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In apprenticeship learning, we assume that an expert is 
available who is capable of performing the desired maneu-
vers. We then leverage these demonstrations to learn all of the 
necessary components for our control system. In particular, 
the demonstrations allow us to learn a model of the helicop-
ter dynamics, as well as appropriate choices of target trajec-
tories and reward parameters for input into a reinforcement 
learning or optimal control algorithm.

The remainder of this paper is organized as follows: Sec
tion 2 briefly overviews related work in the robotics literature 
that is similar in spirit to our approach. Section 3 describes 
our basic modeling approach, where we develop a model of 
the helicopter dynamics from data collected under human 
control, and subsequently improve this model using data 
from autonomous flights. Section 4 presents an apprentice-
ship-based trajectory learning algorithm that learns idealized 
trajectories of the maneuvers we wish to fly. This algorithm 
also provides a mechanism for improving our model of the 
helicopter dynamics along the desired trajectory. Section 5 
describes our control algorithm, which is based on differen-
tial dynamic programming (DDP).15 Section 6 describes our 
helicopter platform and presents our experimental results.

2. RELATED WORK
Although no prior works span our entire setting of appren-
ticeship learning for control, there are separate pieces of 
work that relate to various components of our approach.

Atkeson and Schaal,8 for instance, use multiple demon-
strations to learn a model for a robot arm, and then find an 
optimal controller in their simulator, initializing their opti-
mal control algorithm with one of the demonstrations.

The work of Calinon et al.11 considered learning trajectories 
and constraints from demonstrations for robotic tasks. There, 
however, they do not consider the system’s dynamics or pro-
vide a clear mechanism for the inclusion of prior knowledge, 
which will be a key component of our approach as detailed in 
Section 4. Our formulation will present a principled, joint opti-
mization which takes into account the multiple demonstra-
tions, as well as the (complex) system dynamics.

Among others, An et al.6 and Abbeel et al.5 have exploited 
the idea of trajectory-specific model learning for control. 
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Abstract
Autonomous helicopter flight is widely regarded to be a 
highly challenging control problem. As helicopters are highly 
unstable and exhibit complicated dynamical behavior, it is 
particularly difficult to design controllers that achieve high 
performance over a broad flight regime.

While these aircraft are notoriously difficult to control, 
there are expert human pilots who are nonetheless capable 
of demonstrating a wide variety of maneuvers, including 
aerobatic maneuvers at the edge of the helicopter’s perfor-
mance envelope. In this paper, we present algorithms for 
modeling and control that leverage these demonstrations 
to build high-performance control systems for autonomous 
helicopters. More specifically, we detail our experiences with 
the Stanford Autonomous Helicopter, which is now capable 
of extreme aerobatic flight meeting or exceeding the perfor-
mance of our own expert pilot.

1. INTRODUCTION
Autonomous helicopter flight represents a challenging con-
trol problem with high-dimensional, asymmetric, noisy, non-
linear, nonminimum phase dynamics. Helicopters are widely 
regarded to be significantly harder to control than fixed-wing 
aircraft. (See, e.g., Leishman,18 Seddon.31) At the same time, 
helicopters provide unique capabilities, such as in-place hover 
and low-speed flight, important for many applications. The 
control of autonomous helicopters thus provides a challenging 
and important test bed for learning and control algorithms.

There is a considerable body of research concerning con-
trol of autonomous (RC) helicopters in the typical “upright 
flight regime.” This has allowed autonomous helicopters 
to reliably perform many practical maneuvers, such as sus-
tained hover, low-speed horizontal flight, and autonomous 
landing.9, 16, 17, 24, 28, 30

In contrast, autonomous flight achievements in other 
flight regimes have been limited. Gavrilets et al.14 performed 
some of the first autonomous aerobatic maneuvers: a stall-
turn, a split-S, and an axial roll. Ng et al.23 achieved sustained 
autonomous inverted hover. While these results significantly 
expanded the potential capabilities of autonomous heli-
copters, it has remained difficult to design control systems 
capable of performing arbitrary aerobatic maneuvers at a per-
formance level comparable to human experts.

In this paper, we describe our line of autonomous helicop-
ter research. Our work covers a broad approach to autono-
mous helicopter control based on “apprenticeship learning” 
that achieves expert-level performance on a vast array of 
maneuvers, including extreme aerobatics and autonomous 
autorotation landings.1, 2, 12, 23 (Refer footnote a.)

