Dynamic Analysis and Debugging of Binary Code for
Security Applications

Lixin Li ' and Chao Wany

! Battelle Memorial Institute, Arlington, Virginia, USA
2 Department of ECE, Virginia Tech, Blacksburg, Virginia, NS

Abstract. Dynamic analysis techniques have made a significant impagdu-
rity practice, e.g. by automating some of the most tediousgsses in detect-
ing vulnerabilities. However, a significant gap remainsieen existing software
tools and what many security applications demand. In thipave present our
work on developing &ross-platform interactive analystsol, which leverages
techniques such as symbolic execution and taint trackiragnétyze binary code
on a range of platforms. The tool builds upon IDA, a populaerse engineering
platform, and provides a unified analysis engine to handiews instruction sets
and operating systems. We have evaluated the tool on a sslefiorld applica-
tions and shown that it can help identify the root causesafrsty vulnerabilities
quickly.

1 Introduction

Dynamic and symbolic execution based techniques have maidmiéicant impact on
analyzing the binary code, e.g. to help automate some of t tadious and yet non-
trivial analysis in security practice. One example is witex fuzzing [1], where the
goal is to systematically generate test inputs to exerdisteasible program paths.
Another example is taint analysis [2], where the goal is &xkrhow tainted inputs
propagate and trigger security vulnerabilities. In addifithese techniques have been
used to detect a broad class of zero-day attacks [3,4] ane@nergte vulnerability
signatures [5] in a honey-pot.

Despite the aforementioned progress, however, there gog hmaitations in exist-
ing techniques that prevent them from being widely adopfadt, there is a lack of
support forinteractive analysisCurrent research on dynamic binary analysis focuses
primarily on fully automated methods, which is undoubtadiportant for applications
such as software testing. However, security applicatioch sis malware analysis and
exploitation analysis often cannot be fully automatedhaiigh automated analysis can
serve as the starting point of another round of deeper asalysman in the loop is still
indispensable. For example, an exhaustive white-box fzzzemerely exercise all fea-
sible program paths and identify the necessary conditiotisgger software bugs, but
cannot decide whether the bugs are exploitable. To decié¢heha bug is exploitable,
the user needs to refine the input along that path to decidéhemhi¢ is a security vul-
nerability. During this process, tools that support int&kee analysis would be useful.

Second, there is a lack of support fwoss-platform analysiBy existing tools. This
is a burning issue as well because software today runs oncagaisingly diverse set
of microprocessors and operating systems. Even if a sadtiuag is exploitable on one

platform — a specific combination of microprocessor and OSs-not necessarily ex-
ploitable on a different platform, and vice versa. The reasbecause a working exploit
is often highly dependent on the runtime environment (stagkut, memory model,
etc.). Similarly, effective protection, such as addrescsgandomization (ASR), non-
executable page, and stack/heap hardening, is also higiplgndlent on the runtime
environment. Unfortunately, existing tools rarely sugpaoultiple platforms. For ex-
ample, ARM based processors are popular in smart phoney; metwork routers and
switchers use PowerPC and MIPS; and embedded devices sesome type of RISC
chips. But existing dynamic analysis tools such as TEMU [&] 8AGE [1] focus only
on the x86 instruction set.

To bridge the gap, we propose a unified framework for binadeamnalysis, to sup-
port bothinteractiveanalysis anaross-platformanalysis. Interactive analysis allows
for the user to make an assumption about the target prograhthan quickly check for
evidence that supports or contradicts that assumptionexample, the user can mark
certain memory locations or registers as taint sourcestardduickly check for other
instructions that are either control-dependent or dafgeddent on the taint sources.
Since the user often needs to review the same executionrszespeatedly, e.g. from
different angles and in varying degree of details, our tdeb aupports trace replay
augmented with dynamic slicing. Along certain program pathe user can not only
review what has happened but also perfavirat-if analysis: to see whether the pro-
gram would behave differently if it were to take a differerdiich or input value. Such
analysis is supported by applyilog-demandymbolic execution using SMT solvers.

To support cross-platform analysis, we adopt a unified picade intermediate
representation (IR) of the target programs, and implenfentore analysis algorithms
on this IR. We also develop various reverse engineeringsttiwt translate the na-
tive execution traces of the program into this IR. Since @nalysis algorithms such
as symbolic execution and taint analysis are made architetddependent and OS-
independent, the maintenance cost is significantly redulded is in sharp contrast to
most existing tools, which are all tied to specific instrantiset architectures (ISAs)
and operating systems (OSs). In our approach, native egadunaces from different
platforms, together with the native program state, arewraptand then translated into
the architecture-independent IR. Similarly, the analyssilts are mapped back to the
native platforms before they are presented to the user.

