridge Data [Bessette, 19911. 

Figure 9 Hybrid SAR image 

In on-line mode, the feature detector and invariant 
generator are used to create the invariant histo- 
grams from an input image. The indexing module 
eliminates impossible candidates by measuring the 
distance between an input and dictionary images 
and prunes the number of possible objects for rec- 
ognition using the similarity measure. 

Our similarity measure function, 
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L , , ~ ~ ~ ~ ~ ~ ~ , ~ ~  = z m i f l ( - , k ~ , , , ] ,  has two parameters: aspect angle superimposed on the hybrid S A R  
images containing the signature from KTANK 
rotated 3 12 degree. k and uo. w e  use k = 10 and uo = 0 .5 .  

Figure 10 shows the flow of the indexing. From an 
input hybrid image (rotation of 312 degrees), the 
module generates three invariant histograms and 
then compares them with the dictionary. In this 
example, the module selects five candidates, includ- 
ing 110,250 and 310 (the correct pose) of KTANK 
as the possible candidates for verification. 

Input Image 

Figure 10 Indexing module 

Figure 11 shows the flow of the verification module. 
It determines the initial template position using the 
feature correspondences. Then, the module evalu- 
ates each candidate pose through a three-step 
matching over potential energy fields given by 
imageslfeatures. It determines the template configu- 
ration that has the minimum deformation (deforma- 
tion energy) and the best alignment of the template 
with features (potential energy). In this example, the 

6.2. Recognition experiments 

In order to examine the performance of our recog- 
nition system, we have generated 180 hybrid SAR 
images, from viewing directions sampled every 2 
degrees around 360 degrees using the following 
models: KTANK, BMP, and BTR60. 

We have tested the indexing module which deter- 
mines the possible candidates for the verification. 
For each test, 180 images of the object are given to 
the system with the single object’s dictionary being 
used by the indexing. At each viewing direction, 5 
to 9 candidates are selected on average. The first 
row in the table denotes the results for the object. 
When the candidate set contains the direction near- 
est to the input direction, the indexing is consid- 
ered as success. The second column in the table 
represents the correct indexing ratio. 

module correitly identifies- the template of 310 Then, the module is executed the 
degrees, as the minium energy template (most likely templates of the candidate poses selected by the 
pose). indexing module. Here candidate templates are 

Corresponden- sampled evenly ten degrees. When the template 
Sampler nearest to the input direction has the least energy, 

we consider that the correct recognition (in the 
fourth column) as well as the correct verification 
(in the third column) is achieved. 

In case that the candidate set given by the indexing 
does not contain the correct direction, this is the 

Pose: 110 Pose: 210 Pose: 310 

coprse 

MediUUl 

failure of the recognition (in the fourth column), 
However, for the calculation of the correct verifica- 
tion ratio (in the third column), we discard this 
case. 

Fine 

544 A lsble 1 Recognition Results 
Figure 11 Verification module 

Vehicle I Indexing I Verification I System 

Figure 12 shows the KTANK model at 310 degree I KTANK I 97.8% 1 90.3% I 88.3% 

. 
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Vehicle Indexing Verification System 

BMP 92.8% 88.0% 81.7% 
BTR60 99.4% 97.2% 96.7% 

I 

6.3. Occlusion 

In order to evaluate the effect of occlusion, we gen- 
erated five series of 180 images ( 64 X M  pixels) 
with: 0 pixel shift, 8 pixel shift, 16 pixel shift, and 
20 pixel shift. Each image is shifted a certain 
amount from the center position; if pixels move 
outside of the window (64x64) , we consider 
them to be occluded. Thus, for example, for a 20 
pixel shift, roughly one half of the original pixels 
are lost in the worst case. We evaluate the effect 
using three targets, KTANK, BMP, and BTR60. 
Tables 2-4 shows the results, while Figures 13 
summarize these results in a graphical display. 

Occlusion 

0 pixel 

l sb le2  KTANK 

Indexing Verification System 

99.4% 97.2% 96.7% 

lbble3 BMP 

8 pixel 
12 pixel 

Indexing Verification System 

Ouixel I 92.8% 88.0% 81 -7% 

98.9% 97.8% 96.7% 
98.3% 95.5% 93.9% 

8 pixel 95.0% 86.1 % 

I2 pixel 97.8% 88.6% 86.7% 
I6pixel 97.8% 88.3% 
20 pixel 92.8% 86.8% 80.6% 

I6pixel 98.3% 
20 pixel 85.6% 
24 pixel 35.0% 

I 
~~ 

24 pixel 54.4% I 83.7% I 45.6% 

94.4% 92.8% 
90.9% 77.8% 
85.7% 30.6% 

Table4 BTR60 

KTANK 

BMP 

I I I , I  I 

0 Pixel mEilm211m 8 Pixel 12 Pixel 16 Pixel 20 Pixel 24 Pixel 

BTR60 

Figure 13 Occlusion 
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6.4. Camouflage 

In order to simulate the effect of camouflage, we 
reduce the intensity of a target while maintaining 
the same background intensity. In this experiment 
in Tables 5-7, the effect of the camouflage is repre- 
sented by the ratio of the number of features 
extracted from the reduced and original intensity 
images. See Figures 14 for the graphical display of 
these results. 