A previous version of this paper, entitled “Learning for 
Control from Multiple Demonstrations” was published 
in Proceedings of the 26th International Conference of 
Machine Learning, (ICML 2008), 144–151.

a  Autorotation is an emergency maneuver that allows a trained pilot to de-
scend and land the helicopter without engine power.
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By our convention, the superscripts b indicate that we 
are using body coordinates. We note our model explicitly 
encodes the dependence on the gravity vector (gb

x, gb
y, gb

z ) and 
has a sparse dependence of the accelerations on the current 
velocities, angular rates, and inputs. The terms wx, wy, wz, 

are zero mean Gaussian random variables, 
which represent the perturbation of the accelerations due to 
noise (or unmodeled effects).

To learn the coefficients, we record data while the heli-
copter is being flown by our expert pilot. We typically ask 
our pilot to fly the helicopter through the flight regimes we 
would like to model. For instance, to build a model for hov-
ering, the pilot places the helicopter in a stable hover and 
sweeps the control sticks back and forth at varying frequen-
cies to demonstrate the response of the helicopter to differ-
ent inputs while hovering. Once we have collected this data, 
the coefficients (e.g., Ax, Bx, C1, etc.) are estimated using lin-
ear regression.

When we want to perform a new maneuver, we can col-
lect data from the flight regimes specific to this maneu-
ver and build a new model. For aerobatic maneuvers, this 
involves having our pilot repeatedly demonstrate the desired 
maneuver.

It turns out that, in practice, these models generalize 
reasonably well and can be used as a “crude” starting point 
for performing aerobatic maneuvers. In previous work,2 we 
demonstrated that models of the above form are sufficient 
for performing several maneuvers including “funnels” (fast 
sideways flight in a circle) and in-place flips and rolls. With 
a “crude” model trained from demonstrations of these 
maneuvers, we can attempt the maneuver autonomously. 
If the helicopter does not complete the maneuver success-
fully, the model can be re-estimated, incorporating the data 
obtained during the failed trial. This new model more accu-
rately captures the dynamics in the flight regimes actually 
encountered during the autonomous flight and hence can 
be used to achieve improved performance during subse-
quent attempts.

The observation that we can leverage pilot demonstra-
tions to safely obtain “reasonable” models of the helicopter 
dynamics is the key to our approach. While these models may 
not be perfect at first, we can often obtain a good approxima-
tion to the true dynamics provided we attempt to model only 
a small portion of the flight envelope. This model can then, 
optionally, be improved by incorporating new data obtained 
from autonomous flights. Our trajectory learning algorithm 
(Section 4) exploits this same observation to achieve expert-
level performance on an even broader range of maneuvers.

4. TRAJECTORY LEARNING
Once we are equipped with a (rudimentary) model of the 
helicopter dynamics, we need to specify the desired trajec-
tory to be flown. Specifying the trajectory by hand, while 
tedious, can yield reasonable results. Indeed, much of our 
own previous work used hand-coded target trajectories.2 
Unfortunately these trajectories usually do not obey the 
system dynamics—that is, the hand-specified trajectory 
is infeasible, and cannot actually be flown in reality. This 
results in a somewhat more difficult control problem since 

In contrast to our setting, though, their algorithms do not 
coherently integrate data from multiple (suboptimal) dem-
onstrations by experts. We will nonetheless use similar ideas 
in our trajectory learning algorithm.

Our work also has strong connections with recent work on 
inverse reinforcement learning, which extracts a reward func-
tion from expert demonstrations. See, e.g., Abbeel,4 Neu,22 
Ng, Ramachandran, Ratliff,25–27 Syed.32 We will describe a 
methodology roughly corresponding to the inverse RL algo-
rithm of Abbeel4 to tune reward weights in Section 5.2.

3. MODELING
The helicopter state s comprises its position (x, y, z), orien-
tation (expressed as a unit quaternion q), velocity (x., y., z.), 
and angular velocity (wx, wy, wz). The pitch angle of a blade 
is changed by rotating it around its long axis changing the 
amount of thrust the blade generates. The helicopter is con-
trolled via a four-dimensional action space:

1.	 u1 and u2: The lateral (left–right) and longitudinal 
(front–back) cyclic pitch controls cause the helicopter 
to roll left or right, and pitch forward or backward, 
respectively.

2.	 u3: The tail rotor pitch control changes tail rotor thrust, 
controlling the rotation of the helicopter about its ver-
tical axis.

