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Abstract

The study of the class of new spatial multiplexing architectures (SMAs) is continued. As introduced in Part I of

this paper, the SMAs consist of joint design of rate and power allocation to the spatially-multiplexed substreams at

the transmitter and ordered nulling/canceling detection/decoding at the receiver. This was studied in Part I under the

diversity-multiplexing tradeoff framework. Here the more detailed and practical problem of allocating rates and powers

across the transmit antennas is investigated to minimize the overall system (uncoded or outage) error probability. Since

the layer gains are unavailable to the transmitter, the rates and powers must be allocated based on the statistics of the

layer gains. However, the channel dependent ordering rules make the precise distributions of the layer gains complicated

or intractable. To solve this problem, a simple, yet effective, four-parameter hyperbola model is proposed to closely

approximate the error probability of each layer. With this approximation, the computation of rate and power allocation

according to the criterion of minimizing the maximal error probability of all the substreams is given. Simulation results

validate the superior performance of the proposed SMAs, especially that of the Greedy ordering Rate Tailored SMA

(GRT-SMA). Although the rate and power allocation method is obtained under the assumption of iid Rayleigh fading

channel, the proposed SMAs also work well in other types of fading channels (such as in correlated and Rician channels).

Index Terms: Error analysis, fading channels, MIMO, rate allocation, power allocation, space-time architectures,

spatial multiplexing, finite-rate feedback.

I. Introduction

This paper continues the study of the class of new spatial multiplexing architectures (SMA) with

jointly designed rate and power allocation at the transmitter and ordered nulling/canceling or BLAST

(Bell Labs layered Space-Time) detection/decoding at the receiver. Part-I of this paper [1] introduced

the basic concept of the SMAs, and proved the significant improvement in the diversity-multiplexing

(D-M) gain tradeoff [2] that accrues from such a joint design. The Greedy ordering Rate Tailored SMA

This work is supported in part by the National Science Foundation Grant CCF-0423842, CCF-0434410. Part of this paper was
presented at Conference on Information Sciences and Systems 2006.

The authors are with the Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425
USA (e-mail: yjiang@dsp.colorado.edu; varanasi@dsp.colorado.edu).



2

(GRT-SMA) was also introduced and proved to be optimal in terms of D-M tradeoff among the class of

SMAs. The general problem is that, given a detection/decoding ordering rule (which specifies a member

of the class of SMAs), the rate and power allocation must be computed to minimize the overall system

error probability. This error probability could be uncoded bit error rate (BER) or the outage probability.

In deriving the D-M gain tradeoff in Part I [1], the optimal allocation of multiplexing gains to the K

layers were specified. However, the multiplexing gain metric is too coarse for practical system design

and it is also limited to just the high SNR regime. Moreover, the D-M tradeoff analysis is insensitive

to power disparities and hence it cannot be used as a design tool for spatial power allocation.

As described in Part I, the receiver only feeds back the detection/decoding ordering. The exact values

of the layer gains are unknown to the transmitter. Therefore the rate and power allocation must be

calculated based on the statistical information of the layer gains. However, the ordering rules render the

distribution functions of the layer gains complicated (as in norm ordering) or intractable (as in greedy

ordering) [1, Section IV]. The key contribution of this paper is to overcome this difficulty.

In particular, a simple, yet effective, four-parameter hyperbola model is proposed to closely approxi-

mate the error probability (either uncoded error or outage probability) of each layer. Next, the problem

of optimal allocation of rates and powers according to the minimax uncoded BER optimality criterion is

re-stated in terms of the hyperbola model and the resulting non-convex optimization problem is shown

to have a unique solution. Coded SMAs are also considered where rates are allocated per layer to

equalize the per layer outage probabilities to a target level, again using the hyperbola model, and then

the power allocations are optimized to yield the minimum total power to support a target rate R. It is

worth emphasizing that the power and rate allocation only needs to be calculated offline once and for

all. This generates a lookup table for online use.

Furthermore, the outage capacity behavior at high SNR of SMAs with joint ordered decoding and

rate/power allocations is analyzed and shown to that an outage capacity that behaves as N log ρ +

const. (where N = min{Mt, Mr}) which shows that the behavior is the same as that of the optimal

unconstrained architecture analyzed in [3]. Moreover, an explicit formula for the constant term is

obtained in terms of the distribution functions of channel gains which yields an optimality criterion for

the choice of ordering rule that maximizes outage capacity at high SNR (which is however intractable)

and gives insight about why the GRT-SMA gives superior performance.

Simulation results are presented to validate the superior performance of the proposed SMAs, especially

the GRT-SMA. The remarkable performance of GRT-SMA illustrates the significance of transmitter and



3

receiver collaboration through a few bits of feedback. Simulations results also show that the rate and

power allocations obtained under the assumption of i.i.d. Rayleigh fading channel are robust in that

they also work very well in spatially correlated Rayleigh and Rician fading channels.

