
NeuroCast: Adaptive Multi-Source P2P Video
Streaming Application for wireless networks

Carlos Gañán, Juan Caubet, Sergi Reñé
Jorge Mata-Dı́az, Juan J. Alins and Óscar Esparza

Universitat Politècnica de Catalunya (Departament Enginyeria Telemàtica)
1-3 Jordi Girona, C3 08034 Barcelona (Spain)

{carlos.ganan, juan.caubet, sergi.rene, jmata, jalins, oesparza}@entel.upc.es

Abstract. Streaming consists in distributing media to large audiences
over a computer network. Providing a streaming service for wireless mo-
bile nodes presents many challenges. A peer-to-peer (P2P) solution has
the big advantage of seamlessly scaling to arbitrary population sizes,
as every node that receives the video, while consuming resources, can
at the same time offer its own upload bandwidth to serve other nodes.
In this paper we present the design and implementation of NeuroCast:
an unstructured P2P application for video streaming. NeuroCast im-
plements a robust scheduling algorithm which minimizes the scheduling
delay. Moreover, given heterogeneous contents, delays and bandwidths.
Thus, NeuroCast becomes suitable for wireless scenarios due to its capa-
bility to adapt to changing network conditions.

Keywords: Video streaming, P2P networks, multi-source, wireless

1 Introduction

During the last decade, the growth of popular web sites serving multimedia
contents has led to the increase of video streaming applications. However,
video streaming over a wireless network has to deal with several challenges:
1) nothing is guaranteed about bandwidth, delay, and packet loss rate; 2) it
is difficult to predict the bandwidth, delay, and loss rate information, since
it is unknown and time-varying; 3) the heterogeneity of receiver capabilities
is a significant problem when video streams are distributed over a multicast
network; and 4) a congestion/flow control mechanism has to be employed to
prevent congestion epochs in the wireless network.

There have been proposed several ways to approach these challenges. The
traditional client-server model is suitable for streaming, but it presents scal-
ability problems and a loss of efficiency in resource exploitation. In fact, a
server has a limit bandwidth and cannot serve more than a limited number
of clients at the same time. The best way to distribute multimedia content
from a source to a group of hosts at the same time is the IP multicast. How-
ever the deployment of IP multicast has been limited due to several reasons.
First of all it requires changes in the network devices increasing the complex-
ity and the overhead at the routers. But also, it presents commercial problems



since a lot ISPs disable it. Another possibility is to use peer-to-peer networks
for the streaming. In these networks, the stream receivers act as clients and
servers at the same time (i.e. servent) replicating packets they receive. The
aim for these techniques is to allow bandwidth-consuming streaming media to
be delivered to a large number of consumers in a scalable, robust and efficient
manner. In this sense, we present NeuroCast, a P2P open-source solution to
video streaming over wireless networks.

P2P streaming systems strive to optimize three important metrics: i) start-
up delay, ii) end-to-end delay, and iii) playback continuity index. Most of
the systems may be classified based on the type of distribution graph they
implement: mainly tree and mesh, though a lot of hybrid solutions have been
implemented already. Tree-based overlays implement a tree distribution graph,
rooted at the source of the content [1–4]. In principle, each node receives data
from a parent node, which may be the source or a peer. If peers do not change
too frequently, such a system requires little overhead; in fact, packets can be
forwarded from node to node without the need for extra messages. However, in
high churn environments (i.e. fast turnover of peers in the tree), the tree must
be continuously destroyed and rebuilt, a process that requires considerable
control message overhead. As a side effect, nodes must buffer data for at least
the time required to repair the tree, in order to avoid packet loss. Mesh-based
overlays [5–7] implement a mesh distribution graph, where each node contacts
a subset of peers to obtain a number of chunks. Every node needs to know
which chunks are owned by its peers and explicitly pulls the chunks it needs.
This type of scheme involves overhead, due in part to the exchange of buffer
maps between nodes (nodes advertise the set of chunks they own) and in part
to the pull process (each node sends a request in order to receive the chunks).
Thanks to the fact that each node relies on multiple peers to retrieve content,
mesh based systems offer good resilience to node failures. On the negative
side, they require large buffers to support the chunk pull, as large buffers are
needed to increase the chances of finding the missing chunks in the playback
sequence. In this sense, NeuroCast evolves the Peercast [2] tree network to a
mesh-based overlay.