3.	 u4: The main rotor collective pitch control changes the 
pitch angle of the main rotor’s blades, by rotating the 
blades around an axis that runs along the length of the 
blade. The resulting amount of upward thrust (gener-
ally) increases with this pitch angle; thus this control 
affects the main rotor’s thrust.

By using the cyclic pitch and tail rotor controls, the pilot can 
rotate the helicopter into any orientation. This allows the 
pilot to direct the thrust of the main rotor in any particular 
direction (and thus fly in any particular direction) by rotat-
ing the helicopter appropriately.

Following our approach from Abbeel,3 we learn a model 
from flight data that predicts accelerations as a function of the 
current state and inputs. Accelerations are then integrated to 
obtain the state changes over time. To take advantage of sym-
metry of the helicopter, we predict linear and angular accel-
erations in a “body-coordinate frame” (a coordinate frame 
attached to the helicopter). In this body-coordinate frame, 
the x-axis always points forward, the y-axis always points to 
the right, and z-axis always points down with respect to the 
helicopter.

In particular, we use the following model:
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the control algorithm must determine an appropriate trade-
off between the errors it must inevitably make. As well, it 
complicates our modeling process because we do not know, 
a priori, the trajectory that the controller will attempt to fly, 
and hence cannot focus our data collection in that region of 
state space.

One solution to these problems is to leverage expert dem-
onstrations. By using a trajectory acquired from a demon-
stration aboard the real helicopter as the target trajectory 
we are guaranteed that our target is a feasible trajectory. 
Moreover, our data collection will already be focused on the 
proper flight regime, provided that our expert demonstra-
tions cover roughly the same parts of state space each time. 
Thus, we expect that our model of the dynamics along the 
demonstrated trajectory will be reasonably accurate. This 
approach has been used successfully to perform autono-
mous autorotation landings with our helicopter.1

While the autorotation maneuver can be demonstrated 
relatively consistently by a skilled pilot,b it may be difficult 
or impossible to obtain a perfect demonstration that is suit-
able for use as a target trajectory when the maneuver does 
not include a steady-state regime, or involves complicated 
adjustments over long periods of time. For example, when 
our expert pilot attempts to demonstrate an in-place flip, the 
helicopter position often drifts away from its starting point 
unintentionally. Thus, when using this demonstration as 
our desired trajectory, the helicopter will repeat the pilot’s 
errors. However, repeated expert demonstrations are often 
suboptimal in different ways, suggesting that a large number 
of demonstrations could implicitly encode the ideal trajec-
tory that the (suboptimal) expert is trying to demonstrate.

In Coates,12 we proposed an algorithm that approxi-
mately extracts this implicitly encoded optimal demonstra-
tion from multiple suboptimal expert demonstrations. This 
algorithm also allows us to build an improved, time-varying 
model of the dynamics along the resulting trajectory suit-
able for high-performance control. In doing so, the algo-
rithm allows the helicopter to not only mimic the behavior 
of the expert but even perform significantly better.

Properly extracting the underlying ideal trajectory from a 
set of suboptimal trajectories requires a significantly more 
sophisticated approach than merely averaging the states 
observed at each time step. A simple arithmetic average of 
the states would result in a trajectory that does not obey the 
constraints of the dynamics model. Also, in practice, each 
of the demonstrations will occur at different rates so that 
attempting to combine states from the same time step in 
each trajectory will not work properly.

Following Coates,12 we propose a generative model that 
describes the expert demonstrations as noisy observations of 
the unobserved, intended target trajectory, where each dem-
onstration is possibly warped along the time axis. We use an 
expectation–maximization (EM) algorithm to both infer the 
unobserved, intended target trajectory and a time-alignment 

of all the demonstrations. The time-aligned demonstrations 
provide the appropriate data to learn good local models in 
the vicinity of the trajectory—such trajectory-specific local 
models tend to greatly improve control performance.

4.1. Basic generative model
From our expert pilot we obtain M demonstration trajecto-
ries of length Nk, for k = 0..M − 1. Each trajectory is a sequence 
of states, sk

j , and control inputs, uk
j , composed into a single 

state vector:

Our goal is to estimate a “hidden” target trajectory of length 
H, denoted similarly:

We use the following notation: y = {yk
j  | j = 0..Nk - 1,  

k = 0..M - 1}, z = {zt|t = 0..H}, and similarly for other indexed 
variables.