More broadly speaking, when a strict error probability analysis is intractable in fading channel commu-

nications that employ complex signal processing methods, one may be able to resort to the closed-form

four-parameter model presented in this paper to optimize system performance. The value of the model

may therefore extend well beyond the context of SMAs considered in this work.

The remainder of this paper is organized as follows. Section II introduces the hyperbola model of error

probability, including uncoded BER and outage probability, over fading channels. In Sections III and

IV, the problem of optimal allocation of rates and powers according to the minimax optimality criteria

are analytically re-stated in terms of the hyperbola model and solutions to the resulting optimization

problems are provided. In Section IV-B, the behavior of the outage capacity of the proposed class of

SMAs is given in terms of the distribution functions of the channel gains from which an insight about

the superior performance of the GRT-SMA is drawn. Extensive numerical examples are given (including

coded SMAs with outer trellis coded modulation) in Section V to demonstrate the superior performance

of the SMAs, especially the GRT-SMA. Finally, Section VI concludes this paper.

II. Hyperbola Model of Error Probability and Outage Probability

As stated earlier, the statistics of layer gains and hence exact formulas for the error (outage) prob-

ability are either too complicated or unavailable. Here, we present a simple yet highly accurate four-

parameter hyperbola model to approximate the error (outage) probability as a function of input SNR.

With input SNR ρ and target rate R (in bps/Hz), the channel is said to be in outage if the channel

cannot support the target rate, i.e., the channel gain

h ∈
{

|h|2 : log2(1 + |h|2ρ) < R
}

=

{

|h|2 : |h|2 <
2R − 1

ρ

}

.

For a fading channel with random gain h, the outage probability decreases like ρ−D as ρ increases,

where D is the diversity gain associated with that channel. Correspondingly, with uncoded quadrature

amplitude modulation (QAM), the average BER diminishes like ρ−D over a fading channel.

Figures 1−3 show the uncoded BER and outage probability of the layers obtained using zero forcing

V-BLAST (ZF-VB) detector. For all the three figures, the MIMO channel is an iid Rayleigh fading

channel with Mt = 4 transmit antennas and Mr = 4 receive antennas. In Figure 1, the dots represent

the uncoded BER performance the four layers obtained via ZF-VB with norm ordering rule, given that
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16-QAM is used at each layer and there is no error propagation. Note that the uncoded BERs can be

calculated as the expectation Pb,i = Er2
ii

[Pb (r2
iiρi, M)], where rii is the ith layer gain, and Pb (γ, M) is

the BER of an M-QAM input with instantaneous SNR γ (see [4] for an explicit formula for Pb (γ, M)).

As the distributions of the layer gains for the norm-ordering rule are known (cf. [1, Theorem IV.1]), the

BER can be calculated through numerical integration. The dots in Figure 2 are the uncoded BERs of

the four layers obtained via ZF-VB with greedy ordering rule. The inputs are BPSK symbols. In this

case, the distributions of r2
ii’s are unknown except for i = 1. The BERs of the ith layer (i 6= 1) are

estimated by averaging the simulated BERs over 108 Monte Carlo trials.

With input SNR ρ and target rate R, the outage probability of the ith layer is

Poutage,i(ρi, Ri) = P

(

|rii|2 <
2Ri − 1

ρi

)

. (1)

In [5], the authors define the normalized SNR ρnorm ,
ρ

2R−1
to measure the gap between the input SNR

ρ and the minimal SNR required for the target rate R over an AWGN channel with unit channel gain.

Using this terminology, we rewrite (1) as

Poutage,i(ρnorm) = P
(

|rii|2 < ρ−1
norm

)

= F|rii|2(ρ
−1
norm), (2)

where F|rii|2(x) is the cumulative distribution function (cdf) of |rii|2. The dots in Figure 3 show the

outage probabilities of the four layers obtained via ZF-VB detector with greedy ordering rule. The plot

corresponding to the norm ordering rule is similar which we omit here.

Since the closed-form probability density functions (pdf) of the layer gains (r2
ii’s) obtained via Norm

QR decomposition are known, Poutage,i(ρnorm) can be calculated by numerical integration. But for the

ZF-VB with greedy detection ordering, the pdfs of r2
ii’s are unknown except for i = 1. Hence in Figure

3, the outage probabilities of the ith layer (i > 1) are obtained via averaging the simulated BERs over

107 Monte Carlo trials. It can be seen from Figures 1−3 that the logarithms of the uncoded BER and

channel (layer) outage probability decrease in a linear manner as log ρ → ∞. The steepness of decreasing

slope is measured by diversity gain. According to [1, Theorems IV.1, IV.3], the four layers of the ZF-VB

detector based on Norm QR have diversity gains D1 = 16, D2 = 3, D3 = 2, D4 = 1, while the ZF-VB

detector based on Greedy QR yields four layers with diversity gain D1 = 16, D2 = 9, D3 = 4, D4 = 1.