Peercast is an open source streaming media multicast tool which is generally
used for streaming audio and makes use of a bandwidth distributing approach
where users can choose the relay to connect in the downstream. NeuroCast
extends Peercast in order to enhance its capabilities making it possible to
watch videos even in a wireless scenario. Moreover, NeuroCast adds the nec-
essary design to allow any user to become a broadcaster. Among the different
improvements made in NeuroCast, it is worth to mention the multi-source
streaming capability. In contrast to Peercast, NeuroCast solves the typical
asymmetry of the link by using multiple sources. Therefore, it allows to video
stream over a wireless network.

In this paper, we first approach the problem of media streaming from a
practical point of view. We present the design of NeuroCast, a P2P streaming
for wireless networks, that: 1) supports very high levels of churn, 2) supports
strongly heterogeneous distributions of peer upload capacity, 3) has multi-
source capabilities to use efficiently the available upload capacity, and 4) em-
ploys fast adaptation and recovery from abrupt changes in network conditions.
Due to this fast adaptation, NeuroCast can operate in a wireless scenario where
nodes are prone to suffer from disconnections.



The rest of the paper is structured as follows. Section 2 introduces the basics
of Peercast. Section 3 describes the NeuroCast system. Section 4 presents
a analysis of NeuroCast, carried out by way of emulation on medium-scale
network testbeds. Finally, section 5 concludes this work.

2 Peercast

The multimedia streaming application Peercast is a multi-thread application,
so that different processes can be executed at the same time concurrently.
The number of processes in Peercast is variable and depends on the amount
of connections that are established. The main thread deals with the creation
of its child threads. In addition to these tasks, this thread becomes passive
waiting for incoming connections. In general, for each request that it receives,
a thread is created which will serve the request till its death.

2.1 PCP: Packet Chain Protocol

PCP is the protocol used in Peercast to allow communication among different
clients. The main goal of this protocol is to reuse the same data-flow which is
used to send the multimedia information, to send the control information too.
PCP chaining allows users to ’piggy back’ a download from another user.

The first packet of a group indicates the type of the packets that are being
sent and the number of packets that come after it. These packets that indicate
the type of the group are called parent packets. The great potential of this
protocol lies in the way the packets are chained, as each one of the packets
inside a group can be at the same time parent of another type of packets.

2.2 Entities

Peercast uses the Oriented Object programming, i.e., it has several classes that
represent the different system entities. Therefore, Peercast consists of servent,
channel, buffer and root classes.

Servent. This class becomes essential for the performance of the Peercast
application. As any real-time P2P application, the application depends on the
network conditions, so the packets can arrive out of order. Hence, it is basic
to have a good system to order and store packets efficiently. The servent class
manages the channel transmission and listens to requests coming from the
network or from the same host. Servents exert the server and the client at the
same time. Servents are classified according to the transmission type. Thus,
the most used servents are:

– Server: It is the server of the main thread which handles any request.
This subclass creates new server classes to manage the different requests.

– Relay: This class manages the retransmission of a channel among differ-
ent NeuroCast instances. In this mode, the data are sent using the PCP
protocol.

– Direct: This class is used to retransmit the multimedia file directly with-
out packing the data. This class is used to handle the packet transmission
to a player.



Channel. A channel is originated when a user starts to retransmit new
multimedia information to the Peercast network. This user, the first one in
uploading the channel to the network, is named the emitter or broadcaster, and
it becomes the unique contact between the original source and the Peercast
network. The channel is shared among the different peers.

Buffers. It is obvious the necessity of a buffer in Peercast due to the fact
that each node can perform as client as well as server, so it needs to store in
memory the information in order to be capable of retransmitting it. Without a
buffer, a node can only reproduce the received packets in a player but cannot
send them to any other client in the network.