The generative model for the ideal trajectory is given by 
an initial state distribution z0 ~ N ( m0, Σ0) and an approxi-
mate model of the dynamics

	 	 (1)

The dynamics model does not need to be particularly accu-
rate. In fact, in our experiments, this model is of the form 
described in Section 3, trained on a large corpus of data that 
is not even specific to the trajectory we want to fly.c In our 
experiments (Section 6) we provide some concrete examples 
showing how accurately the generic model captures the true 
dynamics for our helicopter.

Our generative model represents each demonstration as 
a set of independent “observations” of the hidden, ideal tra-
jectory z. Specifically, our model assumes

	
	 (2)

Here t k
j  is the time index in the hidden trajectory to which 

the observation yk
j  is mapped. The noise term in the observa-

tion equation captures both inaccuracies in estimating the 
observed trajectories from sensor data, as well as errors in 
the maneuver that are the result of the human pilot’s imper-
fect demonstration.d

b  The autorotation maneuver consists of a steady-state “glide” followed by 
a short (several second) “flare” before landing. Though the maneuver is not 
easy to learn, these components tend not to vary much from one demonstra-
tion to the next.

c  The state transition model also predicts the controls as a function of the 
previous state and controls. In our experiments we predict u*t + 1 as u*t plus 
Gaussian noise.
d  Even though our observations, y, are correlated over time with each other 
due to the dynamics governing the observed trajectory, our model assumes 
that the observations yk

j  are independent for all j = 0 . . Nk − 1 and k = 0 . . M − 1.
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The time indices t k
j  are unobserved, and our model 

assumes the following distribution with parameters dk
i  :

	
	 (3)

	 	 (4)

To accommodate small, gradual shifts in time between the 
hidden and observed trajectories, our model assumes the 
observed trajectories are subsampled versions of the hidden 
trajectory. We found that having a hidden trajectory length 
equal to twice the average length of the demonstrations, i.e., 

, gives sufficient resolution.
Figure 1 depicts the graphical model corresponding to 

our basic generative model. Note that each observation yk
j 

depends on the hidden trajectory’s state at time t k
j, which 

means that for t k
j unobserved, yk

j depends on all states in 
the hidden trajectory with which it could potentially be 
associated.

4.2. Extensions to the generative model
We have assumed, thus far, that the expert demonstrations 
are misaligned copies of the ideal trajectory merely cor-
rupted by Gaussian noise. Listgarten et al. have used this 
same basic generative model (for the case where f (.) is the 
identity function) to align speech signals and biological 
data.19, 20 In our application to autonomous helicopter flight, 
we can augment the basic model described above to account 
for other sources of error that are important for modeling 
and control.
Learning Local Model Parameters: We can substantially 
improve our modeling accuracy by using a time-varying 
model ft(.) that is specific to the vicinity of the intended tra-
jectory at each time t.

We express ft as our “crude” model (from Section 3), f, 
augmented with a bias term,e b*t :

To regularize our model, we assume that b*t  changes only 
slowly over time. Specifically 

We incorporate the bias into our observation model by 
computing the observed bias  for each of 
the observed state transitions, and modeling this as a direct 
observation of the “true” model bias corrupted by Gaussian 
noise.

The result of this modification is that the ideal trajec-
tory must not only look similar to the demonstration tra-
jectories, but it must also obey a dynamics model which 

includes those modeling errors consistently observed in the 
demonstrations.
Factoring Out Demonstration Drift: It is often difficult, even 
for an expert pilot, during aerobatic maneuvers to keep the 
helicopter centered around a fixed position. The recorded 
position trajectory will often drift around unintentionally. 
Since these position errors are highly correlated, they are not 
explained well by the Gaussian noise term in the observation 
model. The basic dynamics model is easily augmented with 
“drift” terms to model these errors, allowing us to infer the 
drift included in each demonstration and remove it from the 
final result (see Coates12 for details).
Incorporating Prior Knowledge: Even though it might be 
hard to specify the complete ideal trajectory in state space, 
we might still have prior knowledge about the trajectory. For 
example, for the case of a helicopter performing an in-place 
flip, our expert pilot can tell us that the helicopter should stay 
at a fixed position while it is flipping. We show in Coates12 that 
these bits of knowledge can be incorporated into our model 
as additional noisy observations of the hidden states, where 
the variance of the noise expresses our confidence in the accu-
racy of the expert’s advice. In the case of the flip, the variance 
expresses our knowledge that it is, in fact, impossible to flip 
perfectly in place and that the actual position of the helicop-
ter may vary slightly from the position given by the expert.

