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Abstract
In this paper, we propose a new directional analysis tool for

On-line signatures that decomposes the given input signature
into directional bands on the basis of relative angles. Our di-
rectional analysis tool takes the independent trajectories (hori-
zontal and vertical) as an input and then decomposes them into
directional bands on the basis of relative angles. We have used
both user-dependent and user-independent thresholds for se-
lecting an optimal number of partitions for each signer. By de-
composing signature trajectories based upon relative angles of
an individual’s signature, the resulting process can be thought
of as one that exploits inter-feature dependencies . In the veri-
fication phase, distances of each partitioned trajectory of a test
signature are calculated against a similarly partitioned tem-
plate trajectory for a known signer. Each partition is then
weighted based on its quality and quantity. Experimental re-
sults demonstrate the superiority of our approach to On-line
signature verification in comparison with other techniques.

1 Introduction

Biometrics can be classified into two main classes: physical
and behavioral based on the type of biometric trait used. Sig-
nature is a behavioral biometric that is likely to change over a
period of time. Behavioral biometric systems have higher error
rate than the those based on physical traits. This paper deals
with the On-line signature verification where each signature
is represented by time varying signals acquired from a wacom
tablet or similar and verification is based on extracted dynamic
features such as such as velocity, acceleration, curvature, pres-
sure, total signature time, RMS speed, Average writing speed,
etc. [13], [9], [10], [1], [7] in addition to overall shape. The
availability of more unique behavioural traits thus offers the
potential to achieve much lower error rates than that in Off-line
signature verification where verification is based on only the
shape of the signature.

In this paper, we have provided a novel approach to On-line
signature verification whereby directional analysis of a signa-
ture is performed by calculating the relative angles between the
sample points along its trajectory. Partitioning into N groups
based on relative angles futher exploits natural dependencies
between individual directional trajectories. For the verification
purpose, we also present a new weighted partition criteria that
allows each partition to play a varying role in the verification
process according to a data-dependant weight.

The paper is organized as follows. The second section deals

with the acquisition of signature data and preprocessing steps.
The third section is dedicated to the design and structure of our
proposed system and the final section presents experimental re-
sults and concluding remarks.

2 Data Acquisition and Preprocessing

For the experimental process, we have used a database of 25
different signers, and for each signer 600 genuine signatures,
and 250 highly skilled forgeries were collected over a period
of three months in order to capture different nuances of each
signer [5], [4]. However, we have also used a subset of this
database consisting of 25 genuine and 25 forgery signatures for
each signer which reflects a more realistic number of signatures
typically available for training. In addition, one public database
(MCYT [2]) is used to draw comparison with existing methods.

To account for likely variances in the size and orientation of
signatures as imparted through a digitising interface such as a
tablet, we have followed a number of preprocessing steps as
suggested in [5], [4] to make all the signatures of the ith signer
to be translation, rotation and scale invariant. Details of each
preprocessing step is given below.

2.1 Smoothing using Cubic Spline

Due to the low sampling rate of the data acquisition de-
vice (100 samples/sec), there is a need to smooth the result-
ing jagged trajectories [3]. For this purpose, we have used
cubic spline which not only helps in smoothing the trajecto-
ries independently but also provides us another dynamic feature
(i.e velocity) which is the first derivative of cubic spline [3, 5].
Fig. 1(a-b) shows a signature before and after smoothing.

2.2 Translation, Rotation and Scaling

All of the signatures of ith signer are made translation in-
variant by subtracting the mean of each independent trajectory
(horizontal,vertical) from its respective trajectory. In this way,
the mean of each signature will be shifted to zero. Now, the
next step is to make the signatures rotation invariant which is
achieved by rotating the principal component (PC) of the jth
signature of the ith signer to the angle of the PC of the base-
signature bi of the ith signer. PCs are calculated by using prin-
cipal component analysis (PCA) [4]. Now the need of making
all the signatures of ith signer scale invariant is achieved by
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Figure 1. a) shape of the signatures before smoothing; b)

shape of the signature obtained by plotting the smoothed hor-

izontal trajectory against the smoothed vertical trajectory; c)

signature after translation, rotation and scale invariance; d)

signature after zero pressure removal

using the following pair of equations:

Ratioi
j = max(xi
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j
)
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j)
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j
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j
)
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j)
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j
)−min(xi

j
)
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j

(1)

After making all the signature scale invariant, the vertical tra-
jectories of each signature will be scaled from 0 to one and the
horizontal trajectories will be scaled from zero to the Ratioi

j .
Fig. 1 (c) shows the result after translation and scaling.

