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Abstract

We consider the problem of recovering the sparsest vector in a subspace S ⊆ Rp with dim (S) =
n < p. This problem can be considered a homogeneous variant of the sparse recovery problem, and finds
applications in sparse dictionary learning, sparse PCA, and other problems in signal processing andmachine
learning. Simple convex heuristics for this problem provably break down when the fraction of nonzero
entries in the target sparse vector substantially exceeds 1/

√
n. In contrast, we exhibit a relatively simple

nonconvex approach based on alternating directions, which provably succeeds even when the fraction of
nonzero entries is Ω(1). To our knowledge, this is the first practical algorithm to achieve this linear scaling.
This result assumes a planted sparse model, in which the target sparse vector is embedded in an otherwise
random subspace. Empirically, our proposed algorithm also succeeds in more challenging data models
arising, e.g., from sparse dictionary learning.

1 Introduction
Suppose we are given a linear subspace S of a high-dimensional space Rp, which contains a sparse vector
x0 6= 0. Given arbitrary basis of S, can we efficiently recover x0? Equivalently, provided a matrix A ∈
R(p−n)×p, can we efficiently find a nonzero sparse vector x such that Ax = 0? In the language of sparse
approximation, can we solve

min
x
‖x‖0 s.t. Ax = 0, x 6= 0 ? (1.1)

Variants of this problem have been studied in the context of applications to numerical linear algebra [CP86],
system control and optimizations [ZF13], nonrigid structure from motion [DLH12], spectral estimation and
Prony’s problem [BM05], sparse PCA [ZHT06], blind source separation [ZP01], dictionary learning [SWW12],
graphical model learning [AHJK13], and sparse coding on manifolds [HXV13].

However, in contrast to the standard sparse regression problem (Ax = b, b 6= 0), for which convex
relaxations perform nearly optimally for broad classes of designs A [CT05, Don06], the computational
properties of problem (1.1) are not nearly as well understood. It has been known for several decades that the
basic formulation

min
x
‖x‖0 , s.t. x ∈ S \ {0}, (1.2)

is NP-hard [CP86]. However, it is only recently that efficient computational surrogates with nontrivial
recovery guarantees have been discovered for some practical cases of interest. In the context of sparse
dictionary learning, Spielman et al. [SWW12] introduced a relaxation which replaces the nonconvex problem
(1.2) with a sequence of linear programs:

`1/`∞ Relaxation: min
x
‖x‖1 , s.t. xi = 1, x ∈ S, 1 ≤ i ≤ p, (1.3)
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Table 1: Comparison of existing methods for recovering a planted sparse vector in a subspace

Method Recovery Condition Total Complexity
`1/`∞ Relaxation[HD13] θ ∈ O(1/

√
n) O(np3)

SDP Relaxation θ ∈ O(1/
√
n) O(p3.5)

SOS Relaxation [BKS13] p ≥ Ω(n2), θ ∈ O(1) high order poly(p)
This work p ≥ Ω(n4 log n), θ ∈ O(1) O(n5p2 log n)

and proved that when S is generated as a span of n random sparse vectors, with high probability the
relaxation recovers these vectors, provided the probability of an entry being nonzero is at most θ ∈ O (1/

√
n).

In a planted sparse model, in which S consists of a single sparse vector x0 embedded in a “generic” subspace,
Hand and Demanent proved that (1.3) also correctly recovers x0, provided the fraction of nonzeros in x0

scales as θ ∈ O (1/
√
n) [HD13]. Unfortunately, the results of [SWW12, HD13] are essentially sharp: when θ

substantially exceeds 1/
√
n, in both models the relaxation (1.3) provably breaks down. Moreover, the most natural

semidefinite programming (SDP) relaxation of (1.1),

min
X
‖X‖1 , s.t.

〈
A>A,X

〉
= 0, trace[X] = 1, X � 0. (1.4)

also breaks down at exactly the same threshold of θ ∼ 1/
√
n.1

One might naturally conjecture that this 1/
√
n threshold is simply an intrinsic price we must pay for

having an efficient algorithm, even in these random models. Some evidence towards this conjecture might
be borrowed from the superficial similarity of (1.2)-(1.4) and sparse PCA [ZHT06]. In sparse PCA, there is
a substantial gap between what can be achieved with efficient algorithms and the information theoretic
optimum [BR13]. Is this also the case for recovering a sparse vector in a subspace? Is θ ∈ O (1/

√
n) simply the

best we can do with efficient, guaranteed algorithms?
Remarkably, this is not the case. Recently, Barak et al. introduced a new rounding technique for sum-of-

squares relaxations, and showed that the sparse vector x0 in the planted sparse model can be recovered when
p ≥ Ω

(
n2
)
and θ = Ω(1) [BKS13]. It is perhaps surprising that this is possible at all with a polynomial time

algorithm. Unfortunately, the runtime of this approach is a high-degree polynomial in p, and so for machine
learning problems in which p is either a feature dimension or sample size, this algorithm is of theoretical
interest only. However, it raises an interesting algorithmic question: Is there a practical algorithm that provably
recovers a sparse vector with θ � 1/

√
n portion of nonzeros from a generic subspace S?

In this paper, we address this problem, under the following hypotheses: we assume the planted sparse
model, in which a target sparse vector x0 is embedded in an otherwise random n-dimensional subspace ofRp.
We allow x0 to have up to θ0p nonzero entries, where θ0 ∈ (0, 1) is a constant. We provide a relatively simple
algorithm which, with very high probability, exactly recovers x0, provided that p ≥ Ω

(
n4 log n

)
, where the

comparison with existing results is shown in Table 1.
Our algorithm is based on alternating directions, with two special twists. First, we introduce a special

data driven initialization, which seems to be important for achieving θ = Ω(1). Second, our theoretical
results require a second, linear programming based rounding phase, which is similar to [SWW12]. Our core
algorithm has very simple iterations, of linear complexity in the size of the data, and hence should be scalable
to moderate-to-large scale problems.

In addition to enjoying theoretical guarantees in a regime (θ = Ω(1)) that is out of the reach of previous
practical algorithms, it performs well in simulations – succeeding with p ≥ Ω (n log n). It also performs
well empirically on more challenging data models, such as the dictionary learning model, in which the
subspace of interest contains not one, but n target sparse vectors. Breaking the O(1/

√
n) sparsity barrier with

a practical algorithm is an important open problem in the nascent literature on algorithmic guarantees for
dictionary learning [AGM13, ABGM14, AAN13, AAJ+13]. We are optimistic that the techniques introduced
here will be applicable in this direction.2

1This breakdown behavior is again in sharp contrast to the standard sparse approximation problem (withb 6= 0), inwhich it is possible
to handle very large fractions of nonzeros (say, θ = Ω(1/ logn), or even θ = Ω(1)) using a very simple `1 relaxation [CT05, Don06]

2In work currently in preparation [SQW14], we show that in the dictionary learning problem, efficient algorithms based on nonconvex
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2 Problem Formulation and Global Optimality
We study the problem of recovering a sparse vector x0 6= 0 (up to scale), which is an element of a known
subspace S ⊂ Rp of dimension n, provided an arbitrary orthonormal basis Y ∈ Rp×n for S. Our starting
point is the nonconvex formulation (1.2). Both the objective and constraint are nonconvex, and hence not
easy to optimize over. We relax (1.2) by replacing the `0 norm with the `1 norm. For the constraint x 6= 0,
which is necessary to avoid a trivial solution, we force x to live on the unit sphere ‖x‖2 = 1, giving

min
x
‖x‖1 , s.t. x ∈ S, ‖x‖2 = 1. (2.1)

This formulation is still nonconvex, and so we should not expect to obtain an efficient algorithm that can
solve it globally for general inputs S. Nevertheless, the geometry of the sphere is benign enough that for
well-structured inputs it actually will be possible to give algorithms that find the global optimum.

The formulation (2.1) can be contrasted with (1.3), in which effectively we optimize the `1 norm subject
to the constraint ‖x‖∞ = 1. Because ‖·‖∞ is polyhedral, that formulation immediately yields a sequence of
linear programs. This is very convenient for computation and analysis, but suffers from the aforementioned
breakdown behavior around ‖x0‖0 ∼ p/

√
n. In contrast, the sphere ‖x‖2 = 1 is a more complicated geometric

constraint, but will allow much larger numbers of nonzeros in x0. Indeed, if we consider the global optimizer
of a reformulation of (2.1):

min
q∈Rn

‖Yq‖1 , s.t. ‖q‖2 = 1, (2.2)

where Y is any orthonormal basis for S, we have strong recovery guarantees as follows:

Theorem 2.1 (`1/`2 recovery, planted sparse model). There exists a constant θ0 > 0 such that if the subspace S
follows the planted sparse model

S = span (x0,g1, . . . ,gn−1) ⊂ Rp, (2.3)

where gi ∼i.i.d. N (0, 1
pI), and x0 ∼i.i.d.

1√
θp

Ber(θ) are all mutually independent and 1/
√
n < θ < θ0, then optimum

q? to (2.2), for any orthonormal basis Y of S, produces Yq? = ξx0 for some ξ 6= 0 with high probability, provided
p ≥ Ω (n log n). 3

Hence, ifwe could find the global optimizer of (2.2), we would be able to recover x0 whose number of
nonzero entries is quite large – even linear in the dimension p (θ = Ω(1)). On the other hand, it is not obvious
that this should be possible: (2.2) is nonconvex. In the next section, we will describe a simple heuristic
algorithm for (a near approximation of) the `1/`2 problem (2.2), which guarantees to find a stationary point.
More surprisingly, we will then prove that for a class of random problem instances, this algorithm, plus an
auxiliary rounding technique, actually recovers the global optimum – the target sparse vector x0. The proof
requires a detailed probabilistic analysis, which is sketched in Section 4.2.

Before continuing, it is worth noting that the formulation (2.1) is in no way novel – see, e.g., the work
of [ZP01] in blind source separation for precedent. However, our algorithms and subsequent analysis are
novel.

3 Algorithm based on Alternating Direction Method (ADM)
To develop an algorithm for solving (2.2), it is useful to consider a slight relaxation of (2.2), in which we
introduce an auxiliary variable x ≈ Yq:

min
q,x

1

2
‖Yq− x‖22 + λ ‖x‖1 , s.t. ‖q‖2 = 1, (3.1)

optimization also produce global solutions, even when θ = Ω(1).
3Note that this version is much stronger and more practical than that appearing in the conference version [QSW14].
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Here, λ > 0 is a penalty parameter. It is not difficult to see that this problem is equivalent to minimizing the
HuberM-estimator over Yq. This relaxation makes it possible to apply the alternating direction method to
this problem. This method starts from some initial point q(0), alternates between optimizing with respect to
x and optimizing with respect to q:

x(k+1) = arg min
x

1

2

∥∥∥Yq(k) − x
∥∥∥2

2
+ λ ‖x‖1 , (3.2)

q(k+1) = arg min
q

1

2

∥∥∥Yq− x(k+1)
∥∥∥2

2
s.t. ‖q‖2 = 1. (3.3)

Both (3.2) and (3.3) have simple closed form solutions:

x(k+1) = Sλ[Yq(k)], q(k+1) =
Y>x(k+1)∥∥Y>x(k+1)

∥∥
2

, (3.4)

where Sλ [x] = sign(x) max {|x| − λ, 0} is the soft-thresholding operator. The proposed ADM algorithm is
summarized in Algorithm 1.

Algorithm 1 Nonconvex ADM for solving (3.1)

Input: A matrix Y ∈ Rp×n with Y>Y = I, initialization q(0), threshold parameter λ > 0.
Output: The recovered sparse vector x̂0 = Yq(k)

1: for k = 0, . . . , O
(
n4 log n

)
do

2: x(k+1) = Sλ[Yq(k)],
3: q(k+1) = Y>x(k+1)

‖Y>x(k+1)‖
2

,
4: end for

The algorithm is simple to state and easy to implement. However, if our goal is to recover the sparsest
vector x0, some additional tricks are needed.

Initialization. Because the problem (2.2) is nonconvex, an arbitrary or random initialization is unlikely to
produce a global minimizer.4 Therefore, good initializations are critical for the proposed ADM algorithm to
succeed. For this purpose, we suggest to use every normalized row of Y as initializations for q, and solve a
sequence of p nonconvex programs (2.2) by the ADM algorithm.

To get an intuition ofwhy our initializationworks, recall the planted sparsemodel: S = span(x0,g1, . . . ,gn−1).
Write Z = [x0 | g1 | · · · | gn−1] ∈ Rp×n. Suppose we take a row zi of Z, in which x0(i) is nonzero, then
x0(i) = Θ

(
1/
√
θp
)
. Meanwhile, the entries of g1(i), . . .gn−1(i) are allN (0, 1/p), and so have size about 1/

√
p.

Hence, when θ is not too large, x0(i) will be somewhat bigger than most of the other entries in zi. Put another
way, zi is biased towards the first standard basis vector e1.

Now, under our probabilistic assumptions, Z is very well conditioned: Z>Z ≈ I.5 Using, e.g., Gram-
Schmidt, we can find a basis Y for S of the form

Y = ZR, (3.5)

where R is upper triangular, and R is itself well-conditioned: R ≈ I. Since the i-th row of Z is biased in
the direction of e1 and R is well-conditioned, the i-th row yi is also biased in the direction of e1. Moreover,
we know that the global optimizer q? should satisfy Yq? = x0. Since Ze1 = x0, we have q? = R−1e1 ≈ e1.
Here, the approximation comes from R ≈ I. Hence, for this particular choice of Y, described in (3.5), the i-th
row is biased in the direction of the global optimizer.

4More precisely, in our models, random initialization doeswork, but only when the subspace dimension n is extremely low compared
to the ambient dimension p.