The three figures validate this diversity gain analysis. On the other hand, as ρ → 0, or equivalently

log ρ → −∞, the error probabilities level to a constant.

Based on the above observations, we propose a heuristic model to quantify both uncoded BERs and

channel outage probability as functions of input SNR. In the case of quantifying uncoded BERs, let us
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define

x , 10 log10 ρ and y , log10 Pe(ρ, M). (3)

Similarly, to quantify channel outage probability, we define

x , 10 log10 ρnorm and y , log10 Poutage(ρnorm), (4)

Then x and y defined in (3) are the X and Y -coordinates of Figures 1 and 2. And those defined in (4)

are the coordinates of Figure 3. We propose the four-parameter hyperbola model:

y(x) = − d

20

[

(x − c) +
√

(x − c)2 + a
]

− b. (5)

The solid lines in Figures 1−3 are obtained by fitting the dots using the model (5). The fitting parameters

(a, b, c, d) are estimated by minimizing the sum of the squared fitting error. Because for ZF-VB with

greedy ordering, the BERs of all the layers except the first one are estimated based on 108 Monte Carlo

trials, the estimates are not reliable when BER is very small (say, < 10−10), as shown in Figure 2. In

these cases, we discard such outliers in the high SNR regime when applying the curve fitting. Otherwise,

the hyperbolas fit the actual BERs and outage probabilities very closely in Figures 1−3.

We give some insights into this model to understand why the hyperbola model fits the experimental

data so well. Indeed, the hyperbola of (5) has two asymptotes:

y = −b as x → −∞ and y = − d

10
(x − c) − b as x → +∞. (6)

Obviously, by changing c and b, one can shift the curve in the horizontal and vertical directions, respec-

tively. Hence, the parameter c is related to the coding gain. It is easy to verify that limx→∞
d y(x)

d x
= − d

10
.

According to the diversity gain definition [6]

D = − lim
x→∞

log P(error)

log ρ
= − lim

x→∞

dy(x)

dx/10
= d. (7)

Therefore the parameter d stands for the diversity gain. The parameter a controls the curvature of the

hyperbola between the two asymptotes. In other words, a affects the BER/outage probability in the low

to moderate SNR regime. Since limx→−∞ log10 Poutage(ρnorm) = log10 1 = 0 and limx→−∞ log10 Pe(ρ, M) =

log10 0.5 = −0.301, one may conjecture according to (6) that the optimal b = 0 for the outage probability

case and b = 0.301 for the uncoded BER case. However, it is still beneficial to keep b as an undetermined

parameter since it helps to reduce further the fitting error. After all, the hyperbola model is just a

heuristic approximation rather than a rigorous theoretical expression.
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For any fading channel, once the four parameters (a, b, c, d) are known, we can analytically approxi-

mate the BERs and outage probabilities of the channel. Although this model is heuristic, the extensive

numerical experiments show that this four-parameter model is surprisingly accurate for a wide variety

of channel fading statistic, including Rayleigh, Rician, and Nakagami-m fading channels. It facilitates

a unified solution to the rate and power allocation, as we shall see in the next section.

III. Optimal Rate/Power Allocation

In this section, we formulate the problem of optimal rate and power allocation across the N(,

min{Mr, Mt}) transmit antennas given rate and power constraint. Applying the hyperbola model, we

develop a joint rate and power allocation algorithm to minimize the system error probability, including

uncoded BER and outage probability.

A. Optimization Problem Formulation

We first consider the BER criterion. If the error propagation effect is ignored, the average uncoded

BER of the ith layer, with input SNR ρi and Mi-QAM, can be expressed as Er2
ii

[Pb (r2
iiρi, Mi)], where

Pb (r2
iiρi, Mi) is defined in (??). We propose to determine the optimal rate and power allocation by

solving the following optimization problem:

minρi,Mi
maxi:Mi>0

{

Er2
ii

[Pb (r2
iiρi, Mi)]

}

subject to
∑N

i=1 ρi = ρ
∑N

i=1 log2 Mi = R,

(8)

where, in view of practical system design, we constrain constellations to be square QAMs with Mi ∈
{0, 4, 16, 64, 256}. The reasons of adopting the minimax criterion are two-fold. First, the exact expres-

sion of the overall uncoded BER is intractable due to error propagation effects in the V-BLAST detector.

Second, as we use independent scalar coding for each layer, the whole frame of data transmission fails

if one layer is in error. This argument motivates the optimization of the weakest layer in use.