2.3 Zero Pressure Removal

In On-line signature acquisition, tablet samples are captured
even when the pen tip is close to the surface of the tablet with-
out touching the surface. The spatial areas, velocity and pres-
sure of signature corresponding to such regions (captured be-
tween the pen-up and pen-down) are named zero pressure re-
gions. Authors in [4] proposed a method of removing spatial ar-
eas corresponding to zero pressure regions. Their method was
used to calculate a threshold value zeroi

j based on the pressure
profile of each signature of ith signer by using the following
pair of equation:

stdi
j =

√
1
M

M∑
m=1

(zi
j(m) − 1

M

M∑
m=1

zi
j(m))2,

zeroi
j = 1

M

M∑
m=1

zi
j(m) − stdi

j ,

(2)

where M is total number of samples in a pressure profile zi
j

of jth signature of ith signer. The spatial areas, pressure and
time corresponding to the pressure profile below this threshold
value was then considered as zero pressure region and hence
were removed, as shown in Fig. 1 (d).

2.4 Dynamic Time Warping

The last step of our preprocessing module is Dynamic time
Warping (DTW), which helps to establish a point to point corre-
spondence between the base-signature bi and all the signatures
including genuine and forgeries of the ith signer. Since the ve-
locity profile is richer in detail than the pressure profile [9], we
perform DTW between the base velocity vi

b and velocity pro-
files vi

j of jth signature of signer i as described in [5]. After the
DTW transformation, any one-to-many relationships present in
warping path are eliminated [5], so that the length of warp-
ing path becomes equal to the length of base vector (vi

b). By
discarding all the repeated values in the warping path of vi

b,
corresponding indices may then be used to retrieve xi

j and yi
j

for all signatures of ith signer.

3 Proposed System

Normally, each Biometric identification system can
be decomposed into two major stages: Training and
V erification. For the training purpose, we have used only
3 and 5 genuine signatures from each signer to construct a tem-
plate of relative angle content. This content is partitioned and
assessed through an associated weighting scheme that attempts
to place importance on more informative partitions during ver-
ification. A fusion process considered across partitions then
governs the ultimate decision of whether or not a test signature
is considered genuine or forgery, as outlined in the following.

3.1 Training

3.1.1 Relative Angle Calculations

As the idea behind our proposed system is directional analysis
of signatures, so we have calculated relative angles. Relative
angle is formed by taking the angle between the slope of
two consecutive points in the shape of signature. All the
calculations are done for the base-signature bi for ith signer.
Mathematically, relative angles can be calculated as:

Ari
b(m) = tan−1(

ym+1 − ym

xm+1 − xm
), m = 1, 2, 3, · · · , M. (3)

where Arib is a vector of M relative angles for base-signature
bi of ith signer and M is total sample points in signature shape.

3.1.2 Creation of Angle Partitions

In this block we created N different partitions based on relative
angles. Now the next step is to decompose the signature into
its partitions based on our proposed partitioning method. Now
the question rises that in how many partitions a signature
should be decomposed? So we have to select the number
of partitions which gives the most optimum results in the
verification phase. We have used both user-dependent and
user-independent thresholds to select the number of relative
angle partitions. In case of our database, empirical results show
that sixteen partitions are most feasible for the verification
purpose. In case of user-independent, if we reduce the number
of partitions from sixteen then the size of the discriminating
feature increases that can negatively effects the reliability
of our verification system and if we increase the number of
partitions greater than sixteen, the size of the discriminating
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Figure 2. a) Spatial areas corresponding to relative angles

from 0 − 22.5, b) Spatial areas corresponding to relative an-

gles from 22.5−45, c) Spatial areas corresponding to relative

angles from 247.5 − 270, d) Spatial areas corresponding to

relative angles from 270 − 292.5.

feature reduces which poorly effect the overall recognition rate
of verification process. For decomposing relative angles into
partitions, each angle of Ari

b is scanned for the criteria:

indi
n = (n − 1) × (

360
N

) ≤ Arib ≤ (n) × (
360
N

) (4)

where n = 1, 2, 3, · · · , N and indi
n is an index vector contain-

ing indices of relative angles for nth partition of ith signer.

3.1.3 Angle based Signature Partitioning

After creation of sixteen index vectors for the base-signature bi

of ith signer, we decompose all the horizontal and vertical tra-
jectories into partitions based on these index vectors. Basically
each partition in horizontal and vertical trajectory is created by
taking sample points of trajectory corresponding to indices of
each index vector indi

n. Mathematically it can be given as:

xpartinj = xi
j(indi

n); ypartinj = yi
j(indi

n) (5)

where xpartijn and ypartijn represent nth partition in horizon-
tal trajectory (xi

j) and vertical trajectory (yi
j), respectively, cor-

responding to jth signature of signer i. At this point we have
”N” angle based partitions of all signatures. Fig. 2 shows some
of the partitions of a randomly selected signature from the sig-
nature database.