5This is the common heuristic that “tall random matrices are well conditioned” [Ver10].
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What if we are handed some other basis Y = YU, where U is an orthogonal matrix? Suppose q? is a
global optimizer to (2.2) with input matrix Y, then it is easy to check that, with input matrix Y, U>q? is also
a global optimizer to (2.2), which implies that our initialization is invariant to any rotation of the basis. Hence,
even if we are handed an arbitrary basis for S, the i-th row is still biased in the direction of the global optimizer.

Rounding. Let q denote the output of Algorithm 1. We will prove that with our particular initialization
and an appropriate choice of λ, the solution of our ADM algorithm falls within a certain radius of the globally
optimal solution q? to (2.2). To recover q?, or equivalently to recover the sparse vector x0 = ξYq? for some
ξ 6= 0, we solve the linear program

min
q
‖Yq‖1 s.t. 〈r,q〉 = 1 (3.6)

with r = q. We will prove that if q is close enough to q?, then (3.6) exactly recovers q?, and hence x0.

4 Analysis

4.1 Main Results
In this section, we describe our main theoretical result, which shows that with high probability, the algorithm
described in the previous section succeeds.

Theorem 4.1. Suppose that S satisfies the planted sparse model, and let the columns of Y be an arbitrary orthonormal
basis for the subspace S. Let y1, . . . ,yp ∈ Rn denote the (transposes of) the rows of Y. Apply Algorithm 1 with
λ = 1/

√
p, using initializations q(0) = y1, . . . ,yp, to produce outputs q1, . . . ,qp. Solve the linear program (3.6) with

r = q1, . . . ,qp, to produce q̂1, . . . , q̂p. Set i? ∈ arg mini ‖Yq̂i‖0. Then

Yq̂i? = γx0, (4.1)

for some γ 6= 0 with overwhelming probability, provided

exp (n/2) /2 ≥ p ≥ Cn4 log n, and 1√
n
≤ θ ≤ θ0. (4.2)

Here, C and θ0 > 0 are universal constants.

We can see that the result in Theorem 4.1 is suboptimal compared to the global optimality result in
Theorem 2.1 and Barak et al.’s result [BKS13] in sampling complexity. For successful recovery, we require
p ≥ Ω

(
n4 log n

)
, while the global optimality and Barak et al. demand p ≥ Ω (n log n) and p ≥ Ω

(
n2
)
,

respectively. Aside from possible deficiencies in our current analysis, compared to Barak et al., we believe this
is still the first practical and efficient method which is guaranteed to achieve θ ∼ O(1) rate. The lower bound
on θ in Theorem 4.1 is mostly for convenience in the proof; in fact, the LP rounding stage of our algorithm
already succeeds with high probability when θ ∈ O (1/

√
n).

4.2 A Sketch of Analysis
The proof of our main result requires rather detailed technical analysis of the iteration-by-iteration properties
of Algorithm 1. In this section, as illustrated in Fig. 1, we briefly sketch the main ideas. Detailed proofs are
deferred to the appendices.

As noted in Section 3, the ADM algorithm is invariant to change of basis. So, we can assume without
loss of generality that we are working with the particular basis Y = ZR defined in that section. In order to
further streamline the presentation, we are going to sketch the proof under the assumption that

Y = [x0 | g1 | · · · | gn−1], (4.3)
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Figure 1: An illustration of the proof sketch for our ADM algorithm.

rather than the orthogonalized version Y. When p is large Y is already nearly orthogonal, and hence Y
is very close to Y. In fact, in our proof, we simply carry through the argument for Y, and then note that
Y and Y are close enough that all steps of the proof still hold with Y replaced by Y. With that noted, let
y1, . . . ,yp ∈ Rn denote the transposes of the rows of Y, and note that these are independent random vectors.
From (3.4), we can see one step of the ADM algorithm takes the form:

q(k+1) =

1
p

∑p
i=1 yiSλ

[(
q(k)

)>
yi
]

∥∥∥ 1
p

∑p
i=1 yiSλ

[(
q(k)

)>
yi
]∥∥∥

2

. (4.4)

This is a very favorable form for analysis: if q(k) is viewed as fixed, the term in the numerator is a sum of p
independent random vectors. To this end, we define a vector valued random process Q(q) on q ∈ Sn−1, via

Q(q) =
1

p

p∑
i=1

yiSλ[q>yi]. (4.5)

We study the behavior of the iteration (4.4) through the random process Q(q). We wish to show that
with overwhelming probability in our choice of Y, q(k) converges to some small neighborhood of ±e1, so
that the ADM algorithm plus the LP rounding (described in Section 3) successfully retrieves the sparse
vector x0 = Ye1. Thus, we hope that in general, Q(q) is more concentrated on the first coordinate than

q. Let us partition the vector q as q =

[
q1

q2

]
, with q1 ∈ R and q2 ∈ Rn−1, and correspondingly partition

Q(q) =

[
Q1(q)
Q2(q)

]
, where

Q1(q) =
1

p

p∑
i=1

x0iSλ
[
q>yi

]
and Q2(q) =

1

p

p∑
i=1

giSλ
[
q>yi

]
. (4.6)

The inner product of Q(q)/ ‖Q(q)‖2 and e1 is strictly larger than the inner product of q and e1 if and only if

|Q1(q)|
|q1|

>
‖Q2(q)‖2
‖q2‖2

. (4.7)
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In the appendix, we show that with overwhelming probability, this inequality holds uniformly over a
significant portion of the sphere, so the algorithm moves in the correct direction. To complete the proof of
Theorem 4.1, we combine the following observations, provided exp (n/2) /2 ≥ p ≥ Ω

(
n4 log n

)
:

1. Good initializers. With overwhelming probability, at least one of the initializers q(0) satisfies |q(0)
1 | >

1
4
√
θn

.

2. Uniform progress away from the equator. With overwhelming probability, for every q ∈ Sn−1 such
that 1

4
√
θn
≤ |q1| ≤ 3

√
θ, the bound

|Q1(q)|
|q1|

− ‖Q2(q)‖2
‖q‖2

>
C

θ2np
(4.8)

holds, for some numerical constant C > 0. This implies that if at any iteration k of the algorithm,
|q(k)

1 | > 1
4
√
θn
, the algorithm will eventually obtain a point q(k′), k′ > k, for which |q(k′)

1 | > 3
√
θ, if

sufficiently many iterations are allowed.

3. No jumps away from the caps. With overwhelming probability,

|Q1(q)|√
|Q1(q)2|+ ‖Q2(q)‖22

≥ 2
√
θ (4.9)

for all q ∈ Sn−1 with |q1| > 3
√
θ.

4. Location of stationary points. The above steps imply that, with overwhelming probability, Algorithm
1 fed with the proposed initialization scheme produces at least one stopping point q ∈ Sn−1 satisfying
|q1| ≥ 2

√
θ.

5. Rounding succeeds when |r1| > 2
√
θ. With overwhelming probability, the linear programming based

rounding (3.6) will produce ±x0, up to scale, whenever it is provided with an input r whose first
coordinate has magnitude at least 2

√
θ.

Taken together, these claims imply that from at least one of the initializers q(0), the ADM algorithm will
produce an output q which is accurate enough for LP rounding to exactly return x0, up to scale. As x0 is the
sparsest nonzero vector in the subspace S with overwhelming probability, it will be selected as Yqi? , and
hence produced by the algorithm.

5 Experimental Results
In this section, we show the performance of the proposed ADM algorithm on both synthetic and real datasets.
On the synthetic dataset, we show the phase transition of our algorithm on both the planted sparse vector
and dictionary learning models; for the real dataset, we demonstrate how seeking sparse vectors can help
discover interesting patterns.

5.1 Phase Transition on Synthetic Data
For the planted sparse model, for each pair of (k, p), we generate the n dimensional subspace S ∈ Rp by
a k sparse vector x0 with nonzero entries equal to 1 and a random Gaussian matrix G ∈ Rp×(n−1) with
Gij ∼i.i.d. N (0, 1/p), so that one basis Y of the subspace S can be constructed by Y = GS ([x0,G]) U, where
GS (·) denotes the Gram-Schmidt orthonormalization operator and U ∈ Rn×n is an arbitrary orthogonal
matrix. We fix the relationship between n and p as p = 5n log n, and set the regularization parameter in
(3.1) as λ = 1/

√
p. We use all the normalized rows of Y as initializations of q for the proposed ADM
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algorithm, and run every program for 5000 iterations. We determine the recovery to be successful whenever
‖x0/ ‖x0‖2 −Yq‖

2
≤ ε for at least one of the p programs, where ε = 10−3. For each pair of (k, p), we repeat

the simulation for five times.

Figure 2: Phase transition for the planted sparse model (left) and dictionary learning model (right) using the ADM
algorithm, with fixed relationship between p and n: p = 5n logn. White indicates success and black indicates failure.

Second, we consider the same dictionary learning model as in [SWW12]. Specifically, the observation is
assumed to be Y = A0X0, where A0 is a square, invertible matrix, and X0 a n× p sparse matrix. Since A0 is
invertible, the row space ofY is the same as that ofX0. For each pair of (k, n), we generateX0 = [x1, · · · ,xn]

>,
where each vector xi ∈ Rp is k-sparse with every nonzero entry following i.i.d. Gaussian distribution, and
construct the observation by Y> = GS

(
X>0
)
U>.We repeat the same experiment as for the planted sparse

model presented above. The only difference is that here we determine the recovery to be successful as long
as one sparse row of X0 is recovered by one of those p programs.

Figure 2 shows the phase transition between the sparsity level k and p for both models. It seems clear
for both problems our algorithm can work well into (even beyond) the linear sparsity regime whenever
p ∼ n log n. Hence for the planted sparse model, to close the gap between our algorithm and practice is one
future direction. Also, how to extend our analysis for dictionary learning is another interesting direction.

5.2 Exploratory Experiments on Faces
It is well known in computer vision that appearance of convex objects only subject to illumination changes
leads to image collection that can be well approximated by low-dimensional space in raw-pixel space [BJ03].
We will play with face subspaces here. First, we extract face images of one person (65 images) under different
illumination conditions. Thenwe apply robust principal component analysis [CLMW11] to the data and get a low
dimensional subspace of dimension 10, i.e., the basis Y ∈ R32256×10. We apply the ADM algorithm to find
the sparsest element in such a subspace, by randomly selecting 10% rows as initializations for q. We judge the
sparsity in a `1/`2 sense, that is, the sparsest vector x̂0 = Yq? should produce the smallest ‖Yq‖1 / ‖Yq‖2
among all results. Once some sparse vectors are found, we project the subspace onto orthogonal complement
of the sparse vectors already found, and continue the seeking process in the projected subspace. Figure 3
shows the first four sparse vectors we get from the data. We can see they correspond well to different extreme
illumination conditions.

Second, we manually select ten different persons’ faces under the normal lighting condition. Again, the
dimension of the subspace is 10 and Y ∈ R32256×10. We repeat the same experiment as stated above. Figure 4
shows four sparse vectors we get from the data. Interestingly, the sparse vectors roughly correspond to
differences of face images concentrated around facial parts that different people tend to differ from each
other, e.g., eye bows, forehead hair, nose, etc.
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Figure 3: Four sparse vectors extracted by the ADM algorithm for one person in the Yale B database under different
illuminations.

Figure 4: Four sparse vectors extracted by the ADM algorithm for 10 persons in the Yale B database under normal
illuminations.

In sum, our algorithm seems to find useful sparse vectors for potential applications, like peculiarity
discovery in first setting, and locating differences in second setting. Nevertheless, the main goal of this
experiment is to invite readers to think about similar pattern discovery problems that might be cast as the
problem of seeking sparse vectors in a subspace. The experiment also demonstrates in a concrete way the
practicality of our algorithm, both in handling data sets of realistic size and in producing meaningful results
even beyond the (idealized) planted sparse model that we adopt for analysis.

6 Discussion
The random models we assume for the subspace can be easily extended to other randommodels, particularly
for dictionary learning. Moreover we believe the algorithm paradigm works far beyond the idealized models,
as our preliminary experiments on face data have clearly shown. For the particular planted sparse model, the
performance gap in terms of (p, n, θ) between the empirical simulation and our result is likely due to analysis
itself. Advanced techniques to bound the empirical process, such as decoupling [DlPG99] techniques, can be
deployed in place of our crude union bound to cover all iterates. On the application side, the potential of
seeking sparse/structured element in a subspace seems largely unexplored, despite the cases we mentioned
at the start. We hope this work can invite more application ideas.

This paper is part of a recent surge of research into provable and practical nonconvex approaches to
estimating various types of low-dimensional structures, often in large-scale settings [CLS14, JNS13, Har13,
NJS13, YCS13]. The dominant approach is to start with a clever, problem-specific initialization, and then
perform a local analysis of the subsequent iterates. Our forthcoming work [SQW14] on dictionary learning
takes a more geometric approach, and proves global recovery via efficient algorithms, with arbitrary initial-
ization. The approach developed there may be applicable to the planted sparse model studied here, as well
as to many other interesting nonconvex problems.
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Appendices
Notes on notations. For a matrix X, xi denotes its i-th column, and xj denotes its j-th row, all in column
vector form. So

(
xj
)> is the j-th row in row vector form. We will use the compact notation [k]

.
= {1, . . . , k}

for any positive integer k. We will use C or c, and their indexed versions to denote constants. The scope
of these constants are always local, namely within a particular lemma, proposition, or proof, such that the
apparently same constant in different contexts may carry different values. For probable events, sometimes
we will just say the event holds with “high probability” if the probability of failure is dominated by some
polynomial poly (n, p) which diminished to zero whenever n or p is large, with “overwhelming probability”
if the failure probability is dominated some exponential function exp (poly (n, p)) which diminishes to zero
whenever n or p is large.