Let us now consider outage probability criterion. Let Ri be the rate allocated to the ith layer. The

ith layer is in outage if log2(1 + r2
iiρi) < Ri, of which the probability is

PO,i (ρi, Ri) , P(log2(1 + r2
iiρi) < Ri). (9)

Similar to (8), given the constraint of overall rate R and overall input SNR ρ, the optimal allocation of
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rate/power is determined by solving

minρi,Ri
maxi:Ri>0 {PO,i (ρi, Ri)}

subject to
∑N

i=1 ρi = ρ , ρi ≥ 0,
∑N

i=1 Ri = R , Ri ∈ S ∪ {0},

(10)

where S is a finite set of allowable rates. Using the definition of normalized SNR ρnorm,i = ρi

2Ri−1
, we

can rewrite (10) as

minρi,Ri
maxi:Ri>0

{

P
(

r2
ii < ρ−1

norm,i

)}

subject to
∑N

i=1(2
Ri − 1)ρnorm,i = ρ , ρnorm,i ≥ 0

∑N
i=1 Ri = R , Ri ∈ S ∪ {0}

(11)

Because the analytical expressions of Er2
ii

[Pb (r2
iiρi, Mi)] and P

(

r2
ii < ρ−1

norm,i

)

are usually intractable,

we apply the hyperbola model to approximate the cost function, which greatly simplifies the numerical

solution to the optimization problems.

B. Numerical Optimization

Let the set of feasible rate tuples be M ,

{

{Mi}N
i=1 :

∑N
i=1 log2 Mi = R, Mi ∈ {0, 4, 16, 64, 256}

}

.

Fix a feasible constellation tuple {Mi}N
i=1, use the hyperbola model and the definitions in (3), and

reformulate the optimal rate and power allocation problem (8) into two steps. First, we solve the

following problem

minxi
maxi:Mi>0

{

10
−

di
20

h

xi−ci+
√

(xi−ci)2+ai

i

−bi

}

subject to
∑

i:Mi>0 10
xi
10 = ρ.

(12)

Note that the hyperbola parameters, ai, bi, ci, di, depend on the size of QAM. Hence Mi is relevant in the

cost function. In the second step, we let {Mi}N
i=1 go over the feasible set M and for each constellation

tuple we solve (12). We then record the constellation tuple {Mi}N
i=1 and the associated {xi}N

i=1 which

yields the smallest cost function.

Now consider (12). Denoting I = {i : Mi > 0} and replacing xi by 10 log10 wi, we reformulate (12) as

minxi,y y

subject to 10
−

di
20

h

10 log10 wi−ci+
√

(10 log10 wi−ci)2+ai

i

−bi − y ≤ 0, i ∈ I
∑

i∈I wi = ρ.

(13)

Recall that a function is convex if and only if its Hessian matrix is positive semi-definite (psd) [7]. It

can be verified that the constraint function

fi(wi, y) , 10
−

di
20

h

10 log10 wi−ci+
√

(10 log10 wi−ci)2+ai

i

−bi − y,
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is not necessarily convex as ∂2fi(wi,y)

∂w2
i

< 0 for some ai > 0 and x > 0. Therefore (13) is not a convex

optimization problem. However, we can still obtain a simple solution to (13). We observe that at an

optimal solution to (13), all the inequality constraints fi(wi, y) ≤ 0 should be active, i.e., fi(wi, y) = 0

for ∀ i ∈ I. The argument is as follows. We can always decrease y such that there is at least one active

inequality constraint. Suppose at an optimal solution there exists an inactive constraint fi(wi, y) < 0

for some i ∈ I. Because fi(wi, y) is a continuous decreasing function of wi, there exists δ > 0 such that

fi(wi − δ, y) < 0 still holds. Denote j1, · · · , jL as the indices of L active constraints (L < K , |I|).
Without violating the power constraint, we increase wj to wj + δ/L for j ∈ {j1, · · · , jL}. But then

fj(wj + δ/L, y) < 0 for any j ∈ {j1, · · · , jL}, i.e., all the K inequality constraints are inactive. We can

therefore further reduce y for a better solution, which contradicts the optimality assumption. Now we

have proven that at the optimal solution to (13), all the K inequality constraints are active, i.e.,

10
−

di
20

h

10 log10 wi−ci+
√

(10 log10 wi−ci)2+ai

i

−bi − y = 0, i ∈ I.

