
Dynamic Analysis and Debugging of Binary Code for
Security Applications

Lixin Li 1 and Chao Wang2

1 Battelle Memorial Institute, Arlington, Virginia, USA
2 Department of ECE, Virginia Tech, Blacksburg, Virginia, USA

Abstract. Dynamic analysis techniques have made a significant impact in secu-
rity practice, e.g. by automating some of the most tedious processes in detect-
ing vulnerabilities. However, a significant gap remains between existing software
tools and what many security applications demand. In this paper, we present our
work on developing across-platform interactive analysistool, which leverages
techniques such as symbolic execution and taint tracking toanalyze binary code
on a range of platforms. The tool builds upon IDA, a popular reverse engineering
platform, and provides a unified analysis engine to handle various instruction sets
and operating systems. We have evaluated the tool on a set of real-world applica-
tions and shown that it can help identify the root causes of security vulnerabilities
quickly.

1 Introduction

Dynamic and symbolic execution based techniques have made asignificant impact on
analyzing the binary code, e.g. to help automate some of the most tedious and yet non-
trivial analysis in security practice. One example is white-box fuzzing [1], where the
goal is to systematically generate test inputs to exercise all feasible program paths.
Another example is taint analysis [2], where the goal is to track how tainted inputs
propagate and trigger security vulnerabilities. In addition, these techniques have been
used to detect a broad class of zero-day attacks [3, 4] and to generate vulnerability
signatures [5] in a honey-pot.

Despite the aforementioned progress, however, there are major limitations in exist-
ing techniques that prevent them from being widely adopted.First, there is a lack of
support forinteractive analysis. Current research on dynamic binary analysis focuses
primarily on fully automated methods, which is undoubtedlyimportant for applications
such as software testing. However, security applications such as malware analysis and
exploitation analysis often cannot be fully automated. Although automated analysis can
serve as the starting point of another round of deeper analysis, human in the loop is still
indispensable. For example, an exhaustive white-box fuzzer can merely exercise all fea-
sible program paths and identify the necessary conditions to trigger software bugs, but
cannot decide whether the bugs are exploitable. To decide whether a bug is exploitable,
the user needs to refine the input along that path to decide whether it is a security vul-
nerability. During this process, tools that support interactive analysis would be useful.

Second, there is a lack of support forcross-platform analysisby existing tools. This
is a burning issue as well because software today runs on an increasingly diverse set
of microprocessors and operating systems. Even if a software bug is exploitable on one



platform – a specific combination of microprocessor and OS – it is not necessarily ex-
ploitable on a different platform, and vice versa. The reason is because a working exploit
is often highly dependent on the runtime environment (stacklayout, memory model,
etc.). Similarly, effective protection, such as address space randomization (ASR), non-
executable page, and stack/heap hardening, is also highly dependent on the runtime
environment. Unfortunately, existing tools rarely support multiple platforms. For ex-
ample, ARM based processors are popular in smart phones; many network routers and
switchers use PowerPC and MIPS; and embedded devices often use some type of RISC
chips. But existing dynamic analysis tools such as TEMU [6] and SAGE [1] focus only
on the x86 instruction set.

To bridge the gap, we propose a unified framework for binary code analysis, to sup-
port bothinteractiveanalysis andcross-platformanalysis. Interactive analysis allows
for the user to make an assumption about the target program, and then quickly check for
evidence that supports or contradicts that assumption. Forexample, the user can mark
certain memory locations or registers as taint sources and then quickly check for other
instructions that are either control-dependent or data-dependent on the taint sources.
Since the user often needs to review the same execution scenario repeatedly, e.g. from
different angles and in varying degree of details, our tool also supports trace replay
augmented with dynamic slicing. Along certain program paths, the user can not only
review what has happened but also performwhat-if analysis: to see whether the pro-
gram would behave differently if it were to take a different branch or input value. Such
analysis is supported by applyingon-demandsymbolic execution using SMT solvers.

To support cross-platform analysis, we adopt a unified binary code intermediate
representation (IR) of the target programs, and implement the core analysis algorithms
on this IR. We also develop various reverse engineering tools that translate the na-
tive execution traces of the program into this IR. Since coreanalysis algorithms such
as symbolic execution and taint analysis are made architecture-independent and OS-
independent, the maintenance cost is significantly reduced. This is in sharp contrast to
most existing tools, which are all tied to specific instruction set architectures (ISAs)
and operating systems (OSs). In our approach, native execution traces from different
platforms, together with the native program state, are captured and then translated into
the architecture-independent IR. Similarly, the analysisresults are mapped back to the
native platforms before they are presented to the user.

To the best of our knowledge, such cross-platform interactive analysis framework
does not exist before. In addition to symbolic execution andtaint analysis, our tool
supportsdeterministic replay. More specifically, at the operating system layer, we use
a generic debug breakpointbased mechanism [7] to support trace generation in user
mode, kernel mode, and on real devices. It allows us to avoid the limitations of the
existing dynamic binary instrumentation (DBI) tools [8, 9]and whole-system emula-
tors [10]. Although there exist many replay systems for binary programs (e.g. [11]),
they do not seem to integrate well with mainstream security analysis tools and do not
support interactive analysis. For example, there are toolsthat extend the debuggergdb
to support replay [12], but do not support taint analysis. Reverse engineering tools such
as IDA [13] also support replay but not taint analysis. Without taint analysis, replay
itself does not provide enough information about the data relations critical for security
analysts. Typically, security analysts need to construct the data flow relations manually.

We have implemented the cross-platform interactive analysis system in the popu-
lar IDA Pro tool. New features such as symbolic execution, taint tracking, and replay

2



have been integrated seamlessly with the existing featuresof IDA Pro. We have eval-
uated the new tool on a set of real world applications with known vulnerabilities, and
demonstrated the effectiveness of the tool.

The remainder of the paper is organized as follows. We provide an overview of
our tool in Section 2, and present the cross-platform symbolic execution engine, called
CBASS, in Section 3. We present the interactive taint analysis engine, called TREE, in
Section 4. We present our experimental evaluation in Section 5, review related work in
Section 6, and then give our conclusions in Section 7.