4.3. Trajectory learning algorithm
Our learning algorithm will automatically find the time-
alignment indices t, the time-index transition probabilities 
d, and the covariance matrices Σ(·) by (approximately) maxi-
mizing the joint likelihood of the observed trajectories y and 
the observed prior knowledge about the ideal trajectory, r, 
while marginalizing out over the unobserved, intended tra-
jectory z. Concretely, our algorithm (approximately) solves

	 	 (5)

Then, once our algorithm has found t, d, Σ(·), it finds the most 
likely hidden trajectory, namely the trajectory z that maxi-
mizes the joint likelihood of the observed trajectories y and 
the observed prior knowledge about the ideal trajectory for 
the learned parameters t, d, Σ(·). The joint optimization in 

e  Our generative model can incorporate richer local models. We discuss 
our choice of merely using biases in Coates.12 We also show there how to 
estimate richer models post hoc using the output of our trajectory learning  
algorithm.

Figure 1: Graphical model representing our trajectory assumptions. 
(Shaded nodes are observed.)
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Equation 5 is difficult because (as can be seen in Figure 1) 
the lack of knowledge of the time-alignment index variables 
t introduces a very large set of dependencies between all the 
variables. However, when t is known, the optimization prob-
lem in Equation 5 greatly simplifies thanks to context specific 
independencies.10 For instance, knowledge that t k

1 = 3 tells us 
that y k

1 depends only on z3. Thus, when all of the t are fixed, we 
obtain a simplified model such as the one shown in Figure 2.  
In this model we can directly estimate the multinomial 
parameters d in closed form; and we have a standard HMM 
parameter learning problem for the covariances Σ(·), which 
can be solved using the EM algorithm13—often referred to 
as Baum–Welch in the context of HMMs. Concretely, for our 
setting, the EM algorithm’s E-step computes the pairwise 
marginals over sequential hidden state variables by running 
a (extended) Kalman smoother; the M-step then uses these 
marginals to update the covariances Σ(·).

To also optimize over the time-indexing variables t, we 
propose an alternating optimization procedure. For fixed Σ(·) 
and d, and for fixed z, we can find the optimal time-indexing 
variables t using dynamic programming over the time-index 
assignments for each demonstration independently. The 
dynamic programming algorithm to find t is known in the 
speech recognition literature as dynamic time warping29 
and in the biological sequence alignment literature as the 
Needleman–Wunsch algorithm.21 The fixed z we use is the 
one that maximizes the likelihood of the observations for 
the current setting of parameters t, d, Σ(·).f

In practice, rather than alternating between complete 
optimizations over Σ(·), d and t, we only partially optimize 
over Σ(·), running only one iteration of the EM algorithm.

Complete details of the algorithm are provided in Coates.12

5. CONTROLLER DESIGN
Using the methods of Sections 3 and 4, we can obtain a 
good target trajectory and a high-accuracy dynamics model 
for this trajectory using pilot demonstrations. It remains 
to develop an adequate feedback controller that will allow 
the helicopter to fly this trajectory in reality. Our solution is 
based on the DDP algorithm, which we have used in previ-
ous work.1, 2

5.1. Reinforcement learning formalism and DDP
A reinforcement learning problem (or optimal control prob-
lem) can be described by a quintuple (S, A, T, H, s0, R), which 
is also referred to as a Markov decision process (MDP). Here 
S is the set of states; A is the set of actions or inputs; T  is the 
dynamics model, which is a set of probability distributions 
{P tsu} (P tsu(s′ | s, u) is the probability of being in state s′ at time 
t + 1 given the state and action at time t are s and u); H is the 
horizon or number of time steps of interest; s0 ∈ S is the ini-
tial state; R: S × A → ℝ is the reward function.

A policy p = (m0, m1, . . . , mH) is a tuple of mappings from 
states S to actions A, one mapping for each time t = 0, . . . , H.  