Root Nodes. Despite the fact that Peercast was designed to run in a de-
centralize way, the actual situation is centralized. The developers implemented
Peercast in order to create a network without servers. Thus, Peercast only has
clients. If a group of users want to share a video among them, they only need
to know the IP address of some of them and the channel identifier. Hence, they
will create a download tree. On the other hand, if a user wants a video but
it does not know any user from the sharing group, that user cannot see the
video. Therefore, this situation makes the tree model of Peercast unfeasible for
real scenarios. Peercast deals with this issue with the concept of root nodes.
For every broadcasting network, one node will act as root, being the primary
source of the data flow, while the others will receive it and possibly retransmit
it. Root nodes gather information about other clients in order to create an
information directory.

3 NeuroCast

Analyzing the evolution of P2P application for file distribution, it has been
noted a leading trend to move from the typical tree/forest topologies to the
mesh topology. This evolution allows NeuroCast to use the bandwidth of N

users which cannot broadcast the video by themselves, but together they are
able to achieve the broadcasting. NeuroCast is a multi-thread application, each
network user is able to receive a stream from different peers, and at the same
retransmit it to any other user.

Users interact with NeuroCast through a web interface quite simple and
friendly. By means of these web pages, the user can manage the application
as well as get information about the retransmission taking place or about the
peers from where the stream is being downloaded.

Apart from the broadcasters who perform as stream sources, there is another
type of clients in NeuroCast: the trackers. These clients deal with the gathering
of information about the peers that are sharing a particular channel. Thus,
when a user starts a session the tracker will provide to that user a list with
the peers that are offering the requested channel. These peers that are sharing
the channel are named hits. Therefore, it becomes essential that the trackers
have an updated hit list. NeuroCast has been implemented in such a way that
all the users perform as trackers. Hence, any peer can share with another their
hit list.

On the other hand, using a mesh approach forces us to introduce a new con-
cept: substreaming. Substreaming appears as consequence of the need of receiv-
ing a stream from several sources at the same time. In this way, substreaming



consists in dividing the original stream in N parts, which are delivered from
the different sources that are available following certain criteria that are ex-
plained later. Moreover, it could be interesting to receive more packets from
one source than from another. Therefore, there are new issues to take care of,
such as the arrival packet order or the packet distribution among the available
sources. All the packets that the substream consists of are called chunks.

The actions that take place while joining the NeuroCast network are:

– Getting the Hit List. During the initialization, the NeuroCast application
connects to the tracker, and it sends back a hit list of the requested chan-
nel.

– Peer Selection. Once a peer has the hit list, then it has to select the best
set of peers from the list.

– Packet Allocation. NeuroCast sends the packets grouped in specific chunk
numbers which are assigned to the peer transmitting the stream.

– Network and load adaptation. NeuroCast monitors the network status per-
manently while downloading the channel.

3.1 Entities

The number of processes in NeuroCast is variable and depends on the amount
of established connections. As in Peercast, NeuroCast has a main thread which
deals with the incoming requests and creates the children processes that handle
these requests. In this section we briefly present the two main NeuroCast
entities.

Servent. A servent handles requests from the system and sends the stream
either to another NeuroCast instance or to the player. It acts as a server as
well as a client. As in Peercast, there exists three different type of servents:
direct, relay and server.

Channel. The channels are the main elements in NeuroCast. They are
used to handle the different multimedia flows which are being shared in the
network. Each flow uses a different channel. NeuroCast only distributes parts
of the stream not the whole stream. Every channel has its original source.
In general, this source is a user (broadcaster) who creates the channel and
becomes the only physical link among the NeuroCast clients and the original
multimedia file. The channel has two main elements.

– The buffer : It manages and stores the incoming packets temporally to
allow a retransmission posterior. The maximum number of packets that
the buffer can contain is 64.

– The channel stream: It deals with the handshaking and the channel recep-
tion. Channel stream class allows controlling the incoming packets.