2 System Overview

Fig. 1. The Architecture of our Cross-platform Interactive Analysis System

The proposed system, shown in Fig. 1, consists of the following subsystems:

– CBASS (Cross-platform Binary Automated Symbolic execution System), which
separates the platform dependent execution trace generation process from the plat-
form independent analysis process.

– TREE (Taint-enabled Reverse Engineering Environment), which provides a unified
replay, debugging, and taint tracking environment, allowing security analysts to
form a hypothesis and then check it interactively.

– Front-end subsystems that support bothstatic processingand dynamic tracing.
They translate native traces from different platforms to the common intermediate
representation (IR) and map the analysis results back.

We provide a brief description ofstatic processinganddynamic tracingin this section,
while postponing CBASS and TREE to Sections 3 and 4, respectively.

3



Static processing and dynamic tracing are crucial components for supporting cross-
platform analysis at the instruction set architecture (ISA) level and the operating system
(OS) level. ISAs often differ significantly in their encoding and semantics of the instruc-
tions. Operating systems often differ in how they use registers to represent high-level
data structures. For example, Windows and Linux usefs andgs segment registers for
very different purposes. In our system, however, these differences are mostly removed
due to the use of a common IR. In the front-end, only a thin layer needs to deal with
remaining subtle differences. In the back-end, all core analysis algorithms are based on
the common IR.

We shall use the program calledbasicov plus.exe in Fig. 2 as the running exam-
ple. It reads the data inputs from a file and adds each input byte, except for the last two,
with its right neighboring byte. If the first byte is’b’, the transformed bytes are fed to
a vulnerable function calledStackOverflow. The function is vulnerable in that, if the
input is larger than a local buffer inside the function, there will be a buffer overflow,
causing the return address to be overwritten. Although the program is small, it consists
of all the important elements of a typical security vulnerability: the potentially tainted
data source (input), the transformation (addition), the trigger (path condition), and the
anomaly manifestation (buffer overflow). In practice, of course, each of these elements
can be significantly more complex. For example, the transformation itself may involve
not just one instruction but a few millions of instructions.

Fig. 2. Example: A Conditional Buffer Overflow Program

Static Processing There are two main components for static processing. One com-
ponent is responsible for pre-processing the binary code statically and building a map
from each native instruction to a set of IR instructions. Another component consists of
a set of simple static analysis on the resulting IR, e.g. to identify interesting locations
that are potential targets of the subsequent dynamic analysis.

Table 1 shows the mapping from a few instructions used by the program in Fig. 2
to the IR instructions. In this table, the native x86 instructions are shown in the first
column. The corresponding IR translations are shown in the second column. For exam-
ple, the native x86 instruction at the address0x00401073 is mapped to the sequence of
REIL instructions from the imaginary address0x0040107300 to the imaginary address
0x0040107306. We postpone our detailed presentation of the IR format, called REIL

4



(for reverse engineering intermediate language), to next section. For now, we only show
the mapping.

After the REIL IR is constructed, a set of simple static analysis may be conducted.
For example, one analysis may be used to measure the Cyclomatic complexity of each
function in the IR. The cyclomatic complexity is believed tobe useful in identifying
a set of functions where bugs most likely hide. Another analysis may be used to de-
tect loops heuristically and annotate the loop counters whenever possible. This is useful
because loops, as well as recursive call sites, are places where out-of-bound buffer ac-
cesses and non-termination most likely occur.

Table 1.The Mapping from Native Instructions to REIL IR Instructions

Native Instruction (x86) REIL IR Instruction

00401073 movsx edx, byte 40107300: add [DWORD FFFFFFF0, DWORD ebp, QWORD t0]
ss:[ebp-10] 40107301: and [QWORD t0, DWORD FFFFFFFF, DWORD t1]

40107302: ldm [DWORD t1, EMPTY , BYTE t2]
40107303: xor [BYTE t2, BYTE 0x80, BYTE t3]
40107304: sub [BYTE t3, BYTE 0x80, DWORD t4]
40107305: and [DWORD t4, BYTE FFFFFFFF, BYTE t5]
40107306: str [DWORD t5, EMPTY , DWORD edx]

00401077 cmp edx, 0x62 40107700: and [DWORD edx, DWORD 0x80000000, DWORD t0]
40107701: and [DWORD 98, DWORD 0x80000000, DWORD t1]
40107702: sub [DWORD edx, DWORD 98, QWORD t2]
40107703: and [QWORD t2, QWORD 0x80000000, DWORD t3]
40107704: bsh [DWORD t3, DWORD -31, BYTE SF]
40107705: xor [DWORD t0, DWORD t1, DWORD t4]
40107706: xor [DWORD t0, DWORD t3, DWORD t5]
40107707: and [DWORD t4, DWORD t5, DWORD t6]
40107708: bsh [DWORD t6, DWORD -31, BYTE OF]
40107709: and [QWORD t2, QWORD 0x100000000, QWORD t7]
4010770A: bsh [QWORD t7, QWORD -32, BYTE CF]
4010770B: and [QWORD t2, QWORD FFFFFFFF, DWORD t8]
4010770C: bisz [DWORD t8, EMPTY , BYTE ZF]

0040107a jnz loc40108e 40107A00: bisz [BYTE ZF, EMPTY , BYTE t0]
40107A01: jcc [BYTE t0, EMPTY , DWORD 0x40108e]

Dynamic Tracing There are three main components for dynamic tracing. Together,
they are responsible for generating a logged execution trace, which will be the starting
point of the subsequent offline analysis. Notice that, in oursystem, there is a clear
separation betweenonline trace generation andoffline trace analysis. This makes our
trace analysis as platform independent as possible. Among the existing binary analysis
tools, some have adopted online analysis [6, 14], meaning that the analysis takes place
at the time the program is executed, while others have adopted offline analysis [1],
meaning that the trace is captured and then analyzed later. However, all of them are
tied to a particular platform, making it difficult to maintain and extend to a different
platform. In contrast, our system does not have such problems.