A Technical Tools and Preliminaries
Lemma A.1. Let ψ(x) and Ψ(x) to denote the probability density function (pdf) and the cumulative distribution
function (cdf) for the standard normal distribution:

(Standard Normal pdf) ψ(x) =
1√
2π

exp

{
−x

2

2

}
(A.1)

(Standard Normal cdf) Ψ(x) =
1√
2π

∫ x

−∞
exp

{
− t

2

2

}
dt, (A.2)

Suppose a random variable X ∼ N (0, σ2), with the pdf fσ(x) = 1
σψ
(
x
σ

)
, then for any t2 > t1 we have∫ t2

t1

fσ(x)dx = Ψ

(
t2
σ

)
−Ψ

(
t1
σ

)
, (A.3)∫ t2

t1

xfσ(x)dx = −σ
[
ψ

(
t2
σ

)
− ψ

(
t1
σ

)]
, (A.4)∫ t2

t1

x2fσ(x)dx = σ2

[
Ψ

(
t2
σ

)
−Ψ

(
t1
σ

)]
− σ

[
t2ψ

(
t2
σ

)
− t1ψ

(
t1
σ

)]
. (A.5)

Lemma A.2 (Taylor Expansion of Standard Gaussian cdf and pdf ). Assume ψ(x) and Ψ(x) be defined as above.
There exists some universal constant Cψ > 0 such that

|ψ(x)− [ψ(x0)− x0ψ (x0) (x− x0)]| ≤ Cψ(x− x0)2, (A.6)
|Ψ(x)− [Ψ(x0) + ψ(x0)(x− x0)]| ≤ Cψ(x− x0)2. (A.7)

Lemma A.3 (Matrix Induced Norms). For any matrix A ∈ Rp×n, the induced matrix norm from `p → `q is defined
as

‖A‖`p→`q
.
= sup
‖x‖p=1

‖Ax‖q . (A.8)

In particular, we have

‖A‖`2→`1 = sup
‖x‖2=1

p∑
k=1

∣∣a>k x
∣∣ , ‖A‖`2→`∞ = max

1≤k≤p

∥∥ak∥∥
2
, (A.9)

‖AB‖`p→`r ≤ ‖A‖`q→`r ‖B‖`p→`q , (A.10)

and A and B are any matrices of compatible size.
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Lemma A.4 (Moments of the Gaussian Random Variable). If X ∼ N
(
0, σ2

X

)
, then it holds for all integerm ≥ 1

that

E [|X|m] = σmX (m− 1)!!

[√
2

π
1m=2k+1 + 1m=2k

]
≤ σmX (m− 1)!!, k = bm/2c. (A.11)

Lemma A.5 (Moments of the χ Random Variable). If X ∼ χ (n), i.e., X ≡d ‖x‖26 for x ∼ N (0, I). Then it
holds for all integerm ≥ 1 that

E [Xm] = 2m/2
Γ (m/2 + n/2)

Γ (n/2)
≤ m!nm/2 (A.12)

Lemma A.6 (Moments of the χ2 Random Variable). If X ∼ χ2 (n), i.e., X ≡d ‖x‖22 for x ∼ N (0, I). Then it
holds for all integerm ≥ 1 that

E [Xm] = 2m
Γ (m+ n/2)

Γ (n/2)
=

m∏
k=1

(n+ 2k − 2) ≤ m!

2
(2n)m. (A.13)

Lemma A.7 (Moment-Control Bernstein’s Inequality for RandomVariables). LetX1, . . . , Xp be i.i.d. real-valued
random variables. Suppose that there exist some positive number R and σ2

X such that

E [|Xk|m] ≤ m!

2
σ2
XR

m−2, for all integersm ≥ 2. (A.14)

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− pt2

2σ2
X + 2Rt

)
. (A.15)

Lemma A.8 (Moment-Control Bernstein’s Inequality for RandomVectors). Let x1, . . . ,xp ∈ Rd be i.i.d. random
vectors. Suppose there exist some positive number R and σ2

X such that

E [‖xk‖m2 ] ≤ m!

2
σ2
XR

m−2, for all integersm ≥ 2. (A.16)

Let s = 1
p

∑p
k=1 sk, then for any t > 0, it holds that

P [‖s− E [s]‖2 ≥ t] ≤ 2(d+ 1) exp

(
− pt2

2σ2
X + 2Rt

)
. (A.17)

Lemma A.9 (Hoeffding’s Inequality). Let X1, · · · , Xp be independent random variables such that Xk takes its
values in [ak, bk] almost surely for all 1 ≤ k ≤ p. Let S =

∑p
k=1 (Xk − EXk), then for every t > 0,

P [S ≥ t] ≤ exp

(
− 2t2∑p

k=1(bk − ak)2

)
. (A.18)

Lemma A.10 (Gaussian Concentration Inequality). Let x ∼ N (0, Ip). Let f : Rp 7→ R be anL-Lipschitz function.
Then we have for all t > 0 that

P [f(X)− Ef(X) ≥ t] ≤ exp

(
− t2

2L2

)
. (A.19)

6The notation ≡d means equivalent in distribution.
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Lemma A.11 (Bounding Maximum Norm of Gaussian Vector Sequence). Let x1, . . . ,xp be a sequence of (not
necessarily independent) standard Gaussian vectors in Rn. Then, it holds that

P
[
max
i∈[p]
‖xi‖2 >

√
2 log p+ 2

√
n

]
≤ exp

(
−1

2
n

)
. (A.20)

Proof. Since the function ‖·‖2 is 1-Lipschitz, by Gaussian concentration inequality, for any i ∈ [p], we have

P
[
‖xi‖2 −

√
E ‖xi‖22 > t

]
≤ P [‖xi‖2 − E ‖xi‖2 > t] ≤ exp

(
− t

2

2

)
(A.21)

for all t > 0. Since E ‖xi‖22 = n, by a simple union bound, we obtain

P
[
max
i∈[p]
‖xi‖ >

√
n+ t

]
≤ exp

(
− t

2

2
+ log p

)
(A.22)

for all t > 0. Taking t =
√

2 log p+
√
n and simplifying the terms gives the claimed result.

Lemma A.12 (Covering Number of a Unit Ball). Let B = {x ∈ Rn | ‖x‖2 ≤ 1} be a unit ball. For any ε ∈ (0, 1),
there exists some ε cover of B w.r.t. the normal Rn metric, denoted as Nε, such that

|Nε| ≤
(

1 +
2

ε

)n
≤
(

3

ε

)n
. (A.23)

Lemma A.13 (Spectrum of Gaussian Matrices, [Ver10]). Let A ∈ Rp×n (p > n) contain i.i.d. standard normal
entries. Then for every t ≥ 0, with probability at least 1− 2 exp

(
−t2/2

)
, one has

√
p−√n− t ≤ σmin(A) ≤ σmax(A) ≤ √p+

√
n+ t. (A.24)

Lemma A.14. For any ε ∈ (0, 1), there exists a constant C (ε) > 1, such that provided n1 > C (ε)n2, the random
matrix Φ ∈ Rn1×n2 ∼i.i.d. N (0, 1) obeys

(1− ε)
√

2

π
n1 ‖x‖2 ≤ ‖Φx‖1 ≤ (1 + ε)

√
2

π
n1 ‖x‖2 for all x ∈ Rn2 , (A.25)

with probability at least 1− 2 exp (−c (ε)n2) for some c (ε) > 0.

Geometrically, this lemma roughly corresponds to thewell known almost spherical section theorem [FLM77,
GG84], see also [GM03]. A slight variant of this version has been proved in [Don06], borrowing ideas
from [Pis99].

Proof. By homogeneity, it is enough to consider all x with unit norms. For a fixed x0 with ‖x0‖2 = 1,
Φx0 ∼ N (0, I). So E ‖Φx‖1 =

√
2
πn1. By concentration of measure for Gaussian vectors,

P [|‖Φx‖1 − E [‖Φx‖1]| > t] ≤ 2 exp

(
− t2

2n1

)
(A.26)

for any t > 0. For a fixed δ ∈ (0, 1), Sn2−1 can be covered by a δ-net Nδ with cardinality #Nδ ≤ (1 + 2/δ)
n2 .

Now consider the event

E .
=

{
(1− δ)

√
2

π
n1 ≤ ‖Φx‖1 ≤ (1 + δ)

√
2

π
n1 ∀ x ∈ N1

}
. (A.27)
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A simple application of union bound yields

P [Ec] ≤ 2 exp

(
−δ

2n1

π
+ n2 log

(
1 +

2

δ

))
. (A.28)

Choosing δ small enough such that

(1− 3δ) (1− δ)−1 ≥ 1− ε and (1 + δ) (1− δ)−1 ≤ 1 + ε, (A.29)

then conditioned on E , we can conclude that

(1− ε)
√

2

π
n1 ≤ ‖Φx‖1 ≤ (1 + ε)

√
2

π
n1 ∀ x ∈ Sn2−1. (A.30)

Indeed, suppose E holds. Then it can easily be seen that any z ∈ Sn2−1 can be written as

z =

∞∑
k=0

λkxk, with |λk| ≤ δk,xk ∈ N1 for all k. (A.31)

Hence we have

‖Φz‖1 =

∥∥∥∥∥Φ
∞∑
k=0

λkxk

∥∥∥∥∥
1

≤
∞∑
k=0

δk ‖Φxk‖1 ≤ (1 + δ) (1− δ)−1

√
2

π
n1. (A.32)

Similarly,

‖Φz‖1 =

∥∥∥∥∥Φ
∞∑
k=0

λkxk

∥∥∥∥∥
1

≥
[
1− δ − δ (1 + δ) (1− δ)−1

]√ 2

π
n1 = (1− 3δ) (1− δ)−1

√
2

π
n1. (A.33)

Hence, the choice of δ above leads to the claimed result. To make P [Ec] small, it is enough to choose C such
that

Cδ2/π > log

(
1 +

2

δ

)
. (A.34)

Setting C = 2 log
(
1 + 2

δ

)
π/δ2 completes the proof.

Lemma A.15. Suppose n1 ≤ 1
2 exp (n2/2). Fix ε ∈ (0, 1). Then for any ξ such that ξ2 > 2 log (1 + 2ε). The random

matrix Φ ∈ Rn1×n2 ∼i.i.d. N (0, 1) obeys

‖Φx‖∞ ≤
1 + ξ

1− ε
√
n2 ‖x‖2 for all x ∈ Rn2 , (A.35)

with probability at least 1− exp
(
−n2

(
ξ2/2− log (1 + 2ε)

))
.

Proof. Again for a fixed x0 ∈ Sn2−1, Φx0 ≡d v ∼ N (0, I). For any fixed β > 0 to be decided later,

E [β ‖v‖∞] = E
[
β max
i∈[n1]

|vi|
]

= E
[
log max

i∈[n1]
exp (β |v1|)

]
≤ logE

[
max
i∈[n1]

exp (β |v1|)
]

(A.36)

≤ logE

[
n1∑
i=1

exp (β |v1|)
]

= log n1E [exp (β |v1|)] ≤ log 2n1 exp
(
β2/2

)
. (A.37)

Hence

E [‖v‖∞] ≤ log 2n1 exp
(
β2/2

)
β

. (A.38)
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Taking β =
√

2 log (2n1), we obtain

E [‖v‖∞] ≤
√

2 log (2n1). (A.39)

Because the mapping v 7→ ‖v‖∞ is 1-Lipschitz, by concentration of measure for Gaussian vectors, we obtain

P [‖Φx‖∞ − E [‖Φx‖∞] > t] ≤ exp

(
− t

2

2

)
. (A.40)

Taking t = ξ
√
n2, and consider an ε-net Nε that covers Sn2−1 with cardinality |Nε| ≤ (1 + 2/ε)

n2 , we have
the event

E .
= {‖Φx‖∞ ≤ (1 + ξ)

√
n2 ∀ x ∈ Nε} (A.41)

holds with probability at least 1− exp
(
−ξ2n2/2 + n2 log (1 + 2ε)

)
. Conditioned on E , we have

sup
‖z‖2=1

‖Φz‖∞ ≤ sup
z′∈Nε

‖Φz′‖∞ + sup
‖e‖2≤ε

‖Φe‖∞ = sup
z′∈Nε

‖Φz′‖∞ + ε sup
‖e‖2=1

‖Φe‖∞ . (A.42)

Hence we have

sup
‖z‖2=1

‖Φz‖∞ ≤
1

1− ε sup
z′∈Nε

‖Φz′‖∞ =
1 + ξ

1− ε
√
n2, (A.43)

completing the proof.

B The Random Basis vs. Its Orthonormalized Version
We consider Y obeying the planted sparse model:

Y = [x0 | G] ∈ Rp×n (B.1)

with

x0 ∼i.i.d.
1√
θp

Ber (θ) ,G ∼i.i.d. N
(

0,
1

p

)
. (B.2)

One “natural/canonical” orthonormal basis for the subspace spanned by columns of Y is

Y′ =

[
x0

‖x0‖2
| Px⊥0

G
(
G>Px⊥0

G
)−1/2

]
. (B.3)

We alsowriteG′
.
= Px⊥0

G
(
G>Px⊥0

G
)−1/2

for convenience. In this section, wewant to show that the intuition
Y′ well approximating Y7 can be made rigorous. These results are needed when we prove Theorem 2.1 for
the global optimality of the natural `2 constrained formulation (2.1), as well as when we translate the results
for Y to quantitative statements about Y′ in Appendix F.4.