NeuroCast also introduces the possibility of using several peers concurrently,
dividing the stream among these, and making the network structure look like
a grid. The subchannels are the application elements that allow to identify
the stream fragments. Thus, each one of the sources will be associated to a
subchannel.



3.2 Load balance

As mentioned in the previous section, NeuroCast allows to balance the load ac-
cording to the network conditions. In this way, NeuroCast implements different
algorithms to optimize the peer selection among the hits of the requested chan-
nel and the load distribution among the chosen ones. In the following we show
how NeuroCast is able to adapt to the network conditions and redistribute the
load according to these conditions.

Peers selection. One of the most critical parts in any player based on a
P2P network is the selection of peers. Unlike conventional P2P applications
for file distribution, the fact of working with video creates a hard and direct
dependence on the peers that are transmitting the stream.

Once the hit list has been received from the tracker, it is necessary to calcu-
late which is the subset of peers that will allow to download the stream with
the best conditions regarding the network. NeuroCast will always try to pri-
oritize those peers with a high available bandwidth, with the lower packet loss
rate, and with a high availability. NeuroCast peer selection algorithm is based
in CollectCast algorithm [5]. The strengths of this algorithm are the sources
selection, the network status monitoring and the periodic source redistribu-
tion in order to adapt to the time-varying network conditions. The selection
process can be split up into three phases:

1. Obtaining the hit list associated to the requested channel.

2. Enumerating the sets of hits that satisfy the constraints imposed by:

Rl ≤
∑

P=P̄act

Rp ≤ Ru, (1)

where Rp is is the maximum sending rate that a peer can contribute
anytime during the session, Rl is the lower limit of the total sending rate
of a set of peers, and Ru is the upper limit of the total sending rate of a
set of peers.

3. Selecting the best set of peers among the solutions obtained previously.

When requesting a new channel, NeuroCast obtains a set of parameters from
each source. Thus, the requesting peer obtains the peerRp of each source, i.e.,
the maximum sending rate that a peer can contribute with. Then, NeuroCast
calculates the throughput and the losses of the link with each one the hits.
In order to do these measurements, NeuroCast takes advantage of a modified
version of the Iperf [8] application.

Apart from the bandwidth that a specific peer is willing to share, it is also
interesting to know the availability of the set of hits. In any P2P network, it
is impossible to determine the expected lifetime of the network, as it is not
possible to predict when a node will be disconnected from the network, or the
congestion of the network with the subsequent massive packet loss. A possible
implementation to calculate the availability in our environment is carried out
in the following way. A parallel process to NeuroCast runs to check the status
of the hits during a limited period of time. With these measurements, it is
generated a probabilistic function for each instant of the day, allowing to know
the probability that a peer is connected at that time.

Packet Allocation. Unlike the CollectCast algorithm, in this first version
of NeuroCast the final application is simplified and does not use FEC codes



to distribute the load among the different hits that have been selected to
retransmit the channel.

The active peers (P̄act) collectively send the media file segment by segment:
they all cooperate in sending the first segment, then the second one, and so on.
The media file is divided into equal-length data segments. Peer p is assigned
a number of packets Dp to send in proportion to its actual streaming rate:

Dp =

⌈
∆ · Rp∑

x∈P̄act
Rx

⌉
. (2)

where ∆ is the size of original packets in which the media file is divided
into. The Dp value is used to distribute the chunks among the different peers
of the set. Delta is the number of chunks into which the stream is divided in
order to work per groups with subchannels.

Network adaptation. To accommodate the maximum load of the net-
work, NeuroCast adds a new functionality so that it is able to adapt at any
moment the number of chunks that a peer is downloading. The variable used
to determine the most appropriate chunk-distribution is the time between ar-
rivals of packets. Thus, controlling the time between packet arrivals during the
session, NeuroCast sets a threshold that allows to redistribute the number of
chunks that each peer retransmits. This threshold is calculated following next
equation:

threshold =
buffer length

bitrate
· FACTOR SEP PACKETS · numChunks

numSubChannelChunks
.