3.1.4 Mean based Template Generation

In our proposed system we have generated sixteen templates
of horizontal trajectory (xi

j) and vertical trajectory (yi
j) each.

Templates are created by taking mean of nth partition of all the
jth signatures of signer i as given by the equation below:

txpartin = 1
J

J∑
j=1

xpartinj ; typartin = 1
J

J∑
j=1

ypartinj (6)

where txpartin and typartin are the nth horizontal template tra-
jectories and vertical template trajectories of signer i respec-

tively and J represents total number of signatures of that ith
signer used for the training purpose.

3.1.5 Threshold Criteria

The main task of this block is to deduce a threshold criteria that
presents a strong separation between the genuine and forgery
signature of ith signer. Intuitively, this decision should be based
on the distance between a test signature (testi) and its respec-
tive template. To achieve this purpose we calculate threshold
values thi

n for all N partitions of a signer i. Firstly, we create
N two dimensional 2D distance spaces by plotting normalized
distances of horizontal trajectories dxpartinj against normal-
ized distances of vertical trajectories dypartinj as calculated in
equation given below:

dxpartinj =

√
Kn∑
k=1

(txpartin − xpartinj)2,

dypartinj =

√
Kn∑
k=1

(typartin − ypartinj)2,

dxpartinj =
dxparti

nj

max(dxparti
n)

dypartinj = dyparti
nj

max(dyparti
n)

(7)

Secondly, magnitudes dtin of all J distance vectors are plotted
in each n two dimensional 2D space according to:

dtinj =
√

(dxpartinj)2 + (dypartinj)2. (8)

Finally, a percentage of the maximum scatter of training dataset
corresponding to ith signer (thi

n) in each of the N two dimen-
sional 2D distance spaces is calculated.

thi
n = max(dtin) + (max(dtin) × c), (9)

where c is a controlling parameter that can be used to tune False
Rejection Rate (FRR) and False Acceptance Rate (FAR) dur-
ing the verification stage. For selecting the value of c, we have
to take into account the security level that we need. There is
tradeoff between FRR and FAR, meaning that reducing one
of these values will increase the other. Normally, we want a se-
curity system with almost zero FAR. In our system where we
wanted to have zero FAR, initially the value of c was selected
very small, so that the boundary between genuine and forgery
remains tight. The value of c is then increased such that the sys-
tem maintains zero FAR and yields the minimum FRR possible
for each signer.

3.1.6 Weighting Factor for Partitions

From above discussion it is obvious that each partition partially
influences the decision of whether the test signature is genuine
or forgery, in N partial decisions for a test signature. Fusion of
all these decisions into one, is achieved using a weighted major-
ity rule that accounts for both “Quantity” and “Quality”of each
partition. Here quantity refers to the number of sample points
contained by a partition, which reflects the proportion of related
relative angles in a signature. Quality of a partition refers to the
scatter of signature trajectories around its respective template.
The ultimate decision then, weights each partition based on its
number of sample points as well as scattering.

It is intuitive that a partition having larger number of sample
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Figure 3. Sample signatures: a) genuine signature from data-

base used in [5], [4], [6]; c) genuine signature from MCYT

database; b) forgery from database used in [5], [4], [6]; d)

forgery from MCYT database. Here we see that skilled forg-

eries are quite close in shape to their genuine counterparts.

The need of dynamic features like angle, velocity and pressure

are evident for proper discrimination.

points must contribute more in decision making. Our proposed
quantity-based weighting criteria is given by:

wspn =
Kn

M
, (10)

where wspn is the weight factor for nth partition, Kn repre-
sents number of sample points in nth partition and M is the
total number of sample points in all partitions.

Secondly, our proposed quality-based weighting criteria
wstn is calculated for each partition, where wstn caters for
scattering of a partition around its respective template. This
scattering is indicative of the more stable and consistent angles
unique to a signature profile, thus partitions with small scatter
are more reliable for use in any decision process that ensues.
Mathematically, wstn represents the normalized ratio of max-
imum separation from all partitions to separation of nth parti-
tion, and is defined by:

stdxyi
n =

√√√√√√ J∑
j=1

(dti
nj

−(

J∑
j=1

dti
nj

J ))2

J

wstin = max(stdxyi)
stdxyi

n

wstin = wsti
n

N∑
n=1

wsti
n

(11)

where stdxyi is a vector containing sixteen elements each rep-
resenting standard deviation for each nth partition.