The expected sum of rewards when acting according to a 
policy p is given by: . The optimal policy p* 
for an MDP (S, A, T, H, s0, R) is the policy that maximizes the 
expected sum of rewards. In particular, the optimal policy 
is given by

The linear quadratic regulator (LQR) control problem is 
a special class of MDP, for which the optimal policy can be 
computed efficiently. In LQR the set of states S = ℝn, the set 
of actions/inputs A = ℝp

, the dynamics model is given by

where for all t = 0, . . . , H we have that At ∈ ℝn × n, Bt ∈ ℝn × p and wt is 
a mean zero random variable (with finite variance). The reward 
for being in state st and taking action/input ut is given by

Here Qt, Rt are positive semidefinite matrices which param-
eterize the reward function. It is well known that the opti-
mal policy for the LQR control problem is a time-varying 
linear feedback controller, which can be efficiently com-
puted using dynamic programming. (See, e.g., Anderson7 
for details on linear quadratic methods.)

The linear quadratic methods, which in their stan-
dard form as given above drive the state to zero, are easily 
extended to the task of tracking the desired trajectory s*0, . . . , s*H  
learned in Section 4. The standard formulation (which we 
use) expresses the dynamics and reward function as a func-
tion of the error state et = st - s*t  rather than the actual state st. 
(See, e.g., Anderson.7)

DDP approximately solves general continuous state-space 
MDP’s by iteratively approximating them by LQR problems. 
In particular, DDP solves an optimal control problem by iter-
ating the following steps:

1.	 Around the trajectory obtained from running the cur-
rent policy, compute: (i) a linear approximation to the 

Figure 2: Example of graphical model when t is known. (Shaded 
nodes are observed.)
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f  Fixing z means the dynamic time warping step only approximately opti-
mizes the original objective. Unfortunately, without fixing z, the indepen-
dencies required to obtain an efficient dynamic programming algorithm do 
not hold. In practice we find our approximation works very well.
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(nonlinear) error state dynamics and (ii) a quadratic 
approximation to the reward function.

2.	 Compute the optimal policy for the LQR problem 
obtained in Step 2 and set the current policy equal to 
the optimal policy for the LQR problem.

3.	 Simulate a trial starting from, s0, under the current 
policy and store the resulting trajectory.

In our experiments, we have a quadratic reward function, 
thus the only approximation made in the algorithm is the 
linearization of the dynamics. To bootstrap the process (i.e., 
to obtain an initial trajectory), we linearize around the target 
trajectory in the first iteration.

The result of DDP is a sequence of linear feedback con-
trollers that are executed in order. Since these controllers 
were computed under the assumption of linear dynamics, 
they will generally fail if executed from a state that is far from 
the linearization point. For aerobatic maneuvers that involve 
large changes in orientation, it is often difficult to remain 
sufficiently close to the linearization point throughout the 
maneuver. Our system, thus, uses DDP in a “receding hori-
zon” fashion. Specifically, we rerun DDP online, beginning 
from the current state of the helicopter, over a horizon that 
extends 2 s into the future.g The resulting feedback control-
ler obtained from this process is always linearized around 
the current state and, thus, allows the control system to 
continue flying even when it ventures briefly away from the 
intended trajectory.

5.2. Learning reward function parameters
Our quadratic reward is a function of 21 features (which 
are functions of the state and controls), consisting of the 
squared error state variables, the squared inputs, and 
squared change in inputs. Choosing the parameters for the 
reward function (i.e., choosing the entries of the matrices 
Qt, Rt used by DDP) is difficult and tedious to do by hand. 
Intuitively, the reward parameters tell DDP how to “trade off” 
between the various errors. Selecting this trade-off improp-
erly can result in some errors becoming too large (allowing 
the helicopter to veer off into poorly modeled parts of the 
state space), or other errors being regulated too aggressively 
(resulting in large, unsafe control outputs).

This problem is more troublesome when using infeasible 
target trajectories. For instance, for the aerobatic flips and 
rolls performed previously in Abbeel,2 a hand-coded target 
trajectory was used. That trajectory was not feasible, since 
it assumed that the helicopter could remain exactly fixed 
in space during the flip. Thus, there is always a (large) non-
zero error during the maneuver. In this case, the particular 
choice of reward parameters becomes critical, since they 
specify how the controller should balance errors throughout 
the flight.

Trajectories learned from demonstration using the meth-
ods presented in Section 4, however, are generally quite close 
to feasible for the real helicopter. Thus, in contrast to our 
prior work, the choice of trade-offs is less crucial when using 

these learned trajectories. Indeed, in our recent experiments 
it appears that a wide range of parameters work well with tra-
jectories learned from demonstration.h Nonetheless, when 
the need to make adjustments to these parameters arises, it 
is useful to be able to learn the necessary parameters, rather 
than tune them by mere trial and error.