(3)
As seen in equation 3, the threshold depends on different parameters:

1. It depends on the bitrate of the played video.
2. The FACTOR SEP PACKETS (maximum allowed delay between packet ar-

rivals).
3. numChunks is related to the number of chunks into which the stream is

divided among the different hits.
4. The numSubChannelChunks is the number of chunks that this subchannel

retransmits.

To alert the rest of hits of the load redistribution the requesting peer sends
to each one of the hits the message CHANGE PEER CHUNKS through it. Next, a
NeuroCast server in the target machine reads the request and enables the flag
associated with the redistribution, so that the Relay server that broadcasts
the channel is ready to receive.

Once the subchannel is ready for the load redistribution, the peer performs
the following steps:

1. Notifies the others subchannels about the redistribution.
2. Decreases by one the number of chunks that is downloading from its hit.
3. Searches for a subchannels with a lower time between arrivals in order

to send the chunk it has you just subtracted.
4. Waits until the subchannel with lower time between arrivals has redis-

tributed the chunks.

Once the rest of subchannels have been informed that a load redistribution
is going to take place, they also enter into the process of redistribution. At



this point, two different situations must be distinguished: on one hand the
subchannels with lower time between arrivals and on the other hand the
rest of subchannels. The latter simply expect that the redistribution is done,
to continue with the download of the new allocated chunks.

And regarding to the subchannel with the lowest time between arrivals,
it follows these steps:
1. Checks that the channel has more than one subchannel currently. If that

hit is the only active subchannel it must start to download the full stream
from that hit.

2. If there are more subchannels, it increases by one the number of chunks
of the subchannel.

3. Finally, it redistributes the load among all the hits from the list according
to their number of chunks.

A different case from the one presented above, but that also requires load
redistribution occurs when a peer does not receive packets from a certain
subchannel. In these situations the load redistribution is forced immediately.

Another of the new features that have been introduced in NeuroCast is to
get rid of the hits that are only sending a single chunk, and despite that, they
still send packets with delay. In these cases, the peer removes that hit from
its list of hits and downloads the latest chunk from another peer, leaving the
subchannels on standby until the channel becomes unavailable or it decides to
leave the network.

4 Performance Evaluation

In this section, we present emulation results by which NeuroCast capabilities
are evaluated. Two different environments are configured in order to check
NeuroCast’s performance in heterogeneous network conditions. The reference
scenario for our emulations is created using VNUML [9] as shown in Figure 1.
In this virtual network, the Host serves the video to E0, and the latter sends
the stream to 3 machines (E1, E2 and E3).

Net 3

Host

Net 0

Net 2

E1 E3

Net 1

E2

E0

Fig. 1. Network topology used for the tests.

The main features of the virtual network and the virtual machines are shown
in Table 1. Using this configuration, we change the network conditions where
these peers are operating to recreate two different environments. These envi-
ronments will emulate the conditions of a peer operating in a wireless network.



Type Bw

Net0 lan 2 Mbps

Net1 ppp 1 Mbps

Net2 ppp 1,5 Mbps

Net3 ppp 750 Kbps

Host E0 E1 E2 E4

maxRelays 1 4 4 4 4

peerRp 2 Mbps 1 Mbps 1 Mbps 700 Kbps 1 Mbps

minRp 100 Kbps 100 Kbps 100 Kbps 100 Kbps 100 Kbps

delta 0 10 10 10 15

factor sep pack 1 1.3 1.3 1.3 1.3

delay margin 0 4 4 4 3

buffer sep pack 0 30 30 30 16

Rl 100 Kbps 100 Kbps 100 Kbps 100 Kbps 100 Kbps

Ru 2 Mbps 2 Mbps 3 Mbps 3 Mbps 3 Mbps

Table 1. Initial parameters of the virtual network and the virtual machines.

4.1 Impact of topology changes

In a wireless scenario, it is common to have highly changing topologies. In
this section, we evaluate how NeuroCast achieves to adapt to these changing
conditions without disrupting the quality of the multimedia service.