In Fig.1, the components labeled Dynamic Binary Instrumentation and Whole-
system Emulation implement the two popular approaches adopted by many existing
tools. However, these two components alone doe not meet the demand of our system,
for the following reasons. Popular DBI tools, such as PIN andDynamoRIO, provide
user mode x86 binary instrumentation but do not support non-x86 ISAs. Valgrind sup-
ports non-x86 ISAs such as ARM, PowerPC, and MIPS, but runs only on Linux. None

5



of them provides kernel mode instrumentation. Whole-system emulators can provide
kernel instrumentation, but often through an additional instrumentation layer that is not
portable to new versions. For example, tools built on the QEMU simulator, such as
TEMU [6], DroidScope [15], and S2E [14], have different instrumentation layers. In
each case, the implementation is tied to a specific microcodeused by QEMU, making
it difficult to port. Therefore, although it is well-known that Android builds upon a cus-
tomized version of QEMU, porting the aforementioned tools to Android is challenging.

In contrast, we propose to use thedebug breakpointmechanism [7] for dynamic
tracing. This mechanism, already used by interactive debuggers such asgdb, is sup-
ported by almost all processors and operating systems. Therefore, it provides a unified
approach for collecting execution traces from different platforms. It can collect traces
in kernel mode. It can also collect traces on real devices such as Cisco routers and An-
droid phones, since almost all of these devices have development tools that provide the
breakpoint capability. Thisdebug breakpointapproach has significant advantages over
DBI tools. Running inside the target process, DBI tools often disturb the behavior of
the target program, e.g. by affecting the target’s stack andheap layout. This is a serious
problem becauseinterestingscenarios in security applications tend to manifest only in
certain program states.

Our experience shows that breakpoint based tracing is effective for short and in-
teractive analysis. To support long traces, our system leverages existing DBI tools and
whole-system emulators, e.g. PIN plug-in for Windows/Linux x86 for trace generation.
We have implemented a heuristic algorithm to automaticallyswitch between these tech-
niques, in order to use the best instruction tracer available in each individual application
scenario.

Trace Format The execution trace starts with a snapshot of the program state, which
consists of the module, thread, stack, and heap information. The program state is a
valuation of the setR of registers for all threads, including privileged registers for kernel
mode, and a global memory mapM . Therefore, we have the program state represented
asPS = {R,M}.

A tracer on a particular platform would record the finite sequence ofeventsstarting
from the initial state. An event is an execution instance of an instruction that trans-
forms the program statePS into a new program statePS′. Each event in the trace has
a unique sequence number. The vast majority of events in a trace are of the formI =
{instInfo, threadID,relevantRegisters, memoryAccess}, whereinstInfo
contains the address of the instruction, the encoding bytes, and the size,threadId
is the index of the thread that executes this instruction,relevantRegisters and
memoryAccess contain values of the related registers and memory elementsbefore
this instruction is executed.

Trace can be optimized to reduce the size while maintaining the same amount of
information required by the subsequent analysis. In our implementation, we record only
the information that is relevant to the subsequent analysis. For example, for instruction
movsx edx, byte ss:[ebp-10], our trace includes the values of registersedx andebp.
For user mode analysis, we capture the precondition and postcondition of each system
call or call to a standard library function as a function summary, to avoid recording the
large number of instructions inside the function. For example, after a call toReadFile,
we record the address of the input buffer, the input size, andthe content of the buffer.

6



3 Cross-Platform Binary Symbolic Execution System (CBASS)

In contrast to existing symbolic execution tools, where thecore analysis algorithms
are tied to specific DBI tools or whole-system emulators, CBASS performs symbolic
execution on the platform independent REIL IR. This is advantageous because any
enhancement to the core analysis algorithms would automatically benefit all platforms.

3.1 The REIL IR

REIL stands for Reverse Engineering Intermediate Language[16]. It is a platform in-
dependent intermediate representation of disassembled code, originally designed for
supporting static code analysis. We adopt REIL in our systemfor three reasons:

– Translators for statically mapping the native instructionset to REIL IR are readily
available for most of the ISAs, including x86, ARM, PowerPC,and MIPS.

– The REIL instructions are sufficiently close to native instructions on most platforms
and therefore can be used to preserve the native register state easily.

– The semantics of REIL instructions can be encoded in SMT formulas precisely by
using the bit-vector theory, and therefore is amendable to symbolic analysis.

REIL has only seventeen instructions, each of which has a simple effect on the program
state. Each REIL instruction has three operands. The first two operands are always the
sourceoperands and the last operand is always thedestinationoperand. One or more of
the operands can be empty. Table 2 summarizes the seventeen REIL instructions. For a
more detailed description of REIL, please refer to the online document [17].

Table 2.The REIL Instructions and Their Semantics

Category REIL Instruction Semantics
Arithmetic ADD s1, s2, d d = s1+ s2

SUB s1, s2, d d = s1 s2
MUL s1, s2, d d = s1∗ s2
DIV s1, s2, d d = s1/s2
MOD s1, s2, d d = s1 mod s2
BSH s1, s2, d if s2>0 d = s1∗2s2

else d = s1 /2−s2

Bitwise AND s1, s2, d d = s1& s2
OR s1, s2, d d = s1| s2
XOR s1, s2, d d = s1 xor s2

Logical BISZ s1, 6 ǫ, d if s1 = 0, d = 1 else d = 0
JCC s1,6 ǫ, d iff s16=0, set eip = d

Transfer LDM s1, 6 ǫ, d d = mem[s1]
STM s1,6 ǫ, d mem[d] =s1
STR s1,6 ǫ, d d = s1

Other NOP, 6 ǫ, 6 ǫ, 6 ǫ No op
UNDEF 6 ǫ, 6 ǫ,d Undefined instruction
UNKN 6 ǫ, 6 ǫ, 6 ǫ Unknown instruction

Designed for reverse engineering purposes, REIL provides the support to statically
translate native instructions in x86, ARM, PowerPC, and MIPS to their IR equivalents

7



for an instruction, a function, or the entire program. More importantly, REIL provides
a one-to-one mapping of the native instruction address to the imaginary IR address.
For example, in Table 1, the x86 instructionmovsx edx, byte ss:[ebp-10]at address
0x401073 will always be mapped to a list of REIL instructions from0040107300 to
0040107305. Therefore, it is easy to map the analysis results back to thenative forms
before reporting them to the user.