Denote

λ , log10 y = − di

20

[

10 log10 wi − ci +
√

(10 log10 wi − ci)2 + ai

]

− bi, i ∈ I. (14)

The equations lead to

wi = 10
1
10

»

ci+
aidi

40(λ+bi)
−

10(λ+bi)

di

–

. (15)

Inserting (15) into the power constraint, we obtain

∑

i∈I

10
1
10

»

ci+
aidi

40(λ+bi)
−

10(λ+bi)

di

–

= ρ. (16)

For ai > 0 and di > 0, the left hand side of (16) is a monotonous increasing function of λ given

λ + bi < 0. This constraint is innocuous as λ + bi = − di

20

[

xi − ci +
√

(xi − ci)2 + ai

]

< 0. According

to the hyperbola model, bi = limx→−∞ log10 Poutage(ρnorm) = 0 in the case of outage probability, or

bi = limx→−∞ log10 Pe(ρ, M) = −0.301 in the case of uncoded BER. Hence in theory bi = b for ∀ i. (In

practice, bi’s are slightly different due to the fitting error.) As

lim
λ↑−b

∑

i∈I

10
1
10

h

ci+
aidi

40(λ+b)
−

10(λ+b)
di

i

= 0 and lim
λ→−∞

∑

i∈I

10
1
10

h

ci+
aidi

40(λ+b)
−

10(λ+b)
di

i

= ∞, (17)

we conclude that there is a unique solution to (16). We can solve λ from (16) using Newton’s iterative

method or bisection method. Consequently, wi is obtained according to (15).

It is even simpler to solve the dual problem: to minimize the input power required to meet a prescribed

BER. Given a target BER Pb, we obtain the power wi by inserting λ = log10 Pb into (15), which depends
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on the hyperbola parameters (ai, bi, ci, di) and in turn depends on Mi. The optimal constellation tuple is

determined by finding the one yielding the minimal ρ =
∑K

i=1 10
xi
10 . The actual probability of error is not

exactly Pb due to the error-propagation effect. Some margin of input power is required to compensate

for error propagation.

With the hyperbola model, the procedure of solving the optimization problem (8) can be equally

applied to solve (11). We omit it here to avoid repetition. Furthermore, the optimization problems

(8) and (11) are applicable to the SMA with any detection ordering. Given a detector ordering rule,

which yields N layers with layer gains r2
ii, 1 ≤ i ≤ N , one simply uses the associated hyperbola model

parameters (ai, bi, ci, di) in the above described procedure to solve (8) or (11).

It is worthwhile emphasizing that the above algorithm only needs to be implemented offline once and

for all, which generates a lookup table including input SNR constraint (or target error probability) and

the rates and powers allocated to the K substreams. Indeed, the online computational complexity is

quite small. Assuming that the transmitter knows the average input SNR ρ (which varies much slower

than the channel gains), it allocates power and rates to K substreams according to the pre-generated

lookup table. At the receiver side, for each channel realization the receiver determines the detection

ordering according to some ordering rule, e.g., the greedy ordering rule introduced in [1, Section IV].

Then the receiver feeds the ordering information back to the transmitter. If K transmit antennas are

to be used, then the ordering information can be encoded by log2 (Mt!/(Mt − K)!) bits. Based on the

ordering information, the transmitter maps the K substreams to K transmit antennas. Compared to the

conventional V-BLAST algorithm, the only added complexity of the proposed schemes is to maintain a

lookup table and a small amount of feedback.

Table I presents the lookup table for an iid Rayleigh channel with Mr = Mr = 4. The overall rate

constraint R = 16 and the allocated rates and powers are calculated with BER criterion. The optimal

rate allocation is 6/6/4/0 over the whole range of input SNR 14 ∼ 30 dB. That is, only K = 3 transmit

antennas are in use with 64-QAM over the first and second layers and 16-QAM over the third layer.

Note that the numbers therein are in absolute value, not in dB. In this case, the receiver needs to feed

log2 Mt! = 4.59 bits per channel realization back to the transmitter.

IV. Analysis of Outage Probability and Outage Capacity

Outage probability and ǫ-outage capacity are the performance measures of fundamental importance

as they represent the performance limit of a system using capacity-achieving coding. In this section,
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TABLE I

Input SNRs ρi, 1 ≤ i ≤ 4, for Greedy ordering (The optimal rate allocation: 6/6/4/0)

Layer SNR = 14 dB 16 dB = 18 dB 20 dB 22 dB 24 dB 26 dB 28 dB 30 dB

1 5.6594 8.9944 14.3925 22.9163 35.7918 54.0829 78.3608 108.6637 144.7930

2 11.6497 18.6142 29.3691 45.7216 70.1770 106.0488 157.4286 229.0046 326.0209

3 7.8098 12.2024 19.3342 31.3621 52.5233 91.0571 162.3178 293.2890 529.1864

4 0 0 0 0 0 0 0 0 0

we apply the hyperbola model to analyze the outage probability and outage capacity of the proposed

class of SMAs. We assume the input constellation to be of infinitesimal granularity. Our goal here is to

obtain the fundamental performance limit and hence gain more insights into the proposed schemes.