For any realization of x0, let the support (index set of nonzero elements) of x0 be I. By Hoeffding’s
inequality in Lemma A.9, we have the event

E0 .
=

{
1

2
θp ≤ |I| ≤ 2θp

}
(B.4)

holds with probability at least 1− 2 exp
(
−pθ2/2

)
. Moreover, we show the following:

7When n and p are large, Y has nearly orthonormal columns.
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Lemma B.1. The bound ∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ ≤ 2
√

2

5

√
n log p

θ3p
(B.5)

holds with probability at least 1− 2 exp
(
−pθ2/2

)
− 2 exp (−2n log p).

Proof. Because E
[
‖x0‖22

]
= 1, by Hoeffding’s inequality in Lemma A.9, we have

P
[∣∣∣‖x0‖22 − E

[
‖x0‖22

]
> t
∣∣∣] = P

[∣∣∣‖x0‖22 − 1
∣∣∣ > t

]
≤ 2 exp

(
−2θ2pt2

)
(B.6)

for all t > 0, which implies

P [|‖x0‖2 − 1| (‖x0‖2 + 1) > t] ≤ 2 exp
(
−2θ2pt2

)
. (B.7)

On the intersection with E0, ‖x0‖2 + 1 ≤
√

2 + 1 ≤ 5/2, and setting t =
√

n log p
θ3p , we obtain

P

[
|‖x0‖2 − 1| > 2

5

√
n log p

θ3p

]
≤ 2 exp (−2n log p) . (B.8)

So we obtain that with probability at least 1− 2 exp
(
−pθ2/2

)
− 2 exp (−2n log p),∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ =
|1− ‖x0‖2|
‖x0‖2

≤ 2
√

2

5

√
n log p

θ3p
, (B.9)

as desired.

Next, let M
.
=
(
G>Px⊥0

G
)−1/2

, then G′ = GM− x0x
>
0

‖x0‖22
GM, we show the following results hold:

Lemma B.2. Provided p ≥ Cn ≥ 2 for some large enough constant C, it holds that

‖M‖ ≤ 2, ‖M− I‖ ≤ 4

√
n

p
(B.10)

with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′.

Proof. First observe that

‖M‖ =
(
σmin

(
G>Px⊥0

G
))−1/2

=
(
σmin

(
Px⊥0

G
))−1

. (B.11)

Now suppose B is an orthonormal basis spanning x⊥0 . Then it is not hard to see the spectrum of Px⊥0
G is the

same as that of B>G ∈ R(p−1)×(n−1); in particular,

σmin

(
Px⊥0

G
)

= σmin

(
B>G

)
. (B.12)

Since G ∼i.i.d. N
(

0, 1
p

)
, and B> has orthonormal rows, B>G ∼i.i.d. N

(
0, 1

p

)
, we can invoke the spectrum

results for Gaussian matrices in Lemma A.13 and obtain that√
p− 1

p
− 2

√
n− 1

p− 1
≤ σmin

(
B>G

)
≤ σmax

(
B>G

)
≤
√
p− 1

p
+ 2

√
n− 1

p− 1
(B.13)
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with probability at least 1− c1 exp (−c2n) for some c1, c2 > 0. Thus, when p ≥ C1n for some large constant
C1, we have

‖M‖ =

(√
p− 1

p
− 2

√
n− 1

p− 1

)−1

≤ 2, (B.14)

‖I−M‖ = max (|σmax (M)− 1| , |σmin (M)− 1|) ≤ 2

√
n− 1

p− 1

(√
p− 1

p
− 2

√
n− 1

p− 1

)−1

≤ 4

√
n

p
, (B.15)

with probability at least 1− c1 exp (−c2n).

Lemma B.3. There exists a constant C > 0, such that when p ≥ Cn, the following

‖Y‖`2→`1 ≤ 3
√
p, (B.16)

‖Y′I‖`2→`1 ≤ 7
√

2θp, (B.17)

‖YI −Y′I‖`2→`1 ≤
10

θ

√
n log p, (B.18)

‖G−G′‖`2→`1 ≤ 8
√
n, (B.19)

‖Y −Y′‖`2→`1 ≤
10

θ

√
n log p (B.20)

hold simultaneously with probability at least 1− c′ exp (−c′′n)− 2 exp
(
−pθ2/2

)
for some positive constants c′ and

c′′.

Proof. First of all, we have∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`1

≤ 1

‖x0‖22
‖x0‖`2→`1

∥∥x>0 GM
∥∥
`2→`2 =

2

‖x0‖22
‖x0‖1

∥∥x>0 G
∥∥

2
, (B.21)

where in the last inequalitywe have applied the fact ‖M‖ ≤ 2 fromLemma B.2. Now x>0 G is an i.i.d. Gaussian
vectors with each entry distributed as N

(
0,
‖x0‖22
p

)
, where ‖x0‖22 = |I|

θp . So by measure concentration
inequality for Gaussian vectors, we have

∥∥x>0 G
∥∥

2
≤ 2 ‖x0‖2

√
n

p
(B.22)

with probability at least 1− exp (−n/2). On the intersection with E0, this implies∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`1

≤ 4
√
|I|
√
n

p
≤ 4
√

2θn, (B.23)

with probability at least 1− exp (−n/2)− 2 exp
(
−pθ2/2

)
. Moreover, when intersected with E0, Lemma A.14

implies that when p ≥ Ω (n),

‖G‖`2→`1 ≤
√
p, ‖GI‖`2→`1 ≤

√
2θp (B.24)

with probability at least 1 − c1 exp (−c2n) − 2 exp
(
−pθ2/2

)
, for some positive constants c1, c2. So when
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p ≥ Ω (n),

‖G−G′‖`2→`1 ≤ ‖G−GM‖`2→`1 +

∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`1

≤ ‖G‖`2→`1 ‖I−M‖+ 4
√

2θn ≤ 8
√
n, (B.25)

‖Y‖`2→`1 ≤ ‖x0‖`2→`1 + ‖G‖`2→`1 ≤ ‖x0‖1 +
√
p ≤ 2

√
θp+

√
p ≤ 3

√
p, (B.26)

‖G′I‖`2→`1 ≤ ‖GIM‖`2→`1 +

∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`1

≤ ‖GI‖`2→`1 ‖M‖+ 4
√

2θn ≤ 6
√

2θp, (B.27)

‖GI −G′I‖`2→`1 ≤ ‖GI (I−M)‖`2→`1 +

∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`1

≤ ‖GI‖`2→`1 ‖I−M‖+ 4
√

2θn ≤ 8
√

2θn,

(B.28)

‖Y′I‖`2→`1 ≤
∥∥∥∥ x0

‖x0‖2

∥∥∥∥
`2→`1

+ ‖G′I‖`2→`1 ≤
‖x0‖1
‖x0‖2

+ 6
√

2θp ≤ 7
√

2θp (B.29)

with probability at least 1− c3 exp (−c4n)− 2 exp
(
−pθ2/2

)
for some positive constants c3, c4, where we have

used the above estimates and the results in Lemma B.2. Finally, by Lemma B.1, we obtain

‖Y −Y′‖`2→`1 ≤
∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ ‖x0‖1 + ‖G−G′‖`2→`1 ≤
10

θ

√
n log p, (B.30)

‖YI −Y′I‖`2→`1 ≤
∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ ‖x0‖1 + ‖GI −G′I‖`2→`1 ≤
10

θ

√
n log p, (B.31)

holding with probability at least 1− c5 exp (−c6n)− 2 exp
(
−pθ2/2

)
for some positive constants c5, c6.

Lemma B.4. Provided Cn ≤ p ≤ exp (n/2) /2 for some constant C > 0, the following

‖G′‖`2→`∞ ≤ 16

√
n

θp
, (B.32)

‖G−G′‖`2→`∞ ≤
32n√
θp

(B.33)

hold simultaneously with probability at least 1− c′ exp (−c′′n)− 2 exp
(
−pθ2/2

)
for some positive constants c′ and

c′′.

Proof. First of all, we have∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`∞

≤ 1

‖x0‖22
‖x0‖`2→`∞

∥∥x>0 GM
∥∥
`2→`2 =

2

‖x0‖22
‖x0‖∞

∥∥x>0 G
∥∥

2
, (B.34)

where at the last inequality we have applied the fact ‖M‖ ≤ 2 from Lemma B.2. Similar to the proof to
Lemma B.3, we have that

∥∥x>0 G
∥∥

2
≤ 2 ‖x0‖2

√
n/p with probability at least 1 − exp (−n/2). So on the

intersection with E0, we obtain that∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`∞

≤ 4 ‖x0‖∞
‖x0‖2

√
n

p
≤ 4
√

2n√
θp

(B.35)

holds with probability at least 1−exp (−n/2)−2 exp
(
−pθ2/2

)
. Now taking ξ = 2 and ε = 1/2 in LemmaA.15,

we have that

‖G‖`2→`∞ ≤ 6

√
n

p
(B.36)
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with probability at least 1− exp (−n (2− log 2)). Combining with results in Lemma B.2, we obtain

‖G′‖`2→`∞ ≤ ‖GM‖`2→`∞ +

∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`∞

≤ ‖G‖`2→`∞ ‖M‖+
4
√

2n√
θp
≤ 12

√
n

p
+

4
√

2n√
θp
≤ 16

√
n

θp
, (B.37)

‖G−G′‖`2→`∞ ≤ ‖G‖`2→`∞ ‖I−M‖+

∥∥∥∥∥ x0x
>
0

‖x0‖22
GM

∥∥∥∥∥
`2→`∞

≤ 24n

p
+

4
√

2n√
θp
≤ 32n√

θp
(B.38)

with probability at least 1− c7 exp (−c8n)− 2 exp
(
−pθ2/2

)
for some positive constants c7, c8.

C Proof of `1/`2 Global Optimality
Proof. We will first analyze a canonical version, in which the input basis is Y′:

min
q∈Rn

‖Y′q‖1 , s.t. ‖q‖2 = 1. (C.1)

Let q = [q1; q2]. For any fixed support I of x0, we have

‖Y′q‖1 = ‖Y′Iq‖1 + ‖Y′Icq‖1
≥ |q1|

∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

− ‖G′Iq2‖1 + ‖G′Icq2‖1

≥ |q1|
∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

− ‖GIq2‖1 − ‖(GI −G′I) q2‖1 + ‖GIcq2‖1 − ‖(GIc −G′Ic) q2‖1

≥ |q1|
∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

− ‖GIq2‖1 + ‖GIcq2‖1 − ‖G−G′‖`2→`1 ‖q2‖2 . (C.2)

By Lemma A.14 and intersecting with E0, we have that as long as p ≥ Ω (n), there exists constant c1 > 0 such
that

‖GIq2‖1 ≤
2θp√
p
‖q2‖2 = 2θ

√
p ‖q2‖2 for all q2 ∈ Rn−1, (C.3)

‖GIcq2‖1 ≥
1

2

p− 2θp√
p
‖q2‖2 =

1

2

√
p (1− 2θ) ‖q2‖2 for all q2 ∈ Rn−1, (C.4)

hold with probability at least 1− 2 exp (−c1n2)− 2 exp
(
−pθ2/2

)
. Moreover, by Lemma B.3,

‖G−G′‖`2→`1 ≤ 8
√
n (C.5)

holds with probability at least 1− c2 exp (−c3n)− 2 exp
(
−pθ2/2

)
when p ≥ Ω (n). So we obtain that

‖Y′q‖1 ≥ |q1|
∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

+ ‖q2‖2
(

1

2

√
p (1− 2θ)− 2θ

√
p− 8

√
n

)
(C.6)

holds with probability at least 1− c4 exp (−c5n)− 2 exp
(
−pθ2/2

)
for some positive c4 and c5. Assuming E0,

we observe ∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

≤
√
|I|
∥∥∥∥ x0

‖x0‖2

∥∥∥∥
2

≤
√

2θp. (C.7)
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So in order to minimize the objective ‖Y′q‖1 at e1 or−e1, i.e., q1 = 1, subject to the constraint q2
1 + ‖q2‖22 = 1,

it suffices to have √
2θp <

1

2

√
p (1− 2θ)− 2θ

√
p− 8

√
n, (C.8)

which is satisfied when θ is sufficiently small. Thus there exists a universal constant θ0 > 0, such that
for all 1/

√
n ≤ θ ≤ θ0, when p ≥ Ω (n), ±e1 are the global minimizers of (2.2) with probability at least

1− c4 exp (−c5n)− 2 exp
(
−pθ2/2

)
, if the input basis is Y′. As θ > 1/

√
n by assumption, from (B.4), to make

the above probability high, it is enough to make p ≥ Ω (n log n).
Any other input basis can be written as Y′R, for some orthogonal matrix R. The program now is written

as

min
q∈Rn

‖Y′Rq‖1 , s.t. ‖q‖2 = 1, (C.9)

which is equivalent to

min
q∈Rn

‖Y′Rq‖1 , s.t. ‖Rq‖2 = 1, (C.10)

which is obviously equivalent to the canonical program we analyze above by a simple change of variable, i.e.,
q
.
= Rq, completing the proof.

D Proof of Main Result
In this appendix, we prove our main result in Theorem 4.1. In particular, we will first show that when the Y′

defined in (B.3) is the input orthonormal basis, the “initialization + ADM + LP rounding” pipeline recovers
x0 under the stated technical conditions. Then we will upgrade the recovery result to all orthonormal basis
by observing that all three stages are “invariant” to the input orthonormal basis Y.