REIL has a simpleregister-basedarchitecture, which can keep native registers and
create temporary registers when needed. Preserving nativeregisters is particularly use-
ful for implementing the offline concrete and symbolic (or concolic) execution. Recall
that in concolic execution, the program state has to be savedduring trace generation
and later reconstructed during the offline analysis. At runtime, our trace generator will
only save the native program state (related native registers and global memory). During
the offline analysis, we can compute the IR program state directly from these native
registers and the memory.

In all of the seventeen REIL instructions, thedestinationoperand can be represented
by a mathematical or logical formula of thesourceoperands. Consider the second native
instruction00401077 cmp edx, 0x62in Table 1. Notice that the REIL instructions use
a few basic mathematical and logical operations to precisely compute all theeflags;
in other words, all theeflags can be represented as an expression in terms ofedx
and0x62. For example,ZF = (edx 98) and 0xffffffff. In some sense, REIL
instructions are compatible with the input language of the satisfiability modulo theory
(SMT) solver Z3 [18], which supports the theories of integers, bit-vectors, and arrays.

3.2 Symbolic Execution

The symbolic execution procedure consists of three steps:

1. Mark taint source and symbolize its value.Here, taint sources refer to the untrusted
data in the target program. When a program variable is markedas a taint source, our
tool symbolizes the variable, by replacing its concrete value with a symbolic one (a
free variable). Traditionally, the taint sources are program inputs. However, during
interactivesecurity analysis, the user may be interested in tracking other program
variables as well. For example, some sensitive data items such as the password
and the registry key may become the focus of the analysis. At any time during the
program execution, CBASS can mark any byte in any register orat any memory
location as the taint source.

2. Symbolic execution of REIL instructions.CBASS implements the symbolic execu-
tion engine based on the REIL IR. As we have already mentioned, the semantics
of REIL instructions can be close to that of the input language of the SMT solvers.
Therefore, the symbolic encoding procedure, which takes anIR trace as input and
returns an SMT formula, is straightforward. In our implementation of the proposed
system, we have used the Z3 SMT solver, which is capable of solving formulas
expressed in the theories of bit-vectors and arrays.

3. Check taint sink to construct constraint.Depending on the application, security
analysts may mark different memory location or register at some interesting point
as the taint sinks. For example, to generate potential exploits, the taint sinks are
usually registers such asEIP. We may create a constraint to steer the execution into
a desired code section and makeEIP equals to the address of that code section. To
detect vulnerabilities, the taint sinks are usually the unexplored branches. When we

8



encounter a branch instruction, we create a path condition if the branch predicate is
tainted by a symbolic input.

As shown in Table 2, there are four categories of REIL instructions directly related
to symbolic execution. Mathematical and logical instructions perform the correspond-
ing operations on constants, registers, or memory. Memory instructions handle memory
read or write operations, which propagate values between registers and memory. Con-
trol instructions decide where to jump if the branch conditions are true. During symbolic
execution, we use aconcrete and symbolic memory (CSM)map to represent the memory
state. It has both the concrete value and the symbolic value.For memory instructions, if
the address is symbolic, also called a symbolic pointer, we have to under-approximate
it by using the concrete value derived from the actual execution trace.

3.3 The Running Example

We use the instructions in Table 1 to demonstrate how to construct a path condition
during symbolic execution and how to generate the SMT formula. As the IR instructions
are fed to the symbolic execution engine, CBASS creates symbolic variables for the
taint sources and constructs the symbolic expressions. Foreach IR instruction, it creates
a new symbolic expression for the destination operand if anyof the source operands is
symbolic. If all the source operands have concrete values, then it uses the concrete value
for the destination operand.

Table 3.Example: The REIL IR based Symbolic Execution

Native Instruc-
tions

REIL Instructions Symbolic Execution, with ebp = 0x12ff84
and mem[12ff74] = INPUT

00401073
movsx edx, byte
ss:[ebp-10]

40107300: add [DWORD FFFFFFF0, DWORD ebp,
QWORD t0]

t0 = 0x12ff84+0xfffffff0 = 10012ff74

40107301: and [QWORD t0, DWORD FFFFFFFF,
DWORD t1]

t1 = t0 and 0xffffffff =0x12ff74

40107302: ldm [DWORD t1, EMPTY , BYTE t2] t2 = mem[t1] =INPUTVAR[8]
40107303: xor [BYTE t2, BYTE 0x80, BYTE t3] t3 = INPUT VAR[8] xor 0x80
40107304: sub [BYTE t3, BYTE 0x80, DWORD t4]t4 = (INPUT VAR[8] xor 0x80) -0x80
40107305: and [DWORD t4, BYTE FFFFFFFF,
BYTE t5]

t5 = ((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff

40107306: str [DWORD t5, EMPTY , DWORD edx]edx = ((INPUTVAR[8] xor 0x80) -0x80)
and 0xffffffff

00401077 cmp
edx, 0x62

40107700: and [DWORD edx, DWORD
0x80000000, DWORD t0]

t0 = (((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff)and 0x80000000

40107701: and [DWORD 98, DWORD 0x80000000,
DWORD t1]

t1 = 98 and 0x80000000 = 98

40107702: sub [DWORD edx, DWORD 98,
QWORD t2]

t2 = (((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff) - 98

Ignore irrelevant temps ... ...
4010770B: and [QWORD t2, QWORD FFFFFFFF,
DWORD t8]

t8= ((((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff) 98) and 0xffffffff

4010770C: bisz [DWORD t8, EMPTY , BYTE ZF]ZF = ite(t8==0,1,0)
0040107a jnz
loc 40108e