Since we have expert demonstrations of the desired behav
ior (namely, following the trajectory) we can alleviate the tun-
ing problem by employing the apprenticeship learning via 
inverse reinforcement learning algorithm4 to select appro-
priate parameters for our quadratic reward function. In prac-
tice, in early iterations (before convergence) this algorithm 
tends to generate parameters that are dangerous to use on 
the real helicopter. Instead, we adjust the reward weights by 
hand following the philosophy, but not the strict formula-
tion of the inverse RL algorithm. In particular: we select the 
feature (state error) that differed most between our auton-
omous flights and the expert demonstrations, and then 
increase or decrease the corresponding quadratic penalties 
to bring the autonomous performance closer to that of the 
expert with each iteration.i Using this procedure, we obtain a 
good reward function in a small number of trials in practice.

We used this methodology to successfully select reward 
parameters to perform the flips and rolls in Abbeel,2 and 
continue to use this methodology as a guide in selecting 
reward parameters.

6. EXPERIMENTAL RESULTS

6.1. Experimental setup
For our experiments we have used two different autono-
mous helicopters. The experiments presented here were 
performed with an XCell Tempest helicopter (Figure 3), but 
we have also conducted autonomous aerobatic flights using 
a Synergy N9. Both of these helicopters are capable of profes-
sional, competition-level maneuvers. We instrumented our 
helicopters with a Microstrain 3DM-GX1 orientation sensor. 
A ground-based camera system measures the helicopter’s 
position. A Kalman filter uses these measurements to track 
the helicopter’s position, velocity, orientation, and angular 
rate.

We collected multiple demonstrations from our expert for 
a variety of aerobatic trajectories: continuous in-place flips 
and rolls, a continuous tail-down “tic toc,” and an airshow, 
which consists of the following maneuvers in rapid sequence: 
split-S, snap roll, stall-turn, loop, loop with pirouette, stall-
turn with pirouette, “hurricane” (fast backward funnel), knife- 
edge, flips and rolls, tic-toc, and inverted hover.

We use a large, previously collected corpus of hovering, 
horizontal flight, and mixed aerobatic flight data to build a 
crude dynamics model using the method of Section 3. This 
model and the pilot demonstrations are then provided to 
the trajectory learning algorithm of Section 4. Our trajectory 

g  The 2 s horizon is a limitation imposed by available computing power. Our 
receding horizon DDP controller executes at 20 Hz.

h  It is often sufficient to simply choose parameters that rescale the various 
reward features to have approximately the same magnitude.
i  For example, if our controller consistently uses larger controls than the ex-
pert but achieves lower position error, we would increase the control penalty 
and decrease the position penalty.
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learning algorithm includes bias terms, b*t , for each of the pre-
dicted accelerations, and hence will learn a time-dependent 
acceleration that is added to the crude base model. We also 
include terms to model position drift in the pilot demonstra-
tions, and incorporate our prior knowledge that flips and 
rolls should remain roughly in place, and that maneuvers 
like loops should be flown in a plane (i.e., they should look 
flat when viewed from the top).12

6.2. Trajectory learning results
Figure 4(a) shows the horizontal and vertical position of the 
helicopter during the two loops flown during the airshow 
performed by our pilot. The colored lines show the expert 
pilot’s demonstrations. The black dotted line shows the 
inferred ideal path produced by our algorithm. The loops 
are more rounded and more consistent in the inferred ideal 
path. We did not incorporate any prior knowledge to this 
effect. Figure 4(b) shows a top-down view of the same dem-
onstrations and inferred trajectory. This view shows that the 
algorithm successfully inferred a trajectory that lies in a ver-
tical plane, while obeying the system dynamics, as a result of 
the included prior knowledge.

Figure 4(c) shows one of the bias terms, namely the pre-
diction errors made by our crude model for the z-axis accel-
eration of the helicopter for each of the demonstrations 
(plotted as a function of time). Figure 4(d) shows the result 
after alignment (in color) as well as the inferred acceleration 
error (black dotted). We see that the bias measurements 

allude to errors approximately in the −1G to −2G range for 
the first 40 s of the airshow (a period that involves high-G 
maneuvering that is not predicted accurately by the “crude” 
model). However, only the aligned biases precisely show the 
magnitudes and locations of these errors along the trajec-
tory. The alignment allows us to build our ideal trajectory 
based upon a much more accurate model that is tailored to 
match the dynamics observed in the demonstrations.