Keep the notation in Section 3, let y1, · · · ,yp be the transpose of the rows of Y, and let y′1, · · · ,y′p be the
transpose of the rows of Y′. For q ∈ Sn−1, set

Q(q) =
1

p

p∑
k=1

ykSλ
[
q>yk

]
, (D.1)

Q′(q) =
1

p

p∑
k=1

y′kSλ
[
q>y′k

]
. (D.2)

Further, we write Q (q) = [Q1 (q) ; Q2 (q)], where Q1 (q) is the first coordinate, and define similar notations
for Q′ (q). In addition, for any k = 1, · · · , p, set

X1
k(Zk) = x0kSλ

[
q>yk

]
= x0kSλ [x0kq1 + Zk] , (D.3)

X2
k(Zk) = gkSλ

[
q>yk

]
= gkSλ [x0kq1 + Zk] , (D.4)

where Zk = q>2 gk ∼ N (0, σ2) for σ = ‖q2‖2 /
√
p, and x0k denotes the k-th coordinate of x0. Hence we

obviously have

Q1 =
1

p

p∑
k=1

X1
k , Q2 =

1

p

p∑
k=1

X2
k, . (D.5)

Next we sketch the main technical pieces for establishing the recovery results for Y′ first. All detailed
proofs are deferred to later sections of the appendix. We will assume exp (n/2) /2 ≥ p ≥ Cn4 log n for some
large constant C for all the subsequent claims.
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1. Good initialization. Proposition E.1 in Appendix E shows that with overwhelming probability, at least
one of our p initialization vectors suggested in Section 3, say q

(0)
i = y′i, obeys that∣∣∣∣〈 y′i

‖y′i‖2
, e1

〉∣∣∣∣ ≥ 1

4
√
θn
. (D.6)

2. Uniform progress away from the equator. By Proposition F.1 in Appendix F, there exists some constant
θ0 > 0, such that for any θ ∈

(
1√
n
, θ0

)
,

G′(q) =
|Q′1(q)|
|q1|

− ‖Q
′
2(q)‖2
‖q‖2

≥ 1

4000θ2np
(D.7)

holds uniformly for all q ∈ Sn−1 in the region 1
4
√
θn
≤ |q1| ≤ 3

√
θ with overwhelming probability.

3. No jumps away from the cap. Proposition G.1 in Appendix G shows that for any θ ∈
(

1√
n
, θ0

)
, with

overwhelming probability,

Q′1(q)

‖Q′(q)‖2
≥ 2
√
θ (D.8)

holds for all q with |q1| ≥ 3
√
θ.

4. Location of the stationary/stopping point. The first point above ensures that with overwhelming
probability at least one starting point q(0) will satisfy

∣∣∣q(0)
1

∣∣∣ ≥ 1
4
√
θn
. As shown in Appendix H, the

strictly positive gap of the second point ensures that one needs to run at most O
(
n4 log n

)
iterations

to first encounter an iterate q(k) such that
∣∣∣q(k)

1

∣∣∣ ≥ 3
√
θ. The third point suggests extra iterations will

not move away from the cap area, and hence the stationary point q of the ADM algorithm will satisfy
|q1| ≥ 2

√
θ. If one enforces a hard stop after O

(
n4 log n

)
iterations, the stopping point will similarly

stay in the region |q1| ≥ 2
√
θ.

5. LP Rounding succeeds. We know that in the LP rounding stage, described in Section 3, will receive
a vector r = q̄ with its first coordinate |r1| ≥ 2

√
θ. Proposition I.1 in Appendix I proves that with

overwhelming probability, the LP rounding (3.6) (operated on Y′) will output a solution q? = e1.

In summary, our ADM algorithm in Algorithm 1 using a smart initialization, plus an LP rounding stage (3.6),
will output q? = ±e1 with overwhelming probability, or Y′q? as a nontrivial scaled version of x0.

For the general case when the input is an arbitrary orthonormal basis Ŷ = Y′R for a certain orthogonal
matrix R, the target solution is R>e1. The following technical pieces are perfectly parallel to the above for
Y′.

• Discussion at the end of Appendix E suggests with overwhelming probability, at least one row of Ŷ
provides an initial point q(0) such that

∣∣〈q(0),R>e1

〉∣∣ ≥ 1
4
√
θn

.

• Discussion followingProposition F.1 inAppendix F suggests that for allq such that 1
4
√
θn
≤
∣∣〈q,R>e1

〉∣∣ ≤
3
√
θ, there is a strictly positive gap, indicating steadyprogress towards a pointq(k) such that

∣∣〈q(k),R>e1

〉∣∣ ≥
3
√
θ.

• Discussion at the end of Appendix G indicates once q satisfying
∣∣〈q,R>e1

〉∣∣, the next iterate will not
move far away from the target: 〈

Q′
(
q; Ŷ

)
,R>e1

〉
∥∥∥Q′ (q; Ŷ

)∥∥∥
2

≥ 2
√
θ. (D.9)
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• Repeating the argument in Appendix H for general input Ŷ shows it is enough to run the ADM
algorithm O

(
n4 log n

)
iterations to cross the range 1

4
√
θn
≤
∣∣〈q,R>e1

〉∣∣ ≤ 3
√
θ. So the above three

points together dictates that with the proposed initialization, with overwhelming probability, we finally
obtain a point q that satisfies

∣∣〈q,R>e1

〉∣∣ ≥ 2
√
θ, if we run at least O

(
n4 log n

)
iterations.

• Since the ADM returns q satisfying
∣∣〈q,R>e1

〉∣∣ ≥ 2
√
θ, discussion at the end of Appendix I dictates

that we will obtain q? = R>e1 as the optimizer of the rounding program, exactly the target solution.

We complete the proof.

E Good Initialization
Proposition E.1. Let y′k for k = 1, . . . , p be the transpose of the rows of the orthonormal bases Y′ defined in (B.3).
If θ > 1/

√
n and exp (n/2) /2 ≥ p ≥ Cn2 for some constant C > 0, it holds that at least one of our p initialization

vectors suggested in Section 3, say q
(0)
i = y′i, obeys∣∣∣∣〈 y′i

‖y′i‖2
, e1

〉∣∣∣∣ ≥ 1

4
√
θn
, (E.1)

with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′.

Proof. Since x0 is i.i.d. Bernoulli, with probability at least 1−(1− θ)p ≥ 1−exp (−θp), at least one component
of x0 is nonzero. Without loss of generality (w.l.o.g.), assume the k-th component of x0 is nonzero. Then
x0k = 1√

θp
, and

|qi1| =

1√
θp

‖x0‖2 ‖y′i‖2
≥

1√
θp

‖x0‖2
(
‖x0/ ‖x0‖2‖`2→`∞ + ‖G′‖`2→`∞

) =
1√

θp ‖x0‖∞ + ‖x0‖2 ‖G′‖`2→`∞
. (E.2)

We know that with probability at least 1− exp(−pθ2/2), it holds that

‖x0‖2 =

√
|I| × 1

θp
≤
√

2θp× 1

θp
=
√

2. (E.3)

Moreover, using Lemma B.4 , and Lemma A.15 with ε = 1/16 and ξ = 1/2, we know when p ≥ C1n for some
large C1 > 0, it holds that (note that ‖M‖ can be arbitrarily close to 1 for large C1 in Lemma B.2)

‖G′‖`2→`∞ ≤ ‖G‖`2→`∞ ‖M‖+
4
√

2n√
θp
≤ 9

5

√
n

p
+

4
√

2n√
θp
≤ 2

√
n

p
(E.4)

with probability at least 1− c1 exp (−c2n) for some positive constants c1 and c2. Therefore with probability
at least 1− exp (−θp)− exp

(
−θ2p

)
− c1 exp (−c2n), it holds that

|qi1| ≥
1

1 +
√

2θp× 2
√

n
p

=
1

1 + 2
√

2
√
θn
. (E.5)

Using the fact that θ ≥ 1/
√
n, we obtain |qi1| ≥ 1

(1+2
√

2)
√
θn
. It is sufficient to set p ≥ C2n

2 for some large
enough C2 > 0 to make the probability overwhelming, as desired.

We will next show that for an arbitrary orthonormal basis Ŷ
.
= Y′R the initialization still biases towards

the target solution. To see this, suppose w.l.o.g.
(
y′i
)> is a row of Y′ with nonzero first coordinate. We have
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shown above that with high probability
∣∣∣〈 y′i

‖y′i‖2
, e1

〉∣∣∣ ≥ 1
4
√
θn

if Y′ is the input orthonormal basis. For Y′, as

x0 = Y′e1 = Y′RR>e1, we know q? = R>e1 is the target solution corresponding to Ŷ. Observing that∣∣∣∣∣∣∣∣
〈

R>e1,

(
e>i Ŷ

)>∥∥∥∥(e>i Ŷ
)>∥∥∥∥

2

〉∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

R>e1,
R> (Y′)> ei∥∥∥R> (Y′)> ei

∥∥∥
2

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

e1,
(Y′)> ei∥∥∥(Y′)> ei

∥∥∥
2

〉∣∣∣∣∣∣ =

∣∣∣∣〈e1,
y′i

‖y′i‖2

〉∣∣∣∣ ≥ 1

4
√
nθ
,

(E.6)

corroborating our claim.

F Lower Bounding Finite Sample Gap G′(q)

We will first work with the “canonical” orthonormal basis Y′. The task is to lower bound the gap for finite
samples

G′(q) =
|Q′1(q)|
|q1|

− ‖Q
′
2(q)‖2
‖q2‖2

. (F.1)

Since we can deterministically constrain |q1| and ‖q2‖2 (e.g., 1
4
√
nθ
≤ |q1| ≤ 3

√
θ and ‖q2‖2 ≥ 1

4 , where the
choice of 1

4 is arbitrary here, as we can always take a sufficiently small θ), the challenge lies in lower bounding
|Q′1 (q)| and upper bounding ‖Q′2 (q)‖2, which depends on the orthonormal basis Y′. It turns out to cook up
a typical expectation-concentration style argument, the unnormalized basis Y is much easier to work with
than Y′. Hence our proof will follow the observation that

|Q′1 (q)| ≥ |E [Q1 (q)]| − |Q1 (q)− E [Q1 (q)]| − |Q′1 (q)−Q1 (q)| , (F.2)
‖Q′2 (q)‖ ≤ ‖E [Q2 (q)]‖2 + ‖Q2 (q)− E [Q2 (q)]‖2 + ‖Q′2 (q)−Q2 (q)‖2 . (F.3)

In particular, define the set Γ =
{

q ∈ Sn−1 : 1
4
√
nθ
≤ |q1| ≤ 3

√
θ, ‖q2‖2 ≥ 1

4

}
:

• Appendix F.1 shows that the expected gap is lower bounded for all q ∈ Sn−1 with |q1| ≤ 3
√
θ:

G (q)
.
=
|E [Q1 (q)]|
|q1|

− ‖E [Q2 (q)]‖2
‖q2‖2

≥ 1

50

q2
1

θp
. (F.4)

As |q1| ≥ 1
4
√
nθ

, we have

inf
q∈Γ

|E [Q1 (q)]|
|q1|

− ‖E [Q2 (q)]‖2
‖q2‖2

≥ 1

800

1

θ2np
. (F.5)

• Appendix F.2, as summarized in Proposition F.9, shows that whenever exp (n) ≥ p ≥ Ω
(
n4 log n

)
, it

holds with overwhelmingly probability that

sup
q∈Γ

|Q1 (q)− E [Q1 (q)]|
|q1|

+
‖Q2 (q)− E [Q2 (q)]‖2

‖q2‖2

≤ 4
√
θn

16000θ5/2n3/2p
+

4

16000θ2np
=

1

2000θ2np
. (F.6)
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• Appendix F.4 shows that whenever exp (n/2) /2 ≥ p ≥ Ω
(
n4 log n

)
, it holds with overwhelmingly

probability that

sup
q∈Γ

|Q1 (q)−Q′1 (q)|
|q1|

+
‖Q2 (q)−Q′2 (q)‖2

‖q2‖2

≤ 4
√
θn

16000θ5/2n3/2p
+

4

16000θ2np
=

1

2000θ2np
. (F.7)

Observing that

inf
q∈Γ

G′(q) ≥ inf
q∈Γ

( |E [Q1 (q)]|
|q1|

− ‖E [Q2 (q)]‖2
‖q2‖2

)
− sup

q∈Γ

( |Q1 (q)− E [Q1 (q)]|
|q1|

+
‖Q2 (q)− E [Q2 (q)]‖2

‖q2‖2

)
− sup

q∈Γ

( |Q1 (q)−Q′1 (q)|
|q1|

+
‖Q2 (q)−Q′2 (q)‖2

‖q2‖2

)
, (F.8)

we obtain the following:

Proposition F.1. There exists some constant θ0 > 0 such that, for all θ ∈
(

1√
n
, θ0

)
, when exp (n/2) /2 ≥ p ≥

Cn4 log n for some large constant C > 0, we have

inf
q∈Γ

G′(q) ≥ 1

4000θ2np
, , (F.9)

with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′.

For the general case when the input orthonormal basis is Ŷ = Y′R with target solution q? = R>e1, a
straightforward extension of the definition for the gap would be:

G′
(
q; Ŷ = Y′R

)
.
=

∣∣∣〈Q′
(
q; Ŷ

)
,R>e1

〉∣∣∣
|〈q,R>e1〉|

−

∥∥∥(I−R>e1e
>
1 R
)
Q′
(
q; Ŷ

)∥∥∥
2∥∥(I−R>e1e>1 R

)
q
∥∥

2

. (F.10)

Since Q′
(
q; Ŷ

)
= 1

p

∑p
k=1 R>ykSλ

(
q>R>yk

)
, we have

RQ′
(
q; Ŷ

)
=

1

p

p∑
k=1

RR>y′kSλ
(
q>R>y′k

)
=

1

p

p∑
k=1

y′kSλ
[
(Rq)

>
y′k
]

= Q′ (Rq; Y′) . (F.11)

Hence we have

G′
(
q; Ŷ = Y′R

)
=
|〈Q′ (Rq; Y′) , e1〉|
|〈Rq, e1〉|

−
∥∥(I− e1e

>
1

)
Q′ (Rq; Y′)

∥∥
2∥∥(I− e1e>1

)
Rq
∥∥

2

. (F.12)

Therefore, from Proposition F.1 above, we conclude that under the same technical conditions as therein,

inf
q∈Sn−1: 1

4
√
θn
≤|〈Rq,e1〉|≤3

√
θ
G′
(
q; Ŷ

)
≥ 1

4000θ2np
(F.13)

with overwhelmingly probability.
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F.1 Lower Bounding the Expected Gap G(q)

In this section, we provide a nontrivial lower bound for the gap

G(q) =
|E [Q1(q)]|
|q1|

− ‖E [Q2(q)]‖2
‖q2‖2

. (F.14)

More specifically, we show that:

Proposition F.2. There exists some numerical constant θ0 > 0, such that for all θ ∈ (0, θ0), it holds that

G(q) ≥ 1

50

q2
1

θp
(F.15)

for all q ∈ Sn−1 with |q1| ≤ 3
√
θ.