40107A00: bisz [BYTE ZF, EMPTY , BYTE t0] t0 = ite(ZF==0,1,0)

40107A01: jcc [BYTE t0, EMPTY , DWORD
0x40108e]

eip = ite(t0==1,0x40108e,0x40107c)

9



Table 3 shows the symbolic execution of the REIL instructions of the three native
x86 instructions. Notice that each native instruction is mapped to a sequence of REIL in-
structions. The REIL instructions take the native registers and memory values as input,
transform them by using intermediate registers, and returnthe results back to the native
registers and memory. For example, the instruction at0x401073 has the native register
ebp and memory value at address0x12ff74 as input, and the native registeredx as
output. Just before executing the instruction, the concrete value ofebp is assumed to be
0x12ff84 and the memory at the address0x12ff74 has a symbolic value. From the
first two REIL instructions, we havet1 = 0x12ff74. Theldm instruction setst2 =
mem[0x12ff74], which contains a symbolic value, and thent2 = INPUT VAR[8].

After carrying out the symbolic execution as shown in Table 3, the branch condition
before executing0040107a jnz loc40108ebecomesite(ite(((((INPUT VAR[8]
xor 0x80) -0x80) and 0xffffffff) 98) and 0xffffffff). This is equiv-
alent to the SMT formula shown in Fig. 3. By negating the path condition and asking
the SMT solver for a satisfying solution, we can compute the new input value to be98,
which corresponds tosBigBuf[0] == b in the original code in Fig. 2.

Fig. 3. Example: The Path Constraints in Z3 SMT Formula

4 Taint-Enabled Reverse Engineering Environment (TREE)

To unleash the analysis power of CBASS in security practice,we need to supportin-
teractiveanalysis. Toward this end, we have developed the infrastructure that can (1)
generate REIL traces on demand, (2) visualize the analysis results on demand, (3) per-
form taint tracking on demand. Together, these new featuresform the basis of our taint-
enabled reverse engineering environment (TREE).

4.1 Interactive Trace Generation

TREE leverages existing features of IDA, a popular reverse engineering tool, to support
on-demand trace generation. IDA is a widely used tool in mainstream security prac-
tice. It has become thede factostandard tool for conducting vulnerability and malware
analysis. IDA can statically disassemble binary code on more than 50 processors and
support a wide range of operating systems.

10



We have implemented thedebug breakpointbased trace collection framework in
IDA and integrated it seamlessly with the existing featuresof IDA. Our experience
shows that the debug breakpoint based approach works well insupporting interactive
trace generation, which typically involves short traces. For lengthy traces and large
interactive sessions, we rely on the traces generated from the more traditional DBI tools
such as PIN, and whole-system emulators such as QEMU.

Compared to the existing tools, the dynamic trace generatorin TREE has the fol-
lowing features:

– Interactive tracing:The user can select a starting point and an end point at any time
during the analysis and request the tool to conduct a deeper analysis on a relatively
short trace segment. This feature can be used by security analysts to quickly verify
or refute a hypothesis.

– Kernel tracing:The trace generator in TREE can generate traces on any platform
that supportswindbg andgdb server, allowing kernel mode traces to be generated
from both Windows and Linux.

– Mobile tracing:The trace generator in TREE can generate traces on Android/ARM
platforms through IDA’s debug agent. IDA supports real devices such as Android
phones and tablets. IDA also supports some versions of iPhone, Windows CE, and
Symbian OS, although these platforms have not been integrated with TREE.

4.2 On-Demand Taint Analysis

Broadly speaking, taint dependencies fall into three categories: data dependency, ad-
dress dependency, and control dependency.

– Data dependency means that the taint source affects the taint sink through data
movement, mathematical operations, or logical operations. The value of the taint
source often directly affects the value of the taint sink.

– Address dependency means that the taint source affects the taint sink through its
address for read or write, but the taint source does not directly affect the value of
the taint sink. One example for address dependency is the useof a tainted data as
the index to access a look-up table. Without tracking the address dependency, we
would lose track of the tainted data after such a table lookup.

– Control dependency is a form of implicit information flow. Although it can happen
in benign programs, it is often more deliberately used by malware. It can be of the
form if x =0 then y=0 else y=1. If x is tainted, the value ofy is dependent
of x. But there is no direct link between the value ofx and the value ofy.

In security analysis, it is often challenging to keep track of all three types of dependen-
cies. In the remainder of this section, we will show how TREE can make it easier.

The main difficulty in taint tracking for the x86 instructionset is to handle the large
number of instructions and their variants, since these native instructions often have com-
plex side effects. REIL provides a unified framework for capturing these side effects,
e.g. by breaking down a native x86 instruction into a sequence of simple REIL instruc-
tions. Notice that there are only seventeen REIL instructions. Furthermore, each REIL
instruction has only one effect, making taint tracking easyto implement. Fig. 4 (1)
shows a comparison of the native x86 instructions and the corresponding REIL in-
structions. The REIL instructions capture the side effectsof the native instructions on
eflags includingSF, OF, CF andZF.

11



Fig. 4.TREE Uses REIL IR for Comprehensive Taint Analysis

REIL also supports static analysis that can provide hints for dynamic analysis. They
can be useful for x86 instructions that have embedded conditions or loop structures.
For example,cmpxchg compares the values in theAL, AX or EAX registers with the
destinationoperand, and depending on the comparison result, differentoperands may
be loaded into thedestinationoperand. Some x86 instructions with prefix such asrep
behave like a loop. Fig. 4 (2) shows the REIL instructions forx86 instructionrep
movsb. Since dynamic analysis can only follow one path at a time, ingeneral, it cannot
handle the branch and loop dependency. However, a conservative static analysis on
REIL IR often can reveal the branch and loop structure. This is the case forrep movsb
where such analysis can identifyecx as the loop counter. We have incorporated such
analysis into our REIL-based dynamic taint analysis.

We use the same example for CBASS symbolic execution to show the major steps
in dynamic taint analysis. Fig. 5 shows the details of this algorithm. After merging the
temporary register nodes, the final taint graph for native instructions is shown in the last
column of this table.