A. Outage Probability

An SMA system (with independent coding per layer) is in outage if and only if there is at least one

layer in outage (see (9)). Therefore, the outage probability of the overall system is

PO,SMA = P

(

⋃

i:Ri>0

{

r2
ii <

2Ri − 1

ρi

}

)

. (18)

In contrast, the fundamental outage probability of the MIMO channel with uniform power allocation is

PO,opt = P

(

log2

∣

∣

∣
I +

ρ

N
HH

∗
∣

∣

∣
<

N
∑

i=1

Ri

)

, (19)

i.e., the probability of mutual information of the channel being less than the target rate R =
∑N

i=1 Ri.

In Section III, we have studied allocating rate and power such that all the layers in use have the same

error/outage probability. Following this criterion, we pose the constraint that

P

({

r2
ii <

2Ri − 1

ρi

})

= 10λ, i ∈ I (20)

for some λ < 0, where I = {i : Ri > 0}. It is easy to see that 10λ ≤ PO,RTVB ≤ K10λ, where K = |I|.
In practical system design one should consider this and have some margin for the design parameter λ.

It follows from (20) that

2Ri − 1

ρi
= F−1

r2
ii

(10λ), and Ri = log2(1 + ρiF
−1
r2
ii

(10λ)), (21)
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where F−1
r2
ii

(x) is the inverse function of the cdf of r2
ii, i.e.,

∫

F−1

r2
ii

(x)

−∞ fr2
ii
(t)dt = x. The function F−1

r2
ii

can

also be represented by the hyperbola model. With yi(x) , log10 PO,i = λ we obtain from the hyperbola

model (see (5)) that

xi = ci +
aid

2
i − 400(bi + λ)2

40di(bi + λ)
,

where ai, bi, ci, di are the hyperbola parameters corresponding to the ith layer. Defining the normalized

SNR ρnorm,i = ρi

2Ri−1
, we obtain from (21) and the definition in (4) that

F−1
r2
ii

(10λ) = ρ−1
norm,i = 10−

xi
10 = 10

−

»

ci
10

+
aid2

i −400(bi+λ)2

400di(bi+λ)

–

. (22)

Now we are ready to study the following problem: given the target outage probability 10λ, what is the

minimum power allocation required to achieve the target rate R ? The answer is obtained by solving

minρi

∑N
i=1 ρi

subject to
∑N

i=1 log2(1 + ρiF
−1
r2
ii

(10λ)) = R , ρi ≥ 0,
(23)

The solution is the well-known “water filling” power allocation [8]

ρi(µ) =

(

µ − 1

F−1
r2
ii

(10λ)

)+

, (24)

where (x)+ = max{0, x} and the Lagrange multiplier µ is chosen such that
∑N

i=1 log2(1+ρi(µ)F−1
r2
ii

(10λ)) =

R. For any outage probability PO,i = 10λ, the water filling algorithm can be used to find the optimal

power allocation and overall input power. Hence the PO,i-vs-ρ curves can be easily obtained.

We see that an SMA converts the original MIMO channel into parallel scalar channels with virtual

channel gains F−1
r2
ii

(10λ), i = 1, · · · , N , determined by the target outage probability. For small target

outage probability, the virtual channel gain is small (recall that F−1
r2
ii

(x) is an increasing function), which

requires more input power to achieve the target rate. Moreover, if the ith layer gain is statistically larger

than the jth layer, 1 then F−1
r2
ii

≥ F−1
r2
jj

. According to (24), ρi ≥ ρj . Hence the water filling algorithm

tends to put more power to the statistically stronger layers, which is intuitively pleasing.

B. Outage Capacity

We now study the outage capacity of the proposed schemes at high SNR. Given the target outage

probability ǫ, the subchannel gains F−1
r2
ii

(ǫ) are fixed. As the input SNR ρ → ∞, all the N subchannels

1We say X is statistically larger than Y if P (X < a) ≤ P (Y < a) for ∀a ∈ R.
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will be in use. In this case
∑N

i=1

(

µ − 1
F−1

r2
ii

(ǫ)

)

= ρ,, i.e., µ = ρ
N

+ 1
N

∑N
i=1

1
F−1

r2
ii

(ǫ)
, and the water filling

power allocation is

ρi = µ − 1

F−1
r2
ii

(ǫ)
=

ρ

N
+

1

N

N
∑

i=1

F−1
r2
ii

(ǫ) − 1

F−1
r2
ii

(ǫ)
, i = 1, · · · , N. (25)

Therefore ǫ-outage capacity is

C(ǫ) =

N
∑

i=1

log2(1 + ρiF
−1
r2
ii

(ǫ))

= N log2

(

ρ

N
+

1

N

N
∑

i=1

F−1
r2
ii

(ǫ)

)

+
N
∑

i=1

log2 F−1
r2
ii

(ǫ) (26)

= N log2

( ρ

N

)

+

N
∑

i=1

log2 F−1
r2
ii

(ǫ) + O

(

1

ρ

)

, as ρ → ∞. (27)