Because the estimation for the gap G(q) involves dedicated estimation for E [Q1(q)] and E [Q2(q)], we
sketch the main proof in Appendix F.1.1, and leave those detailed technical calculations in the subsequent
subsections.

F.1.1 Sketch of the Proof

W.l.o.g., we only consider the situation that q1 > 0, because the case of q1 < 0 can be similarly shown by
symmetry. By (D.5), (D.3) and (D.4), we have

E [Q1(q)] = E
[
x0Sλ

[
x0q1 + q>2 g

]]
, (F.16)

E [Q2(q)] = E
[
gSλ

[
x0q1 + q>2 g

]]
, (F.17)

where q =
[
q1,q

>
2

]>, g ∼ N (0, 1
pI
)
, and x0 ∼ 1√

θp
Ber(θ). Let us decompose

g = g‖ + g⊥, (F.18)

with g‖ = P‖g =
q2q
>
2

‖q2‖22
g, and g⊥ = (I− P‖)g. Therefore, we have

E [Q2(q)] = E
[
g‖Sλ

[
x0q1 + q>2 g‖

]]
+ E

[
g⊥Sλ

[
x0q1 + q>2 g‖

]]
= E

[
g‖Sλ

[
x0q1 + q>2 g

]]
+ E [g⊥]E

[
Sλ
[
x0q1 + q>2 g

]]
=

q2

‖q2‖22
E
[
q>2 gSλ

[
x0q1 + q>2 g

]]
, (F.19)

where we used the facts that q>2 g = q>2 g‖, g⊥ and g‖ are uncorrelated Gaussian vectors and therefore
independent, and E [g⊥] = 0. Let Z .

= g>q2 ∼ N (0, σ2) with σ2 = ‖q2‖22 /p, by partial evaluation of the
expectations with respect to x0, we get

E [Q1(q)] =

√
θ

p
E
[
Sλ

[
q1√
θp

+ Z

]]
, (F.20)

E [Q2(q)] =
θq2

‖q2‖22
E
[
ZSλ

[
q1√
θp

+ Z

]]
+

(1− θ)q2

‖q2‖22
E [ZSλ [Z]] . (F.21)

Straightforward integration based on Lemma A.1 gives a explicit form of the expectations as follows

E [Q1(q)] =

√
θ

p

{[
αΨ

(
−α
σ

)
+ βΨ

(
β

σ

)]
+ σ

[
ψ

(
−β
σ

)
− ψ

(
−α
σ

)]}
, (F.22)

E [Q2(q)] =

{
2 (1− θ)

p
Ψ

(
−λ
σ

)
+
θ

p

[
Ψ
(
−α
σ

)
+ Ψ

(
β

σ

)]}
q2, (F.23)
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where the scalars α and β are defined as

α =
q1√
θp

+ λ, β =
q1√
θp
− λ, (F.24)

and ψ (t) and Ψ (t) are pdf and cdf for standard normal distribution, respectively, as defined in Lemma A.1.
Plugging (F.22) and (F.23) into (F.14), by some simplifications, we obtain

G(q) =
1

q1

√
θ

p

[
αΨ

(
−α
σ

)
+ βΨ

(
β

σ

)
− 2q1√

θp
Ψ

(
−λ
σ

)]
− θ

p

[
Ψ
(
−α
σ

)
+ Ψ

(
β

σ

)
− 2Ψ

(
−λ
σ

)]

+
σ

q1

√
θ

p

[
ψ

(
β

σ

)
− ψ

(
−α
σ

)]
. (F.25)

With λ = 1/
√
p and σ2 = ‖q2‖22 /p = (1− q2

1)/p, we have

−α
σ

= − δ + 1√
1− q2

1

,
β

σ
=

δ − 1√
1− q2

1

,
λ

σ
=

1√
1− q2

1

, (F.26)

where δ = q1/
√
θ for q1 ≤ 3

√
θ. To proceed, it is natural to consider estimating the gap G(q) by Taylor’s

expansion. More specifically, we approximate Ψ
(
−ασ
)
and ψ

(
−ασ
)
around −1− δ, and approximate Ψ

(
β
σ

)
and ψ

(
β
σ

)
around −1 + δ. Applying the estimates for the relevant quantities established in Lemma F.3, we

obtain

G(q) ≥ 1− θ
p

Φ1(δ)− 1

δp
Φ2(δ) +

1− θ
p

ψ(−1)q2
1 +

1

p

(
σ
√
p+

θ

2
− 1

)
η2(δ)q2

1

+
1

2δp

[
1 + δ2 − θδ2 − σ

(
1 + δ2

)√
p
]
q2
1η1 (δ) +

σ

δ
√
p
η1 (δ)− 5CT

√
θq3

1

p
(δ + 1)

3
, (F.27)

where we define

Φ1(δ) = Ψ(−1− δ) + Ψ(−1 + δ)− 2Ψ(−1), Φ2(δ) = Ψ(−1 + δ)−Ψ(−1− δ), (F.28)
η1(δ) = ψ(−1 + δ)− ψ(−1− δ), η2(δ) = ψ(−1 + δ) + ψ(−1− δ), (F.29)

and CT is as defined in Lemma F.3. Since 1− σ√p ≥ 0, dropping those small positive terms q21
p (1− θ)ψ(−1),

θq21
2p η2(δ), and

(
1 + δ2

) (
1− σ√p

)
q2
1η1 (δ) / (2δp), and using the fact that δ = q1/

√
θ, we obtain

G(q) ≥ 1− θ
p

Φ1(δ)− 1

δp
[Φ2(δ)− σ√pη1(δ)]− q2

1

p
(1− σ√p) η2(δ)−

√
θ

2p
q3
1η1 (δ)− C1

√
θq3

1

p
max

(
q3
1

θ3/2
, 1

)
≥ 1− θ

p
Φ1(δ)− 1

δp
[Φ2(δ)− η1(δ)]− q2

1

p

η1 (δ)

δ
− q2

1

pθ

2√
2π
θ − q2

1

θp

3θ2

2
√

2π
− q2

1

θp

(
C1θ

2
)
, (F.30)

for some constant C1 > 0, where we have used q1 ≤ 3
√
θ to simplify the bounds and the fact σ√p =√

1− q2
1 ≥ 1 − q2

1 to simplify the expression. Substituting the estimates in Lemma F.5 and use the fact
δ 7→ η1 (δ) /δ is bounded, we obtain

G (p) ≥ 1

p

(
1

40
− 1

2
√

2π
θ

)
δ2 − q2

1

θp

(
c1θ + c2θ

2
)

(F.31)

≥ q2
1

θp

(
1

40
− 1√

2π
θ − c1θ − c2θ2

)
(F.32)

for some positive constants c1 and c2. We obtain the claimed result once θ0 is made sufficiently small.
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F.1.2 Auxiliary Results Used in the Proof

Lemma F.3. Let δ .
= q1/

√
θ. There exists some universal constant CT > 0 such that we have the follow polynomial

approximations hold for all q1 ∈
(
0, 1

2

)
:∣∣∣∣ψ (−ασ)−

[
1− 1

2
(1 + δ)2q2

1

]
ψ(−1− δ)

∣∣∣∣ ≤ CT (1 + δ)
2
q4
1 , (F.33)∣∣∣∣ψ(βσ

)
−
[
1− 1

2
(δ − 1)2q2

1

]
ψ(δ − 1)

∣∣∣∣ ≤ CT (δ − 1)
2
q4
1 , (F.34)∣∣∣∣Ψ(−ασ)−

[
Ψ(−1− δ)− 1

2
ψ(−1− δ)(1 + δ)q2

1

]∣∣∣∣ ≤ CT (1 + δ)
2
q4
1 , (F.35)∣∣∣∣Ψ(βσ

)
−
[
Ψ(δ − 1) +

1

2
ψ(δ − 1)(δ − 1)q2

1

]∣∣∣∣ ≤ CT (δ − 1)
2
q4
1 , (F.36)∣∣∣∣Ψ(−λσ

)
−
[
Ψ(−1)− 1

2
ψ(−1)q2

1

]∣∣∣∣ ≤ CT q
4
1 . (F.37)

Proof. First observe that for any q1 ∈
(
0, 1

2

)
it holds that

0 ≤ 1√
1− q2

1

−
(

1 +
q2
1

2

)
≤ q4

1 . (F.38)

Hence we have

−(1 + δ)

(
1 +

1

2
q2
1 + q4

1

)
≤ −α

σ
≤ −(1 + δ)

(
1 +

1

2
q2
1

)
, (F.39)

(δ − 1)

(
1 +

1

2
q2
1

)
≤ β

σ
≤ (δ − 1)

(
1 +

1

2
q2
1 + q4

1

)
, when δ ≥ 1

(δ − 1)

(
1 +

1

2
q2
1 + q4

1

)
≤ β

σ
≤ (δ − 1)

(
1 +

1

2
q2
1

)
, when δ ≤ 1. (F.40)

So we have

ψ

(
−(1 + δ)

(
1 +

1

2
q2
1 + q4

1

))
≤ ψ

(
−α
σ

)
≤ ψ

(
−(1 + δ)

(
1 +

1

2
q2
1

))
. (F.41)

By Taylor expansion of the left and right sides of the above two-side inequality around −1− δ using Lemma
A.2, we obtain ∣∣∣∣ψ (−ασ)− ψ(−1− δ)− 1

2
(1 + δ)2q2

1ψ(−1− δ)
∣∣∣∣ ≤ CT (1 + δ)

2
q4
1 , (F.42)

for some numerical constant CT > 0 sufficiently large. In the same way, we can obtain other claimed
results.

Lemma F.4. For any δ ∈ [0, 3], it holds that

Φ2(δ)− η1(δ) ≥ η1 (3)

9
δ3 ≥ 1

20
δ3. (F.43)

Proof. Let us define

h(δ) = Φ2(δ)− η1(δ)− Cδ3 (F.44)
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for some C > 0 to be determined later. Then it is obvious that h(0) = 0. Direct calculation shows that

d

dδ
Φ1(δ) = η1(δ),

d

dδ
Φ2(δ) = η2(δ),

d

dδ
η1(δ) = η2(δ)− δη1(δ). (F.45)

Thus, to show (F.43), it is sufficient to show that h′(δ) ≥ 0 for all δ ∈ [0, 3]. By differentiating h(δ) with respect
to δ and use the results in (F.45), it is sufficient to have

h′(δ) = δη1(δ)− 3Cδ2 ≥ 0⇐⇒ η1(δ) ≥ 3Cδ (F.46)

for all δ ∈ [0, 3]. We obtain the claimed result by observing that δ 7→ η1 (δ) /3δ is monotonically decreasing
over δ ∈ [0, 3] as justified below.

Consider the function

p (δ)
.
=
η1 (δ)

3δ
=

1

3
√

2π
exp

(
−δ

2 + 1

2

)
eδ − e−δ

δ
. (F.47)

To show it is monotonically decreasing, it is enough to show p′ (δ) is always nonpositive for δ ∈ (0, 3), or
equivalently

g (δ)
.
=
(
eδ + e−δ

)
δ −

(
δ2 + 1

) (
eδ − e−δ

)
≤ 0 (F.48)

for all δ ∈ (0, 3), which can be easily verified by noticing that g (0) = 0 and g′ (δ) ≤ 0 for all δ ≥ 0.

Lemma F.5. For any δ ∈ [0, 3], we have

(1− θ)Φ1(δ)− 1

δ
[Φ2(δ)− η1(δ)] ≥

(
1

40
− 1√

2π
θ

)
δ2. (F.49)

Proof. Let us define

g(δ) = (1− θ)Φ1(δ)− 1

δ
[Φ2(δ)− η1(δ)]− c0 (θ) δ2, (F.50)

where c0 (θ) > 0 is a function of θ. Thus, by the results in (F.45) and L’Hospital’s rule, we have

lim
δ→0

Φ2(δ)

δ
= lim
δ→0

η2 (δ) = 2ψ(−1), lim
δ→0

η1(δ)

δ
= lim
δ→0

[η2(δ)− δη1(δ)] = 2ψ(−1). (F.51)

Combined that with the fact that Φ1(0) = 0, we conclude g (0) = 0. Hence, to show (F.49), it is sufficient to
show that g′(δ) ≥ 0 for all δ ∈ [0, 3]. Direct calculation using the results in (F.45) shows that

g′(δ) =
1

δ2
[Φ2(δ)− η1(δ)]− θη1(δ)− 2c0 (θ) δ. (F.52)

Since η1 (δ) /δ is monotonically decreasing as shown in Lemma F.4, we have that for all δ ∈ (0, 3)

η1 (δ) ≤ δ lim
δ→0

η (δ)

δ
≤ 2√

2π
δ. (F.53)

Using the above bound and the main result from Lemma F.4 again, we obtain

g′(δ) ≥ 1

20
δ − 2√

2π
θδ − 2c0δ. (F.54)

Choosing c0 (θ) = 1
40 − 1√

2π
θ completes the proof.
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F.2 Finite Sample Concentration
In the following two subsections, we estimate the deviations around the expectations EQ1 and EQ2, i.e.,
|Q1 − EQ1| and ‖Q2 − EQ2‖2, and show that the total deviations fit into the gapG(q)wederived inAppendix
F.1. Our analysis is based on the scalar and vector Bernstein’s inequalities with moment conditions. Finally,
in Appendix F.3, we uniform the bound by applying the classical discretization argument.