Thus, when downloading a video from more than one source, if one of these
sources leaves the network, then the requesting peer redistributes the load and
continues downloading the subchannels from other sources. The process that
takes place consists in:

1. Checking if there is a free peer in the cached list of hits. That is, a hit
from which the peer is neither downloading any chunk nor sending any
part of the stream.

2. Requesting a new list of hits to the tracker and check again if there are
any free hits.

3. Downloading the “missing” chunks from one of the hits that the peer is
already using.

In the latter case it requires a reallocation of subchannels. Depending on
the situation, NeuroCast carries out a series of changes:

– If the client is downloading more than one subchannel from the same hit,
then it groups the chunks in the same subchannel.

– If a subchannel that is not at the end of the list is deleted, then this
position is filled with the last subchannel, so there are no empty spaces in
the list.

– If a subchannel downloads all the chunks into which the stream is divided,
then the value of numChunks is set to 1 and the stream is no longer divided
into different parts.

Next, we show an example of a peer leaving the network. Initially we have
the following configuration (see Table 2):

Hit List

Hit IP

0 (tracker) 10.0.0.1

1 10.0.0.2

2 10.0.1.2

3 10.0.2.2

Subchannels List

IP address Number of Chunks Chunks

Subchannel 0 10.0.0.2 6 0 2 4 6 8 10

Subchannel 1 10.0.1.2 3 1 3 5

Subchannel 2 10.0.2.2 3 7 9 11

Table 2. Initial List of Hits and chunks distribution among the 3 subchannels.



After some time, source 10.0.0.2 leaves the network. The requesting peer
checks that there are no-free hits in its hit list, so it requests a new hit list to
the tracker (see Table 3).

Hit List

Hit IP

0 (tracker) 10.0.0.1

1 10.0.1.2

2 10.0.2.2

3 10.0.3.2

Subchannels List

IP address Number of Chunks Chunks

Subchannel 0 10.0.2.2 3 7 9 11

Subchannel 1 10.0.1.2 9 0 1 2 3 4 5 6 8 10

Table 3. New List of Hits and final chunks distribution among 2 subchannels.

As the only new addition to the list of hits is its own IP address, it has
only the possibility of reusing the hits which were already transmitting the
stream. In this example, as shown in Table 3 it is selected the 10.0.1.2 peer.
Summarizing, NeuroCast is able to adapt to any change in the topology of the
network no matter if the peer has left because it lost connectivity or because
it decided to stop streaming.

4.2 Impact of traffic interferences

Another situation that is prone to happen in a wireless scenario is to suffer
interferences from another peer in the network. To show how NeuroCast works
under these conditions, continuing with the network topology of figure 1, we
evaluate the situation where we have 4 machines running NeuroCast and play-
ing a video: Host, E0, E1 and E2. As we have seen in previous cases, in a
“stable” situation machine E0 downloads the stream from Host, machine E0
downloads it from E1, and finally E2 downloads it from E0 and E1 simulta-
neously.

In this section, we focus on studying the performance of machine E2 while
suffering from traffic interferences. To achieve that environment, we introduce
traffic interference in link Net1 using Distributed Internet Traffic Generator
(D-ITG) [10] in E3.

Prior to the injection the traffic interference, E2 is downloading 6 chunks
from each source as the conditions of Net1 and Net2 are virtually identical.
However, when we introduce a traffic of 800 kbytes/s in Net1 link, this balance
is broken. Thus, chunks coming from the E1 are affected, and consequently,
the time between packet arrivals is increased. Precisely this is reflected in the
graphs of figure 2(a) and 2(b).

Figure 2 shows, apart from the mean time between packet arrivals, the
theoretical limit that the program uses to determine when a redistribution of
chunks is necessary. It is worth noting that the redistribution occurs when
that limit is exceeded 3 times, because this is the value of the parameter
delay margin defined in the NeuroCast configuration file running in E2.

As we have seen previously, some parameters in the configuration file di-
rectly affect the behavior of the application during variations of the network
conditions. In the following we carry out several setups, varying two parame-
ters such as delta and buffer sep packets, and we observe in each case the
time needed to redistribute the chunks.