The above expression shows that at high SNR, the ǫ-outage capacities of the SMAs are different from

each other by a constant depending on
∑N

i=1 log2 F−1
r2
ii

(ǫ). Hence to improve the ǫ-capacity, one should

design a decoding ordering rule which maximizes
∑N

i=1 log2 F−1
r2
ii

(ǫ). The problem of obtaining the

ordering rule that maximizes ǫ-outage capacity is still open. Note that if r2
ii is statistically larger than

r̃2
ii, then F−1

r2
ii

(ǫ) ≥ F−1
r̃2
ii

(ǫ). Recall from the recursive procedures described in [1, Section IV] that the

Greedy QR “greedily” attempts to make the squared layer gains r2
ii as large as possible. Hence, the

Greedy QR can be regarded as an algorithm which maximizes (27) greedily. This observation explains

to some extent the superior performance of GRT-SMA.

Again, we note that the actual system outage probability is greater than ǫ but less than Nǫ. Indeed,

based on this observation it is easy to show that

N log2

( ρ

N

)

+
N
∑

i=1

log2 F−1
r2
ii

(ǫ/N) + O

(

1

ρ

)

≤ R(ǫ)

≤ N log2

( ρ

N

)

+

N
∑

i=1

log2 F−1
r2
ii

(ǫ) + O

(

1

ρ

)

, as ρ → ∞. (28)

As a benchmark, if Mt = N = min{Mt, Mr}, an asymptotically tight lower bound on the outage

capacity of the MIMO channel with an unconstrained architecture is derived in [3], which is

Copt(ǫ) = N log2

( ρ

N

)

+ log2 C∞(ǫ) + o(1), as ρ → ∞, (29)

where C∞(ǫ) = sup {y : P (|H∗
H| < y) ≤ ǫ}. The determinant of the Wishart matrix H

∗
H ∈ CN×N

can be written as the product of N independent Chi-square random variables. Therefore C∞(ǫ) can be



13

calculated via numerical integration [3]. Hence at high SNR regime, the ǫ-outage capacity of a SMA

are different from Copt(ǫ) by some constant which is determined by the cdfs of the layer gains.

V. Numerical Examples

In this section, we present several numerical examples to demonstrate the effectiveness of GRT-SMA.

We include the uniform channel decomposition (UCD) scheme [9] as a benchmark. The UCD scheme

also exploits the collaboration between transmitter and receiver through a feedback channel. One imple-

mentation of the UCD scheme can be regarded as a precoded MMSE-V-BLAST which has the following

nice feature; combined with the precoder, the MMSE-V-BLAST equalizer converts, in a capacity lossless

manner, a MIMO channel into multiple identical layers with equal output SNRs. The UCD scheme can

achieve the optimal diversity-multiplexing (D-M) tradeoff. The drawback of UCD is that it requires

feeding back a unitary precoder matrix, which in principle requires infinitely many feedback bits.

In the first example, we consider an iid Rayleigh flat fading channel with Mt = 4 and Mr = 4. We

compare uncoded BER performances of the GRT-SMA and NRT-SMA against the MMSE-V-BLAST

with ordered detection, the fixed order RT-VB scheme [10], and UCD. For UCD and the conventional

V-BLAST schemes, uniform power and rate (16-QAM) are allocated to each antenna. The GRT-SMA

employs the rate and power allocation given in Table I. The simulation results are presented in Figure 4.

We see that the diversity gain of each scheme agrees with the D-M gain tradeoff Analysis of [1, Section

III]. There is about 1 to 2 dB gap between the GRT-SMA and UCD. Note that in UCD, the receiver

needs to feed a unitary precoder matrix back to the transmitter, while for the SMAs, the feedback is

4.59 bits per channel realization. Hence compared to UCD, GRT-SMA trades a very mild performance

loss as a price for a significant reduction of feedback overhead.

We then apply the SMAs to non-Rayleigh fading channels. Two typical simulations results are

presented here. One is based on spatially correlated channel matrix generated as follows

H = R
1/2
r H̃R

1/2
t , (30)

where H̃ is an iid Rayleigh fading channel matrix with Rr having unit diagonal elements and equal off

diagonal elements equal to 0.3 and Rt having unit diagonal elements and equal off diagonal elements

equal to 0.7. The other example is based on the Rician distribution generated by the model

H =

√

κ

1 + κ
Θ +

√

1

1 + κ
H̃. (31)
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Here Θ is a random matrix with iid elements whose amplitudes are one and phases are uniformly

distributed between 0 and 2π. In the simulation, we set the K-factor κ = 5. For both examples, the

GRT-SMA still adopts the rate and power allocation given in Table I, which is clearly suboptimal since

Table I is obtained under the assumption of iid Rayleigh fading. The simulation results are given in

Figure 5. Figure 5(a) shows that the gap between UCD and the GRT-SMA with Greedy Ordering

is slightly larger compared to Figure 4. However, the relative advantage of the GRT-SMA over the

open-loop schemes remains significant. In Figure 5(b) the gap between GRT-SMA and UCD is still less

than 2 dB. Hence we have seen that the GRT-SMA is robust against the inaccurate assumption of the

channel fading statistics.