6.3. Flight results
After constructing the idealized trajectories and models 
using our algorithms, we attempted to fly the trajectories 
on the actual helicopter. As described in Section 5, we use 
a receding-horizon DDP controller.15 Our trajectory learn-
ing algorithm provides us with desired state and control 
trajectories, as well as an accurate, time-varying dynamics 
model tailored to the trajectory. These are provided to our 
DDP implementation along with quadratic reward weights 
chosen previously using the method described in Section 
5.2. The quadratic reward function penalizes deviation from 
the target trajectory, s*t , as well as deviation from the desired 
controls, u*t , and the desired control velocities, u*t + 1 - u*t  .

We compare the result of this procedure first with the 
former state of the art in aerobatic helicopter flight, namely 
the in-place rolls and flips of Abbeel.2 That work used a sin-
gle crude model, developed using the method of Section 3, 
along with hand-specified target trajectories, and reward 
weights tuned using the methodology in Section 5.2.

Figure 5(a) shows the Y–Z positionj and the collective 
(thrust) control inputs for the in-place rolls performed by 
the controller in Abbeel2 and our controller using reced-
ing-horizon DDP and the outputs of our trajectory learning 
algorithm. Our new controller achieves (i) better position 
performance and (ii) lower overall collective control values 
(which roughly represents the amount of energy being used 
to fly the maneuver).

Similarly, Figure 5(b) shows the X–Z position and the col-
lective control inputs for the in-place flips for both control-
lers. Like for the rolls, we see that our controller significantly 
outperforms the previous approach, both in position accu-
racy and in control energy expended.

Figure 3: Our XCell Tempest autonomous helicopter.

Figure 4: Colored lines: demonstrations. Black dotted line: trajectory inferred by our algorithm. (See text for details.)
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j  These are the position coordinates projected into a plane orthogonal to the 
axis of rotation.
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Besides flips and rolls, we also performed autonomous 
“tic tocs”—widely considered to be an even more chal-
lenging aerobatic maneuver. During the (tail-down) tic-toc 
maneuver the helicopter pitches quickly backward and 
forward in place with the tail pointed toward the ground 
(resembling an inverted clock pendulum). The complex 
relationship between pitch angle, horizontal motion, ver-
tical motion, and thrust makes it extremely difficult to 
create a feasible tic-toc trajectory by hand. Our attempts 
to use such a hand-coded trajectory, following the previ-
ous approach in Abbeel,2 failed repeatedly. By contrast, 
the trajectory learning algorithm readily yields an excel-
lent feasible trajectory that was successfully flown on the 
first attempt. Figure 5(c) shows the expert trajectories (in 
color), and the autonomously flown tic-toc (black dot-
ted). Our controller significantly outperforms the expert’s 
demonstrations.

We also applied our algorithm to successfully fly a com-
plete aerobatic airshow, as described in Section 6.1.

The trajectory-specific models typically capture the 
dynamics well enough to fly all the aforementioned maneu-
vers reliably. Since our computer controller flies the trajec-
tory very consistently, however, this allows us to repeatedly 
acquire data from the same vicinity of the target trajectory 
on the real helicopter. Thus, we can incorporate this flight 
data into our model, allowing us to improve flight accuracy 
even further. For example, during the first autonomous 
airshow our controller achieves an RMS position error 
of 3.29 m, and this procedure improved performance to 
1.75 m RMS position error.

Videos of all our flights are available at: http://heli. 
stanford.edu

7. CONCLUSION
We have presented learning algorithms that take advan-
tage of expert demonstrations to successfully fly autono-
mous helicopters at the level of an expert human pilot. 
In  particular, we have shown how to (i) build a rough 
global model from demonstration data, (ii) approxi-
mately infer the expert’s ideal desired trajectory, (iii) learn 

Figure 5: Flight results. (a, b) Solid black: results with trajectory learning algorithm. Dashed red: results with hand-coded trajectory from 
Abbeel.2 (c) Dotted black: autonomous tic-toc. Solid colored: expert demonstrations.
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accurate, trajectory-specific local models suitable for high-
performance control, and (iv) build control systems using 
the outputs of our trajectory learning algorithm. Our exper-
iments demonstrated that this design pipeline enables 
our controllers to fly extreme aerobatic maneuvers. Our 
results have shown that our system not only significantly 
outperforms the previous state of the art, but even outper-
forms our own expert pilot on a wide variety of difficult 
maneuvers.
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