4.3 Replay with Taint-enabled Breakpoints

In an interactive analysis session, the user may want to scrutinize a particular program
behavior repeatedly. TREE provides a replay mechanism to support such analysis. One
application is to reconstruct the execution states. Comparing to tools such asgdb and
IDA, the replay mechanism in TREE is significantly more powerful. For example, it
allows the user to break at any tainted points, after the usermarks the initial taint source
and specifies the type of impact (taint policy). This new feature ofbreak by data relation
is key to interactive analysis. It essentially allows the user to break at any point that she
is interested, without the need to construct the chain of events mentally. In addition,
TREE can presents the chain of events within the proper semantic context visually.

12



Fig. 5.Example: Dynamic Taint Analysis

13



We illustrate the replay process by using the same buffer overflow example in Fig. 2.
When this program runs with a 16-byte input that triggers theStackOverflow func-
tion, the input bytes at offsets 13 to 16 would overwrite theEIP bytes. This chain of
events can be tracked by TREE, for which a user-clickable graph is shown in Fig. 6. In
this graph, each node represents a byte, annotated by its transformation instruction and
followed by its edge type. D is the default edge type that stands for data dependency.
The first byte ofEIP (id =207) is overwritten by input bytes 13 and 14 (id=13,14) after
a few steps.

First, these two bytes are added to form a new byte at memorymem 0x14fe1c(id
=159). Then the byte is moved to a local buffer at0x14fdfc and overflowed the buffer
at functionstackOverflow(). When the call to this function returns, the byte, at the
top of the stack atmem 0x14fdfc[id=196] is popped into the first byte of register
EIP [id =207]. For this trivial example, there are already477 instructions logged
in the trace, but only 8 unique instructions are involved in the handling of the input
bytes. In such cases, the taint graph allows the user to focuson the most relevant set of
instructions quickly.

Fig. 6.Taint Graph and Visualization of Running Example

5 Evaluation

We have implemented the proposedcross-platform interactive analysissystem using
the client/server architecture. More specifically, CBASS runs as the back-end server,
responding to requests from the front-end. It shares the REIL IR with TREE. TREE
is responsible for handling OS level differences and mapping the analysis results back
to the native instruction context. The client/server architecture enables parallel develop-
ment and optimization of CBASS and TREE, and makes it easy to port either subsystem
to a different platform without affecting the other.

14



Currently, CBASS and TREE are able to run on Windows and Linux, and support
target programs running on the x86 and Android/ARM platforms. CBASS is written
in Jython, a Python-based language that can access Java objects and call Java libraries.
CBASS interfaces with REIL through the REIL Java library forIR translation. TREE is
implemented as anIDA Pro plug-in. TREE also uses Qt/Pyside and extends the IDA
graph to support a number of visualization features and userinteraction. During the
process of developing TREE, we have found a number of bugs in both IDA and REIL
related tools. In most cases, the IDA and REIL developers have responded to our bug
reports promptly and provided fixes in their latest releases.

In the remainder of this section, we will first provide an overview of our detailed
evaluation and then present a case study with a real-world application. Together, they
demonstrate the effectiveness of our system in supporting cross-platform interactive
security analysis.

5.1 Overview

We have conducted two sets of experiments. The first set consists of unit level tests for
the CBASS and TREE subsystems. The second set consists of case studies using real-
world applications. At the unit testing level, we have used alarge number of binary pro-
grams (each around 100 LOC) to check if the core analysis algorithms in TREE/CBASS
are implemented correctly. We have designed various transformation functions to pro-
cess the input (taint source) and created the correspondingtest oracles to ensure that
TREE and CBASS produce correct results. The test programs are compiled on different
platforms (Windows, Linux, and Android) using different compilers (VC, GCC) with
various optimization settings. This also allows us to evaluate the effectiveness of our
front-end subsystems, which are crucial for the cross-platform analysis.

With real-world applications, the goal of our case study is to evaluate the effective-
ness of TREE/CBASS in analyzing vulnerabilities. More specifically, we would like to
know whether security analysts, armed with our tool, can quickly discover the chain
of critical events leading to the real vulnerability. Toward this end, we have selected
a set of Windows/Linux applications with known vulnerabilities. Table 4 shows the
statistics of the benchmark programs. In the following, we shall briefly describe each
vulnerability and then focus on using WMF (CVE-2005-4560) to explain in details how
TREE/CBASS can help reduce the analysis time required to identify the root cause.

The first two columns in Table 4 show the application name, version, and vulnera-
bility identifier. Both the WMF (CVE-2005-4560) and the ANI (CVE-2007-0038) vul-
nerabilities were present on many Windows versions prior toWindows Vista, and could
be triggered by applications including Picture and Fax Viewers, Internet Explorer, Win-
dows Explorer, and various email viewers. Audio Code 0.8.18has a buffer overflow
vulnerability that can be triggered when adding a crafted play list (.lst) file. This vul-
nerability can enable arbitrary code execution. Streamcast 0.9.75 has a stack buffer
overflow, allowing attackers to use the httpUser-Agent field to overwrite the return
address of a function call. POP Peeper 3.4.0.0, an email agent, has a vulnerability in
its From field, where the stack buffer can overflow to overwrite the return address and
the Windows Structural Exception Handler (SEH). PEiD is a popular tool for detecting
packers, cryptors and compilers found in PE executable files. A carefully crafted EXE
file can be used to exploit this vulnerability to run arbitrary code. SoulSeek 157 NS12d,
a free file sharing application, has a vulnerability that canbe remotely exploited to over-
write SEH. SoX (Sound eXchange) is a sound processing application in Linux. ItsWAV

15



Table 4.Results of Our Analysis on Real World Vulnerabilities

Program Name and
Version

Vulnerability
Identifier

Binary Code and
Trace Size(KB)

Taint
Sources
(Byte)

Total/Unique
Instructions

Total/Unique
Tainted Inst.