Figure 6 compares the outage probabilities of the NRT-SMA, the GRT-SMA, the fixed order RT-VB

schemes, which are given in (18), with the channel outage probability given in (19). The rate/power

allocation algorithm introduced in Section IV is used for the SMAs as well as the fixed order RT-VB

schemes. The outage probabilities are averaged over 107 independent channel realizations. We note that

the GRT-SMA suffers about 2 dB loss compared to the fundamental limit. However, it has comparable

performance to the V-BLAST scheme with a maximum likelihood (ML) receiver (denoted VB+ML), in

particular, GRT-SMA has significantly higher diversity gain than VB+ML. Figure 7 illustrates the gap

between the overall system outage probability (18) with the nominal outage probability of each layer

10λ (20). This figure gives us an idea about how much margin one should allow to design for a nominal

outage probability.

Figure 8 compares the ǫ-outage capacities of the SMAs, the fixed order RT-VB scheme, and the

channel outage capacity. The results are obtained via Monte Carlo trials of the iid Rayleigh fading

channel. As predicted at the end of Section IV, the SMAs have the same rate of increase of the ǫ-

capacity as ρ → ∞, while there are constant gaps between those of the SMAs and the optimal. The

GRT-SMA has higher ǫ-capacity than NRT-SMA, which in turn is better than the fixed order RT-VB.

We also note that compared to the optimal, the rate loss of the SMAs is smaller in the low SNR regime.

Finally, we combine the GRT-SMA scheme with trellis coded modulation (TCM) [11]. The standard

64-state Ungerboeck code is applied to all the layers in use. The rates and powers are allocated according

to Table I, i.e., we use the 64-QAM on the first two layers and 16-QAM on the third layer. We apply

three TCM codes with code rate 5/6, 5/6, and 3/4, respectively. The total information rate is therefore

5 + 5 + 3 = 13 bps/Hz. We take each packet to contain 10400 information bits. The packet error rate

(PER) curve is shown in Figure 9. Also included as benchmark is the fundamental outage probability
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and the outage probability of the system applying GRT-SMA. It can be seen that the PER is only

about 3 dB from the outage probability of GRT-SMA and about 5 dB away from the fundamental

outage probability at PER= 0.1. This gap can be further reduced with better codes.

VI. Conclusion and Discussion

In this two-part paper, a framework is developed for jointly designing channel-dependent ordered

decoding at the receiver and rate and power allocation at the transmitter. The joint design is facilitated

by feeding a few (≤ log2(Mt!)) bits from receiver back to the transmitter with regard to the decoding

order. This framework encompasses a class of new SMAs which admit independent scalar coding for the

multiplexed substreams. The D-M gain tradeoffs of the class of SMAs is analyzed. Two SMAs based

on two special decoding orderings are proposed. One is called the Norm ordering Rate Tailored SMA

(NRT-SMA), and the other the Greedy ordering Rate Tailored SMA (GRT-SMA). The latter is shown to

have the optimal diversity-multiplexing (D-M) gain tradeoff among the class, which in turn is quite close

to the fundamental D-M gain tradeoff of the MIMO channel. Compared to the classic V-BLAST, the

only added complexity of the proposed SMAs is that (i) for each channel realization the receiver feeds no

more than log2(Mt!) bits on the decoding order back to the transmitter, and (ii) the transmitter applies

rate and power allocation according to a lookup table. Although the added complexity is modest,

the proposed SMAs, especially the GRT-SMA has dramatic performance improvement over classical

V-BLAST, which is proven by both theoretical analyses and numerical experiments.

Because the SMAs apply independent coding for the multiplexed substreams, they are also applicable

to the multi-access channel (MAC) communications. The superior D-M tradeoff performance of the

GRT-VB suggests that there are MAC schemes which have better D-M tradeoff than that given in

[12][13]. This is not surprising though. The D-M tradeoff in [12][13] applies to the scenario where multi-

users compete with each other without any coordination. For the proposed class of SMAs, however, the

substreams are transmitted in a somewhat coordinated manner, facilitated by the low rate feedback.

The remarkable performance of the GRT-SMA clearly demonstrates the benefit of CSI feedback.

In pursuing an simple solution to the optimal rates and power allocation problem, we proposed a

four-parameter hyperbola model which can be used to closely approximate the error (outage) probabil-

ity. This result may be of independent interest and find applications in other problems involving the

optimization of wireless communication systems.
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lines are the fitting hyperbolas. Mt = Mr = 4.
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Fig. 5. Mt = 4 and Mr = 4. (a) spatially correlated fading (b) Rician fading channel with K-factor κ = 5.
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