100.0% 

94.8% 

100.0 

60.0 

E 40.0 

98.3% 90.4% 88.9% 
98.9% 86.0% 85.0% 

.o - b0.o - p . o ' y . 0  ' y : o  
amouf aqe(fea urq)  ( o 

86.8% 
77.7% 

Table5 KTANK 

98.3% 83.6% 82.2% 
93.9% 78.1 % 73.3% 

KTANK 

67.0% 

53.4% 

[Camouflage I Indexing I Verification I System I 

92.2% 74.7% 68.9% 

91.1% 68.9% 46.6% 

Camouflage Indexing Verification 

100.0% 100.0% 96.6% 

System 

96.6% 

Table 6 BMP 

Table 7 BTR60 

96.7% 100.0% 94.4% 94.4% 

92.3% 100.0% 95.0% 95.0% 
85.4% 97.8% 88.9% 
77.7% 97.2% 79.4% 77.2% 

56.6% 80.6% 69.0% 55.6% 

U 

BMP 

0 

BTR60 

Figure 14 Camouflage 
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6.5. Multiple object databases 

We evaluated the effect of confusion among 
ground vehicles using BMP, BTR60 and KTANK. 
We generated 90 hybrid S A R  images of these vehi- 
cles, at 90 viewing directions sampled every 4 
degrees over 360 degrees. Here, we use a model 
dictionary containing BMP, BTR60 and KTANK. 
In the table, each row and column represents input 
image and system response, respectively. The num- 
ber indicates the classification ratio by the system 
for each vehicle, while the numbers in parentheses 
represent the ratio of the correct pose as well as 
correct vehicle class. For example, the BMP was 
correctly identified in 90% of the tests, but only 
75.6% found the correct pose. 

InputVles 

BMP 
BTR60 

BMP BTR60 KTANK 

90%(76%) 10% 0% 
7% 93%(87%) 0% 

I 

KTANK I 10% I 11% I 79%(69%) 

7. Conclusion 

This paper proposes to use invariant histograms 
and deformable templates for SAR recognition. An 
invariant histogram is a histogram of geometric 
invariants given by primitive feature sets. Deform- 
able template matching examines the existence of 
an object by superimposing templates over poten- 
tial energy field generated from images so that it 
generates the minimum deformation (deformation 
energy) and the best alignment of the template with 
features (potential energy). 

We have develop a SAR recognition system using 
these two techniques, and demonstrated the effec- 
tiveness of these two techniques for robust S A R  
recognition through extensive evaluation of the 
system using occluded and camouflaged target 
images. 

This system has two modes: off-line and on-line. In 
off-line mode, the system generates a dictionary 
for indexing and deformable templates for verifica- 
tion. Currently, it takes a half hour for this compi- 
lation on SPARC 20. In on-line mode, by 
calculating an invariant histogram from an input 
image, the system performs the indexing to reduce 
the number of possible candidates. Then, from the 
potential fields from an input image and the 

deformable templates, the system determines the 
most likely pose and class of the target. Indexing 
takes about 2 to 3 seconds, and verification takes a 
few seconds per candidate pose. The run times 
include time to build invariant histograms and 
compute potential fields. 

Recently, several researchers have begun to 
develop appearance-based recognition systems. 
From a large number of images, they effectively 
extract compress essential features, eigen-values in 
an orthogonal eigen space, and use those eigen-val- 
ues for object recognition. Turk and Pentland 
[1991] recognized human faces using eigen-vec- 
tors and Murase and Nayar (19951 applied an 
eigen-space analysis for illumination planning. The 
main focus of these techniques are how to effec- 
tively reduce the size of necessary features for rec- 
ognition. 

In contrast to these compression-oriented 
approach, this paper proposes a redundancy ori- 
ented approach; by using a redundant representa- 
tion of image features, this work shows it is 
possible to build a robust recognition system, in 
particular for SAR recognition. These characteris- 
tics are particularly important when handling 
occluded target images consisting of unstable non- 
attached SAR features. 
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