Finally, the combination of weight factors wspi
n and wstin

is ultimately used to obtain a single fused weight wtin for the
nth partition of the ith signer:

wtin =
wspi

n + wstin
2

(12)

Table 1. Equal Error Rates (EER) for 25 signers belonging to

our signature database.

Signer No. EER of [5] EER of our proposed

using 200 Training using 200 Training

Signatures user dependent

1 0.090 0.090

2 0.015 0.009

3 0.020 0.003

4 0.018 0.010

5 0.025 0.019

6 0.013 0.013

7 0.015 0.009

8 0.013 0.012

9 0.029 0.015

10 0.023 0.000

11 0.019 0.000

12 0.030 0.024

13 0.022 0.017

14 0.027 0.019

15 0.019 0.000

16 0.012 0.012

17 0.015 0.014

18 0.024 0.018

19 0.026 0.000

20 0.019 0.012

21 0.017 0.009

22 0.022 0.018

23 0.026 0.010

24 0.029 0.000

25 0.030 0.027

3.2 Verification

To verify a test signature (testi) of ith signer, it is passed
through all necessary preprocessing steps to ensure a suitable
correspondence for comparison with trained templates. The
test signature is then decomposed into N partitions based on
relative angles as discussed in case of training signatures. All
partitions are then used independently to calculate distances di

n

from their respective templates. On the basis of these distances,
a test signature testi is declared as genuine or forgery by the
following criteria:

Di
n =

{
1 di

n ≤ thi
n

−1 otherwise.
(13)

where Di
n is a decision vector containing N elements each rep-

resenting a partial decision for nth partition. Elements of Di
n

is either 1 or −1, where 1 represents that signature is genuine
and −1 represents that it is a forgery. Finally, these partial de-
cisions are combined on the basis of weights (Eq. 12), to form
an overall decision about test signature testi:.

Decision =
{

Genuine (
∑N

n=1(wtin × Di
n)) ≥ 0

Forgery otherwise.
(14)

4 Experimental Results and Conclusion

To check the authenticity of our proposed system, we have
used our own private database (reported in [4], [5]), contain-
ing 600 genuine and 200 forgery signatures for 25 signers.
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Verification systems are largely compared through Equal Er-
ror Rate (EER), which represents the point on the Receiver
Operating Characteristics (ROC) where False Acceptance Rate
(FAR) is equal to False Rejection Rate (FRR). FAR represents
the probability that a false match occurs, while FRR represents
the probability that a false rejection occurs. Table. 1 shows
EER for 25 signers belonging to our database. The average
EER for our proposed system is 0.0128, where as average EER
in [6], [5], [12] and [13] are 0.0220, 0.0239, 0.059 and 0.061
respectively while using our own database.

Researchers of online signature verification are trying to im-
prove the performance under the constraint that only a few gen-
uine signatures are available for training. In order to show the
validity of our proposed algorithm, same experiments were also
performed on the subset of our database containing 25 signers
and for each signer 25 genuine and 25 forgeries were selected.
In this experiment, training was done by using only 3 and 5
genuine signatures. The results are given in Table. 2. One of
the most famous public databases (MCYT [2]) was also used
to validate our system. Again, training of our system uses only
3 and 5 genuine signatures (the de-facto standard for training
On-line Signature Verification Systems). Fig. 3 (c) shows gen-
uine signature from MCYT [2] along with its respective skilled
forgery.

This paper presents a novel approach to exploit inter feature
dependencies in a signature by decomposing the base-signature
of ith signer into N partitions based on relative angles of sam-
ple points and further weighting each partition according to its
importance in decision making. Here, we have not used the
conventional majority rule for the decision fusion process, as
the majority rule gives equal weights to all the decisions and
does not account for correlation among features [7]. We have
tested our algorithm by using both user-dependent and user-
independent for the selection of number of partitions. For the
user-independent, we have used 16 partitions for both data-
bases. To verify the validity of our proposed system, we have
compared the average Equal Error Rate (EER) of our proposed
system with some of the existing techniques [5], [4] using our
own and MCYT database. Table 2 and Table 3 shows that
our proposed system has outperformed the systems proposed
in [5], [4] and moreover user-dependent threshold gives better
results than the user-independent thresholds. The results on the
MCYT database are also satisfactory where we have achieved
an EER of 0.0364 when only 3 genuine signatures were used
for training and EER of 0.0120 when only 5 genuine signatures
were used, where as average EER in [11] and [8] are 0.0120,
0.0375 respectively while using only 5 genuine signatures for
training.
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