F.2.1 Concentration for Q1

Lemma F.6 (Bounding |Q1 − E [Q1(q)]|). For each q ∈ Sn−1, it holds for all t > 0 that

P [|Q1(q)− E [Q1(q)]| ≥ t] ≤ 2 exp

(
− θp3t2

8 + 4pt

)
. (F.55)

Proof. By (D.3) and (D.5), we know that

Q1(q) =
1

p

p∑
k=1

X1
k , X1

k = x0kSλ [x0kq1 + Zk] (F.56)

where Zk ∼ N
(

0,
‖q2‖22
p

)
. Thus, for anym ≥ 2, by Lemma A.4, we have

E
[∣∣X1

k

∣∣m] ≤ θ

(
1√
θp

)m
E
[∣∣∣∣ q1√

θp
+ Zk

∣∣∣∣m]
= θ

(
1√
θp

)m m∑
l=0

(
m

l

)(
q1√
θp

)l
E
[
|Zk|m−l

]
= θ

(
1√
θp

)m m∑
l=0

(
m

l

)(
q1√
θp

)l
(m− l − 1)!!

(‖q2‖2√
p

)m−l
≤ m!

2
θ

(
1√
θp

)m(
q1√
θp

+
‖q2‖2√

p

)m
≤ m!

2
θ

(
2

θp

)m
=
m!

2

4

θp2

(
2

θp

)m−2

(F.57)

let σ2
X = 4/(θp2) and R = 2/(θp), apply Lemma A.7, we get

P [|Q1(q)− E [Q1(q)]| ≥ t] ≤ 2 exp

(
− θp3t2

8 + 4pt

)
. (F.58)

as desired.

F.2.2 Concentration for Q2

Lemma F.7 (Bounding ‖Q2 − E [Q2]‖2). For each q ∈ Sn−1, it holds for all t > 0 that

P [‖Q2(q)− E [Q2(q)]‖2 > t] ≤ 2(n+ 1) exp

(
− θp3t2

128n+ 16
√
θnpt

)
. (F.59)

Before proving Lemma F.7, we record the following useful results.

Lemma F.8. For any positive integer s, l > 0, we have

E
[∥∥gk∥∥s

2

∣∣q>2 gk
∣∣l] ≤ (l + s)!

2
‖q2‖l2

(2
√
n)
s(√

p
)s+l (F.60)
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In particular, when s = l, we have

E
[∥∥gk∥∥l

2

∣∣q>2 gk
∣∣l] ≤ l!

2
‖q2‖l2

(
4
√
n

p

)l
(F.61)

Proof. Let P
q
‖
2

=
q2q
>
2

‖q2‖22
and Pq⊥2

=
(
I− 1

‖q2‖22
q2q

>
2

)
denote the projection operators onto q2 and its orthogo-

nal complement, respectively. By Lemma A.4, we have

E
[∥∥gk∥∥s

2

∣∣q>2 gk
∣∣l] ≤ E

[(∥∥∥Pq
‖
2
gk
∥∥∥

2
+
∥∥∥Pq⊥2

gk
∥∥∥

2

)s ∣∣q>2 gk
∣∣l]

=

s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥2

gk
∥∥∥i

2

]
E
[∣∣q>2 gk

∣∣l ∥∥∥Pq
‖
2
gk
∥∥∥s−i

2

]

=

s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥2

gk
∥∥∥i

2

]
E
[∣∣q>2 gk

∣∣l+s−i] 1

‖q2‖s−i2

≤ ‖q2‖l2
s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥2

gk
∥∥∥i

2

](
1√
p

)l+s−i
(l + s− i− 1)!!. (F.62)

Using Lemma A.5 and the fact that
∥∥∥Pq⊥2

gk
∥∥∥2

2
≤
∥∥gk∥∥2

2
, we obtain

E
[∥∥gk∥∥s

2

∣∣q>2 gk
∣∣l] ≤ ‖q2‖l2

s∑
i=0

(
s

i

)(√
n√
p

)i
i!

(
1√
p

)l+s−i
(l + s− i− 1)!!

≤ ‖q2‖l2
(

1√
p

)l
(l + s)!

2

(√
n√
p

+
1√
p

)s
≤ (l + s)!

2
‖q2‖l2

(2
√
n)
s(√

p
)s+l . (F.63)

Now, we are ready to prove Lemma F.7,

Proof. By (D.5) and (D.4), note that

Q2 =
1

p

p∑
k=1

X2
k, X2

k = gkSλ [x0kq1 + Zk] (F.64)

where Zk = q>2 gk. Thus, for anym ≥ 2, by Lemma F.8, we have

E
[∥∥X2

k

∥∥m
2

]
≤ θE

[∥∥gk∥∥m
2

∣∣∣∣ q1√
θp

+ q>2 gk
∣∣∣∣m]+ (1− θ)E

[∥∥gk∥∥m
2

∣∣q>2 gk
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≤ θ
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(
m

l

)
E
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2
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θp
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2

∣∣q>2 gk
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2
√
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p

)m m∑
l=0

(
m

l

)
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2

(‖q2‖2√
p

)l ∣∣∣∣ q1√
θp

∣∣∣∣m−l + (1− θ)m!

2
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(
4
√
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p

)m
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m!

2

(
4
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n√
p

)m(‖q2‖2√
p

+
q1√
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(F.65)

≤ m!

2

(
8
√
n√
θp

)m
. (F.66)
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Taking σ2
X = 64n/(θp2) and R = 8

√
n/(
√
θp) and using vector Bernstein’s inequality in Lemma A.8, we

obtain

P [‖Q2(q)− E [Q2(q)]‖2 ≥ t] ≤ 2(n+ 1) exp

(
− θp3t2

128n+ 16
√
θnpt

)
, (F.67)

as desired.

F.3 Union Bound
Proposition F.9 (Uniformizing the Bounds). Suppose that θ > 1√

n
. Given any ξ > 0, there exists some constant

C (ξ), such that whenever exp (n) ≥ p ≥ C (ξ)n4 log n, we have

|Q1(q)− E [Q1(q)]| ≤ 2ξ

θ5/2n3/2p
, (F.68)

‖Q2(q)− E [Q2(q)]‖2 ≤
2ξ

θ2np
(F.69)

hold uniformly for all q ∈ Sn−1, with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′.

Proof. We apply the standard covering argument. For any ε ∈ (0, 1), by Lemma A.12, the unit hemisphere of
interest can be covered by an ε-net Nε of cardinality at most (3/ε)

n. For any q ∈ Sn−1, it can be written as

q = q′ + e (F.70)

where q′ ∈ Nε and ‖e‖2 ≤ ε. Let yk =
[
x0k,g

k
]> be a row of Y, by (D.3) and (D.5), we have

|Q1(q)− E [Q1(q)]|

=

∣∣∣∣∣1p
p∑
k=1

{
x0kSλ

[〈
yk,q′ + e

〉]
− E

[
x0kSλ

[〈
yk,q′ + e

〉]]}∣∣∣∣∣
≤
∣∣∣∣∣1p

p∑
k=1

x0kSλ
[〈

yk,q′ + e
〉]
− 1

p

p∑
k=1

x0kSλ
[〈

yk,q′
〉]∣∣∣∣∣+

∣∣∣∣∣1p
p∑
k=1

x0kSλ
[〈

yk,q′
〉]
− E [x0Sλ [〈y,q′〉]]

∣∣∣∣∣
+ |E [x0Sλ [〈y,q′〉]]− E [x0Sλ [〈y,q′ + e〉]]| . (F.71)

Using Cauchy-Schwarz inequality and the fact that Sλ [·] is a nonexpansive operator, we have

|Q1(q)− E [Q1(q)]| ≤ |Q1(q′)− E [Q1(q′)]|+
(

1

p

p∑
k=1

|x0k|
∥∥yk∥∥

2
+ E [|x0| ‖y‖2]

)
‖e‖2 (F.72)

≤ |Q1(q′)− E [Q1(q′)]|+ 2ε
1√
θp

(
1√
θp

+ max
k∈[p]

∥∥gk∥∥
2

)
. (F.73)

By Lemma A.11 and the assumption that p ≤ exp (n), we have that maxk∈[p]

∥∥gk∥∥
2
≤ 4
√
n/pwith probability

at least 1 − exp (−n/2). Taking t = ξθ−5/2n−3/2p−1 in Lemma F.6 and applying a union bound, setting
ε = ξθ−2n−2/10 and combining with the above estimate, we obtain that

|Q1(q)− E [Q1(q)]| ≤ ξ

θ5/2n3/2p
+
ξ

5

1

θ2n2

5
√
n√
θp
≤ 2ξ

θ5/2n3/2p
(F.74)

holds for all q ∈ Sn−1, with probability at least 1 − exp (−n/2) − exp
(
− c1(ξ)p

θ4n3 + c2 (ξ)n log n
)
for some

numerical constants c1 (ξ) and c2 (ξ).
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Similarly, by (D.3) and (D.5), we have

‖Q2(q)− E [Q2(q)]‖2 =

∥∥∥∥∥1

p

p∑
k=1

{
gkSλ

[〈
yk,q′ + e

〉]
− E

[
gkSλ

[〈
yk,q′ + e

〉]]}∥∥∥∥∥
2

≤ ‖Q2(q′)− E [Q2(q′)]‖2 +

(
1

p

p∑
k=1

∥∥gk∥∥
2

∥∥yk∥∥
2

+ E
[∥∥gk∥∥

2

∥∥yk∥∥
2

])
‖e‖2

≤ ‖Q2(q′)− E [Q2(q′)]‖2 + 2εmax
k∈[p]

∥∥gk∥∥
2

(
1√
θp

+ max
k∈[p]

∥∥gk∥∥
2

)
. (F.75)

Applying the above estimates for maxk∈[p]

∥∥gk∥∥
2
, and taking t = ξθ−2n−1p−1 in Lemma F.7 and applying a

union bound, then setting ε = ξθ−2n−2/40, we obtain that

‖Q2(q)− E [Q2(q)]‖2 ≤
ξ

θ2np
+

ξ

20θ2n2
4

√
n

p

(
1√
θp

+ 4

√
n

p

)
≤ 2ξ

θ2np
(F.76)

holds for all q ∈ Sn−1, with probability at least 1− exp (−n/2)− exp
(
− c3(ξ)p

θ3n3 + c4 (ξ)n log n
)
.

Overall, it is enough to take p ≥ Cn4 log n for some large C to make the above events to hold with
overwhelming probability, as desired.

F.4 Q′(q) approximates Q(q)

Proposition F.10. Suppose θ > 1√
n
. For any ξ > 0, there exists some constant C (ξ), such that whenever

exp (n/2) /2 ≥ p ≥ C (ξ)n4 log n, the following bounds

sup
q∈Sn−1

|Q′1(q)−Q1(q)| ≤ ξ

θ5/2n3/2p
(F.77)

sup
q∈Sn−1

‖Q′2(q)−Q2(q)‖2 ≤ ξ

θ2np
, (F.78)

hold for all q ∈ Sn−1, with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′.

Proof. First, for any q ∈ Sn−1, from D.5, we know that

|Q1(q)−Q′1(q)|

=

∣∣∣∣∣1p
p∑
k=1

x0kSλ
[
q>yk

]
− 1

p

p∑
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x0kSλ
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p
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≤ 1

p
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|x0k|
∣∣Sλ [q>yk

]
− Sλ

[
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]∣∣+
1

p
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|x0k|
∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ ∣∣Sλ [q>y′k
]∣∣ . (F.79)

Let I = supp(x0). Conditioned on the support, using the facts that Sλ[·] is a nonexpansive operator, we
obtain

sup
q∈Sn−1

|Q1(q)−Q′1(q)| ≤ 1

p
sup

q∈Sn−1

∑
k∈I
|x0k|

∥∥q> (yk − y′k
)∥∥

2
+

∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ 1

p
sup

q∈Sn−1

∑
k∈I
|x0k|

∣∣q>y′k
∣∣

=
1√
θp3/2

(
‖YI −Y′I‖`2→`1 +

∣∣∣∣1− 1

‖x0‖2

∣∣∣∣ ‖Y′I‖`2→`1) . (F.80)
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By Lemma B.1 and Lemma B.3 in Appendix B, we have the following holds

sup
q∈Sn−1

|Q1(q)−Q′1(q)| ≤ 1√
θp3/2

(
10

θ

√
n log p+

2
√

2

5

√
n log p

θ3p
× 7
√

2θp

)
≤ 16

θ3/2p3/2

√
n log p, (F.81)

with probability at least 1 − c1 exp (−c2n) for some positive constants c1 and c2. Since the above holds
uniformly for any support pattern I, we conclude that

sup
q∈Sn−1

|Q1(q)−Q′1(q)| ≤ 16

θ3/2p3/2

√
n log p (F.82)

with probability at least 1− c1 exp (−c2n). Now it is sufficient to let p ≥ C (ξ)n4 log n for some C (ξ) > 0 to
obtain the claimed result.