 

 

Evolució Subcanal 0

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 Temps

Separació 
mitja (s)

Separació mitja

Límit

Mean Separation 
Limit 

Time 

Mean 
Separation (s) 

 

(a) Subchannel 0.
 

 

Evolució Subcanal 1

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 Temps

Separació
mitja (s)

Separació mitja

Límit

Mean Separation 
Limit 

Time 

Mean 
Separation (s) 

 

(b) Subchannel 1.

Fig. 2. Mean time between packets arrival evolution.

To force the redistributions, we use Network Emulator (NetEm) [11] to
change the link capacity of one of the hits that is retransmitting the stream.
Thus we switch from the 1000 Kbps available at the beginning of the session,
to 112 Kbps. Analyzing the results in Table 4 we observe that the parameter
Delta, i.e. the number of chunks into which the stream is divided, does not
affect significantly the obtained time, while the parameter buffer sep packets

is decisive.

Test1 Test2 Test3 Test4 Test5

Delta 20 5 20 20 5

buffer sep packets 20 20 50 5 5

Time to redistribution 90s 86s 173s 31s 31s

Table 4. Performance with a traffic interference of 90% of the link capacity.

Consequently, as it can be inferred from these results, any peer running
NeuroCast even while suffering from interferences is able to operate without
major quality of service degradation.

5 Conclusions

P2P technology gives novel opportunities to define an efficient multimedia
streaming application but at the same time, it brings a set of technical chal-



lenges and issues due to its dynamic and heterogeneous nature. We must make
a balance between the breadth and depth of a live streaming overlay tree. At
the same time, the robustness issue must be considered carefully, as the dy-
namic feature and freedom of P2P network itself. In this this work we have
presented the implementation of NeuroCast, an unstructured P2P system for
video streaming that is able to adapt to wireless network conditions. Neuro-
Cast design is based on an unstructured mesh-based architecture. It intends to
optimize bandwidth allocation and combine dynamic peer selection strategies
that rely on implicit feedback from data reception.

NeuroCast’s performance is evaluated in emulated network environments.
The experiments indicate that NeuroCast is capable of operating in a harsh
environment taking into account network conditions. Our results also confirm
the ability of unstructured mesh-based systems to withstand the high levels
of transience that can result from user and network dynamics (churn, failures,
congestion, etc.).

References

1. H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming live media
over a peer-to-peer network. Technical Report 2001-30, Stanford InfoLab,
2001.

2. Peercast: P2p broadcasting for everyone. [online]
http://www.peercast.org, accessed on January 2011.

3. M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: High-bandwidth multicast in cooperative environ-
ments. 9th ACM Symposium on Operating Systems Principles, 2003.

4. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object lo-
cation and routing for largescale peer-to-peer systems. IFIP/ACM Intl.
Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, 2001.

5. M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botev. Collectcast:
A peer-to-peer service for media streaming. ACM Multimedia, 11:68–81,
2003.

6. Gnutella. [online] http://rfc-gnutella.sourceforge.net, accessed on January
2011.

7. X. Zhang, J. Liu, B. Li, and T. Yum. Coolstreaming/donet: A data-driven
overlay network for efficient peer-to-peer live media streaming. Proceedings
of IEEE Infocom, 2005.

8. A. Tirumala, M. Gates, F. Qin, J. Dugan, and J. Fergu-
son. Iperf: The (tcp/udp) bandwidth measurement tool, [online]
http://iperf.sourceforge.net/, accessed on January 2011.

9. Virtual network user-mode-linux (vnuml). [online]
http://www.dit.upm.es/vnuml, accessed on January 2011.

10. S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre. D-itg
distributed internet traffic generator. International Conference on Quan-
titative Evaluation of Systems, pages 316–317, 2004.

11. S. Hemminger. Network emulation with netem. In Linux Conf Au, [online]
http://linux-net.osdl.org/index.php/Netem, accessed on January 2011.