GDI32.dll
5.1.2600.2180

CVE-2005-4560272 / 2,422 68 76,618 / 5,677 206 / 115

User32.dll
5.1.2600.2180

CVE-2007-0038564 / 53,548 4,385 250,534 / 23,868 7,195 / 1,043

AudioCoder 0.8.18 OSVDB-2939 731 / 29,000 620 473,922 / 27,265 12,666 / 66
Streamcast 0.9.75 CVE-2008-0550804 / 26,541 1,230 83,204 / 3,354 8,351 / 35
POP Peeper 3.4.0.0BugTraq-34192 1,436 / 68,731 400 182,382 / 8,226 1,106 / 2
PEiD 0.95 OSVDB-94542 214 / 14,163 1,000 32,779 / 9,501 25 / 20
SoulSeek 157 ExploitDB-87773,410/147,931 49 4,435,526/142,220217/121
SoX 12.17.2 CVE-2004-0557225 /14,441 1,184 180,034 / 2,801 56,138 / 647

header handling code has a known buffer overflow vulnerability that can be exploited
by the attacker to execute arbitrary code.

The third column in Table 4 shows the size of the binary code and the size of the
trace, respectively. Recall that the on-demand trace logging starts when the target pro-
gram reads the taint source (input in all these test cases), and stops when the tainted data
have taken control of program, e.g. whenEIP contains a tainted value or the program
jumps to the tainted memory location. The fourth column shows the number of bytes of
the taint sources, ranging from a few dozen bytes to a few thousand bytes. For all cases,
CBASS/TREE can successfully build the taint graph previously described.

For any specific taint sink, the CBASS/TREE system can generate a slice of the
tainted instructions from the taint sources to the taint sink. The last two columns in Ta-
ble 4 show the total and unique instructions in the trace, andthe total and unique tainted
instructions for all the tainted sources and sinks, respectively. In general, tainted in-
structions are only a very small portion of the total instructions (<5%). For any specific
byte of the tainted target, for example, a tainted register or a tainted memory location,
usually only a few dozen tainted instructions are involved.

For more real world vulnerabilities to which we have appliedTREE/CBASS, please
refer to http://code.google.com/p/tree-cbass/. We will continue our ongoing evaluation
process and update the results on this website.

5.2 Case Study: WMF (CVE-2005-4560)

In this section, we will illustrate how TREE/CBASS can support interactive security
analysis by using CVE-2005-4560, also known as theWMF SetAbortProc Escape
vulnerability. WMF stands for Windows Metafile Format. The formal specification of
WMF is very complex. In short, the overall WMF file structure has one meta header,
followed by zero or more meta records. The key structure of the WMF file format is
shown in Fig. 7.

Each meta data record is an encoded Windows GDI (Graphics Device Interface)
function call. It is a means of storing and playing back the command sequence that nor-
mally would be sent to GDI to display graphics. Among the metarecords, one type is
called theescaperecord. Although this type of record is deprecated, the codethat han-
dles the record has not been removed in a timely fashion. If anescaperecord contains

16



Fig. 7. Case Study: The WMF Key Data Structures

certain values for the Function (0626) and Parameters (09) fields defined in the WM-
FRECORD structure, the SETABORTPROC escape will inform GDIto call a function
provided in the file. This vulnerability allows remote attackers to execute arbitrary code
via a WMF format image with a crafted SETABORTPROC GDI Escapefunction call,
related to the Windows Picture and Fax Viewer (SHIMGVW.DLL). It is relatively easy
to craft a WMF image file and cause the viewer application to crash.

The lower part of Fig. 7 shows an WMF file with 68 bytes. From thetime the
viewer program finishes reading the file to the point where an exception happens, 76,618
instructions would be executed. Given that most people do not know WMF format well,
we can assume that it is difficult to manually identify which bytes of the WMF file
are responsible for the crash, how many instructions are directly involved in rendering
the file, from which functions, and under what condition. Without such information, it
would be difficult to understand the root cause of this vulnerability. From the exploit
development point of view, it would not be obvious which input bytes are critical to a
working exploit, and what are the constraints a working exploit must satisfy.

With the dynamic analysis techniques provided by TREE/CBASS, we are able to
answer the aforementioned questions in a few minutes. More specifically, the tool can
generate a trace that leads to the crash. Furthermore, it canreplay the trace by first
marking the whole 68 bytes of the file as the taint sources, andthen stopping at the
tainted points. From the taint graph, we are able to see the connection between the
instruction that caused the crash (calleax whereeax = 0xa8b94) and some of the file
structures. We have identified 12 unique instructions in WMFthat are directly related
to moving and processing the file and causing the applicationto crash. Since our tool
can generate an interactive graph, the user can navigate along the chained data and
instructions by clicking on each tainted node in the graph.

17



Fig. 8 shows part of the WMF crash taint graph. The right side is a snapshot taken
from the TREE GUI. The nodes in green show the taint source bytes (WMF file), and
the nodes in red show the bytes pointed byeax in thecall eax instruction that caused
an exception. The left side of the figure shows some internal text representation of the
taint graph. For example, the node355 shows the tainted node of0xa8b94. Following
theD link (highlighted in bold), we can see that it is data-dependent on node 233, which
in turn is data-dependent on node 29, an input byte that corresponds to part of the
shell-code section. Following theC link (highlighted by underline), we can see that it
is affected by a loop whose iteration number depends on the values from the 7th to the
10th bytes in the WMF file. When looking back at theWMFHead structure, we find that
bytes 7-10 actually correspond to theFileSize field.

Fig. 8. Case Study: The WMF Crash and Taint Graph

6 Related Work

Independently, Heelan and Gianni [19] have explored the idea of supporting manual
vulnerability detection in their work called Pinnacle. However, Pinnacle is limited to
taint tracking on the x86 instruction set only. In contrast,our system can handle bi-
nary code from multiple platforms. Furthermore, our interactive analysis is significantly
broader than the scope of Pinnacle, including not only vulnerability analysis but also ex-
ploitation analysis and malware analysis. Our system also supports symbolic execution
and replay, which Pinnacle does not. Among the offline binaryanalysis tools, SAGE [1]
is the closest to ours. However, SAGE is designed primarily for white-box fuzzing and

18



works only for the x86 instruction set. It does not focus on interactive analysis and does
not support multiple platforms.