Similarly, by Lemma B.3 and Lemma B.4 in Appendix B, we have

sup
q∈Sn−1
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= sup
q∈Sn−1

∥∥∥∥∥1

p

p∑
k=1

gkSλ
[
q>yk

]
− 1

p

p∑
k=1

g′kSλ
[
q>y′k

]∥∥∥∥∥
2

≤ sup
q∈Sn−1

∥∥∥∥∥1

p

p∑
k=1

gkSλ
[
q>yk

]
− 1

p

p∑
k=1

g′kSλ
[
q>yk

]∥∥∥∥∥
2

+

∥∥∥∥∥1

p
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p
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× 3
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× 10

θ

√
n log p
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√
log p

θ3/2p3/2
(F.83)

holds conditioned on any support pattern I, with probability at least 1 − c3 exp (−c4n) for some positive
constants c3 and c4, which similarly implies the bound holds uniformly, regardless of the support, with the
same probability. It is sufficiently to have exp (n/2) /2 ≥ p ≥ C2 (ξ)n4 log n to obtain the claimed result.

G Large |q1| Iterates Staying in Safe Region for Rounding

Proposition G.1. There exists a constant θ0 > 0, such that for any θ ∈
(

1√
n
, θ0

)
, whenever exp (n) ≥ p ≥ Cn4 log n

for some large constant C > 0, we have

|Q′1(q)|
‖Q′(q)‖2

≥ 2
√
θ, (G.1)

for all q ∈ Sn−1 satisfying |q1| > 3
√
θ, with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and

c′′.

Proof. For notational simplicity, w.l.o.g. we will proceed to prove assuming q1 > 0. The proof for q1 < 0 is
similar by symmetry. It is equivalent to show that

‖Q′2 (q)‖2
|Q′1 (q)| <

√
1

4θ
− 1, (G.2)

34



which is implied by

L (q)
.
=
‖EQ2(q)‖2 + ‖Q′2(q)− EQ2(q)‖2

EQ1 (q)− |Q′1 (q)− EQ1 (q)| <

√
1

4θ
− 1 (G.3)

for any q ∈ Sn−1 satisfying q1 > 3
√
θ. Recall from (F.22) that

EQ1(q) =

√
θ

p

{[
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σ

)
+ βΨ
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[
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(
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)
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, (G.4)

where

α =
1√
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q1√
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+ 1

)
, β =
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(
q1√
θ
− 1

)
, σ = ‖q2‖2 /

√
p. (G.5)

Noticing the fact that

ψ

(
β

σ

)
− ψ

(
−α
σ

)
≥ 0, (G.6)

Ψ

(
β

σ

)
= Ψ

(
1√

1− q2
1

(
q1√
θ
− 1

))
≥ Ψ (2) ≥ 19

20
for q1 > 3

√
θ, (G.7)

we have

EQ1 (q) ≥
√
θ

p

{
q1√
θ
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Ψ
(
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)
+ Ψ

(
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)]
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(
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)}
≥ 2
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θ

p
Ψ

(
β

σ
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≥ 19
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√
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p
. (G.8)

Moreover, from (F.23), we have

‖EQ2 (q)‖2 = ‖q2‖2
{

2 (1− θ)
p

Ψ

(
−λ
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)
+
θ

p
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Ψ
(
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≤ 2 (1− θ)
p

Ψ (−1) +
θ

p
[Ψ (−1) + 1] ≤ 2

p
Ψ (−1) +

θ

p
≤ 2

5p
+
θ

p
, (G.10)

where we have used the fact that −λ/σ ≤ −1 and −α/σ ≤ −1. Moreover, from results in Proposition F.9 and
Proposition F.10 in Appendix F , we know that

sup
q∈Sn−1

|Q′1(q)− EQ1(q)| ≤ sup
q∈Sn−1

|Q′1(q)−Q1(q)|+ sup
q∈Sn−1

|Q1(q)− EQ1(q)| ≤ 1

8000θ5/2n3/2p
, (G.11)

sup
q∈Sn−1

‖Q′(q)− EQ(q)‖2 ≤ sup
q∈Sn−1

‖Q′(q)−Q(q)‖2 + sup
q∈Sn−1

‖Q(q)− EQ(q)‖2 ≤
1

8000θ2np
(G.12)

hold with probability at least 1− c′ exp (−c′′n) for some positive constants c′ and c′′ when p ≥ Ω
(
n4 log n

)
.

Hence, with overwhelming probability, we have

L (q) ≤
2
5p + θ

p + 1
8000θ2np

19
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p − 1

8000θ5/2n3/2p

≤
3
5

18
√
θ

10

≤ 1

3
√
θ
<

√
1

4θ
− 1, (G.13)

whenever θ is sufficiently small. This completes the proof.

Now, keep the notation in Appendix F for general orthonormal basis. For any current iterate q ∈ Sn−1

that is close enough to the target solution, i.e.,
∣∣〈q,R>e1

〉∣∣ = |〈Rq, e1〉| ≥ 3
√
θ, we have∣∣∣〈Q′

(
q; Ŷ

)
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〉∣∣∣∥∥∥Q′ (q; Ŷ
)∥∥∥

2
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)
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2

=
|〈Q′ (Rq; Y′) , e1〉|
‖Q′ (Rq; Y′)‖2

, (G.14)
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where we have applied the identity proved in (F.11). Taking Rq ∈ Sn−1 as the object of interest, by Proposi-
tion G.1, we conclude that

|〈Q′ (Rq; Y′) , e1〉|
‖Q′ (Rq; Y′)‖2

≥ 2
√
θ (G.15)

with overwhelming probability.

H Bounding Iteration Complexity

Proposition H.1. There is a constant θ0 > 0, such that for any θ ∈
(

1√
n
, θ0

)
, with probability at least 1−c′ exp (−c′′n)

(c′ and c′′ are positive constants), the ADM algorithm in Algorithm 1, with any initialization q(0) ∈ Sn−1 satisfying∣∣∣q(0)
1

∣∣∣ ≥ 1
4
√
θn
, will produce some iterate q with |q̄1| > 3

√
θ at least once in at most O(n4 log n) iterations, provided

exp (n) ≥ p ≥ Cn4 log n for some large constant C.

Proof. Recall from Proposition F.1 in Appendix F, the gap

G′(q) =
|Q′1(q)|
|q1|

− ‖Q
′
2(q)‖2
‖q‖2

≥ 1

4000θ2np
(H.1)

holds uniformly over q ∈ Sn−1 satisfying 1
4
√
θp
≤ |q1| ≤ 3

√
θ with probability at least 1− c1 exp (−c2n) for

positive constants c1 and c2, provided p ≥ Ω
(
n4 log n

)
. The gap G′(q) implies that∣∣∣Q̃′1 (q)
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⇐⇒
∣∣∣Q̃′1 (q)

∣∣∣ ≥ |q1|
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√
1−
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4000θ2np ‖Q′ (q)‖2

(H.3)
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∣∣∣2 ≥ |q1|2
(
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‖q2‖22
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. (H.4)

Now we know that

sup
q∈Γ
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q∈Γ
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q∈Γ
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= sup
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≤ 1
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. (H.9)

From Lemma A.11, we know that supk∈[p]

∥∥gk∥∥
2
≤ √2 log p/

√
p + 2

√
n/
√
p with probability at least 1 −

exp (−n/2). Then provided p ≤ exp (n) and θ ≥ 1/
√
n, we obtain

sup
q∈Γ
‖Q′ (q)‖2 ≤

50n

p
. (H.10)
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So we conclude that ∣∣∣Q̃′1 (q)
∣∣∣

|q1|
≥
√

1 +
1− 9θ

40002 × 502 × θ4n4
. (H.11)

Therefore, starting with any q ∈ Sn−1 such that |q1| ≥ 1
4
√
θn

, we will need at most

T =
2 log

(
3
√
θ/ 1

4
√
θn

)
log
(

1 + 1−9θ
40002×502×θ4n4

) =
2 log (12θ
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log
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40002×502×θ4n4

) ≤ 2 log (12θ
√
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(log 2) 1−9θ
40002×502×θ4n4
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steps to arrive at a q ∈ Sn−1 with |q̄1| ≥ 3
√
θ for the first time, where C > 0 is a numerical constant, and we

assume θ0 < 1/9 and used the fact that log (1 + x) ≥ (log 2)x for x ∈ [0, 1] to simplify the final result.

I Rounding to the Desired Solution
For convenience, we will assume the notations we used in Appendix B. Then the rounding scheme can be
written as

min
q
‖Y′Rq‖1 , s.t. 〈q,q〉 = 1, (I.1)

for some orthogonal matrix R. We will show the rounding procedure get us to the desired solution with
overwhelming probability, regardless of the particular orthonormal basis used.

Proposition I.1. Suppose the input basis is Y′ defined in (B.3) and the ADM algorithm produces q̄ ∈ Sn−1 with
q1 > 2

√
θ. Then there exists some constants C, θ0 > 0, such that when p ≥ Cn2 and θ ∈

(
1√
n
, θ0

)
, the rounding

procedure with r = q returns the desired solution e1 with probability at least 1 − c exp (−c′n) for some numerical
constants c, c′ > 0.

Proof. The rounding program (I.1) can be written as

inf
q
‖Y′q‖1 , s.t. q1q1 + 〈q2,q2〉 = 1. (I.2)

Consider its relaxation

inf
q
‖Y′q‖1 , s.t. q1q1 + ‖q2‖2 ‖q2‖2 ≥ 1. (I.3)

It is obvious that the feasible set of (I.3) contains that of (I.2). So if e1 is the unique optimal solution (UOS) of
(I.3), it is also the UOS of (I.2). Let I = supp(x0), and consider a modified problem
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q

∥∥∥∥ x0
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∥∥∥∥
1

|q1| − ‖G′Iq2‖1 + ‖G′Icq2‖1 , s.t. q1q1 + ‖q2‖2 ‖q2‖2 ≥ 1. (I.4)

The objective value of (I.4) lower bounds the objective value of (I.3), and are equal when q = e1. So if q = e1

is the UOS to (I.4), it is also UOS to (I.3), and hence UOS to (I.2) by the argument above. Now
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≥ −‖GIq2‖1 + ‖GIcq2‖1 − ‖G−G′‖`2→`1 ‖q2‖2 . (I.6)

When p ≥ Ω
(
n2
)
, by Lemma A.14 and Lemma B.3, we know that

− ‖GIq2‖1 + ‖GIcq2‖1 − ‖G−G′‖`2→`1 ‖q2‖2

≥ −6

5

√
2

π
2θ
√
p ‖q2‖2 +

24

25

√
2

π
(1− 2θ)

√
p ‖q2‖2 − 8

√
n ‖q2‖2

.
= ζ ‖q2‖2 (I.7)
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holds with probability at least 1 − c1 exp (−c2n) for some positive constants c1 and c2. Thus, we make a
further relaxation of problem (I.2) by

inf
q

∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

|q1|+ ζ ‖q2‖2 , s.t. q1q1 + ‖q2‖2 ‖q2‖2 ≥ 1, (I.8)

whose objective value lower bounds that of (I.4). By similar arguments, if e1 is UOS to (I.8), it is UOS to (I.2). At
the optimal solution to (I.8), notice that it is necessary to have sign(q1) = sign(q1) and q1q1 +‖q2‖2 ‖q2‖2 = 1.
So (I.8) is equivalent to

inf
q

∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

|q1|+ ζ ‖q2‖2 , s.t. q1q1 + ‖q2‖2 ‖q2‖2 = 1. (I.9)

which is further equivalent to

inf
q1

∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

|q1|+ ζ
1− |q1| |q1|
‖q2‖2

, s.t. |q1| ≤
1

|q1|
. (I.10)

Notice that the problem in (I.10) is linear in |q1| with a compact feasible set, which indicates that the optimal
solution only occur at the boundary points |q1| = 0 and |q1| = 1/ |q1|. Therefore, q = e1 is the UOS of (I.10)
if and only if

1

|q1|

∥∥∥∥ x0

‖x0‖2

∥∥∥∥
1

<
ζ

‖q2‖2
. (I.11)

Since
∥∥∥ x0

‖x0‖2

∥∥∥
1
≤ √2θp conditioned on E0, it is sufficient to have

√
2θp

2
√
θ
≤ ζ =

24

25

√
2

π

√
p

(
1− 9

2
θ − 25

3

√
n

p

)
. (I.12)

Therefore there exists a constant θ0 > 0, such that whenever θ ≤ θ0, the rounding returns e1, completing the
proof.

When the input basis is Y′R for some R 6= I, if the ADM algorithm produces some q = R>q′, such that
q′1 > 2

√
θ. It is not hard to see that now the rounding (I.1) is equivalent to

min
q
‖Y′Rq‖1 , s.t. 〈q′,Rq〉 = 1. (I.13)

Renaming Rq, it follows from the above argument that at optimum q? it holds that Rq? = e1 with over-
whelming probability.

38


	Introduction
	Problem Formulation and Global Optimality
	Algorithm based on Alternating Direction Method (ADM)
	Analysis
	Main Results
	A Sketch of Analysis

	Experimental Results
	Phase Transition on Synthetic Data
	Exploratory Experiments on Faces

	Discussion
	Appendices
	Technical Tools and Preliminaries
	The Random Basis vs. Its Orthonormalized Version
	Proof of 1/ 2 Global Optimality
	Proof of Main Result
	Good Initialization
	Lower Bounding Finite Sample Gap G'(q)
	Lower Bounding the Expected Gap G(q)
	Sketch of the Proof
	Auxiliary Results Used in the Proof

	Finite Sample Concentration
	Concentration for Q1
	Concentration for Q2

	Union Bound
	 Q'(q) approximates Q(q) 

	Large | q1 | Iterates Staying in Safe Region for Rounding
	Bounding Iteration Complexity
	Rounding to the Desired Solution