Since dynamic taint analysis is independent of the vulnerability specific details, it
can analyze a broad class of attacks controllable via input.Therefore, it has become a
popular technique for detecting attacks such as buffer overflow and control-flow hijack-
ing. However, online taint analysis often has high runtime overhead and requires in-
trusive code instrumentation. To make taint analysis more efficient for online intrusion
detection, Sekar proposed taint inference [20] for web applications by using approxi-
mate string match. Li and Sekar [21] later demonstrated thattaint inference could be
used to detect buffer-overflow attacks in low-level binary code.

Dytan [2] extended the data-flow based taint tracking to alsoinclude control depen-
dency, and developed a framework to support the x86 instruction set. Ganaiet al. [22]
extended this framework to support multithreaded applications. Predictive dynamic
analysis provides a new way of conducting trace-based analysis for multithreaded ap-
plications [23]. It can detect not only security vulnerabilities in the observed execution
traces, but also security vulnerabilities that may appear in some alternative thread inter-
leavings. Wang and Ganai [24] developed a tool for predicting concurrency failures in
the generalized execution traces of x86 executables.

Newsome and Song proposed TaintCheck [4], which used dynamic taint analysis
for detecting vulnerabilities and for generating vulnerability signatures. TaintCheck
was implemented using Valgrind [9]. Portokalidiset al. developed Argos [5] based on
QEMU to generate fingerprints for zero-day attacks. However, none of these existing
tools supports cross-platform interactive security analysis.

7 Conclusions

We have presented across-platform interactive analysisframework, which integrates
state-of-the-art dynamic analysis techniques with a mainstream reverse engineering
tool to meet the demand in security practice. Our framework,comprising CBASS and
TREE, supports interactive analysis through on-demand symbolic execution and taint
tracking. It also supports cross-platform analysis, by separating online trace generation
from offline trace analysis and by using a reverse engineering intermediate representa-
tion. We have implemented the proposed framework and conducted some preliminary
experimental evaluation. Our results have demonstrated its effectiveness in identifying
root causes of security vulnerabilities in real applications.

8 Acknowledgments

We would like to thank James Just for his guidance throughoutthis project, Xing Li for
implementing the IDA debug breakpoint based tracer, and LocNguyen for implement-
ing the taint graph visualization. We would like to thank Ilfak Guilfanov and the IDA
team for promptly fixing the bugs that we have reported to themand for their sugges-
tions on the GUI integration. We would like to thank Thomas Dullien and Tim Kornau
of the Google Zynamics team for making their latest version of REIL available to us.
The second author is supported in part by the NSF grant CCF-1149454 and the ONR
grant N00014-13-1-0527.

19



References

1. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network
and Distributed System Security Symposium. (2008)

2. Clause, J.A., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In:
ISSTA. (2007) 196–206

3. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.I.T., Zhou, L., Zhang, L., Barham, P.:
Vigilante: End-to-end containment of internet worm epidemics. ACM Trans. Comput. Syst.
26(4) (2008)

4. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis, and
signaturegeneration of exploits on commodity software. In: NDSS. (2005)

5. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-day
attacks for advertised honeypots with automatic signaturegeneration. In: EuroSys. (2006)
15–27

6. Song, D.X., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,
J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer security via binary
analysis. In: International Conference on Information Systems Security. (2008) 1–25

7. Paxson, V., et al.: A survey of support for implementing debuggers. Available from
ftp.ee.lbl.gov: papers/debugger-support.ps.Z (1990)

8. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: PIN: Building customized program analysis tools with dynamic instrumen-
tation. In: PLDI. (2005) 190–200

9. Nethercote, N., Seward, J.: Valgrind: A program supervision framework. Electr. Notes Theor.
Comput. Sci.89(2) (2003)

10. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual Technical
Conference, FREENIX Track. (2005) 41–46

11. Bhansali, S., Chen, W.K., De Jong, S., Edwards, A., Murray, R., Drinić, M., Mihočka, D.,
Chau, J.: Framework for instruction-level tracing and analysis of program executions. In:
International Conference on Virtual execution environments, ACM (2006) 154–163

12. GNU GDB: Process Record & Replay. http://sourceware.org/gdb/wiki/ProcessRecord
13. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassem-

bler, San Francisco, CA, USA (2008)
14. Chipounov, V., Kuznetsov, V., Candea, G.: The s2e platform: Design, implementation, and

applications. ACM Trans. Comput. Syst.30(1) (2012) 2
15. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik semantic

views for dynamic android malware analysis. In: USENIX Security. (2012) 29–29
16. Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation of disas-

sembled code for static code analysis. In: CanSecWest. (2009)
17. REIL: URL: http://www.zynamics.com/binnavi/manual/html/reil language.htm
18. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In:Tools and Algorithms for the

Construction and Analysis of Systems. Springer (2008) 337–340
19. Heelan, S., Gianni, A.: Augmenting vulnerability analysis of binary code. In: Annual Com-

puter Security Applications Conference. (2012) 199–208
20. Sekar, R.: An efficient black-box technique for defeating web application attacks. In: NDSS.

(2009)
21. Li, L., Just, J.E., Sekar, R.: Online signature generation for windows systems. In: Annual

Computer Security Applications Conference. (2009) 289–298
22. Ganai, M.K., Lee, D., Gupta, A.: DTAM: dynamic taint analysis of multi-threaded programs

for relevancy. In: FSE. (2012)
23. Wang, C., Kundu, S., Limaye, R., Ganai, M., Gupta, A.: Symbolic predictive analysis for

concurrent programs. Int. J. Formal Aspects of Computing (April 2011) 1–25
24. Wang, C., Ganai, M.: Predicting concurrency failures ingeneralized traces of x86 executa-

bles. In: International Conference on Runtime Verification. (2011)

20