To the best of our knowledge, such cross-platform intevaaalysis framework
does not exist before. In addition to symbolic execution taidt analysis, our tool
supportgdeterministic replayMore specifically, at the operating system layer, we use
a generic debug breakpoiftased mechanism [7] to support trace generation in user
mode, kernel mode, and on real devices. It allows us to avwdimitations of the
existing dynamic binary instrumentation (DBI) tools [8,&)}d whole-system emula-
tors [10]. Although there exist many replay systems for binaograms (e.g. [11]),
they do not seem to integrate well with mainstream securigheis tools and do not
support interactive analysis. For example, there are thalsextend the debuggedb
to support replay [12], but do not support taint analysisidRee engineering tools such
as IDA [13] also support replay but not taint analysis. Withtaint analysis, replay
itself does not provide enough information about the ddttioms critical for security
analysts. Typically, security analysts need to consthuetiata flow relations manually.

We have implemented the cross-platform interactive aimakysstem in the popu-
lar IDA Pro tool. New features such as symbolic executioimt tmacking, and replay

have been integrated seamlessly with the existing featfrd3A Pro. We have eval-
uated the new tool on a set of real world applications withvikmeulnerabilities, and
demonstrated the effectiveness of the tool.

The remainder of the paper is organized as follows. We peowid overview of
our tool in Section 2, and present the cross-platform symleskecution engine, called
CBASS, in Section 3. We present the interactive taint amasgine, called TREE, in
Section 4. We present our experimental evaluation in Se&joeview related work in
Section 6, and then give our conclusions in Section 7.

2 System Overview

Dynamic Tracing

TREE
Debug

Breakpoint

Dynamic
Native

.

Dynamic Binary
Instrumentation

Instruction
trace

Native
Binary

Whole-system
Emulation

IR Store

Static Processing

Static IR
Translation

Dynamic
IR

IR-based Static

Instruction
trace

Interactive Taint & Slicing Visualizer

Deterministic Replay by Taints

CBASS

IR-based Dynamic
Taint Analysis

IR-based Concolic
Execution

IR-based Dynamic
Slicing

IR-based Constraint
Generation

Analysis

Fig. 1. The Architecture of our Cross-platform Interactive AngySystem

The proposed system, shown in Fig. 1, consists of the follgwubsystems:

— CBASS (Cross-platform Binary Automated Symbolic exeautf®ystem), which
separates the platform dependent execution trace gemrepmticess from the plat-
form independent analysis process.

— TREE (Taint-enabled Reverse Engineering Environmenticlvprovides a unified
replay, debugging, and taint tracking environment, alfaysecurity analysts to
form a hypothesis and then check it interactively.

— Front-end subsystems that support betatic processingand dynamic tracing
They translate native traces from different platforms t® ¢ommon intermediate
representation (IR) and map the analysis results back.

We provide a brief description atatic processingnddynamic tracingn this section,
while postponing CBASS and TREE to Sections 3 and 4, resfadgti

Static processing and dynamic tracing are crucial compsriensupporting cross-
platform analysis at the instruction set architecture {|i&&el and the operating system
(OS) level. ISAs often differ significantly in their encodiand semantics of the instruc-
tions. Operating systems often differ in how they use regssto represent high-level
data structures. For example, Windows and Linuxfus@andgs segment registers for
very different purposes. In our system, however, thesemiffces are mostly removed
due to the use of a common IR. In the front-end, only a thindaeeds to deal with
remaining subtle differences. In the back-end, all cordyaismalgorithms are based on
the common IR.

We shall use the program calledsi cov_pl us. exe in Fig. 2 as the running exam-
ple. It reads the data inputs from a file and adds each inpat bxtept for the last two,
with its right neighboring byte. If the first byte i®’ , the transformed bytes are fed to
a vulnerable function callegt ackOver f | ow. The function is vulnerable in that, if the
input is larger than a local buffer inside the function, thexill be a buffer overflow,
causing the return address to be overwritten. Although tbgrmam is small, it consists
of all the important elements of a typical security vulnéligh the potentially tainted
data source (input), the transformation (addition), thggr (path condition), and the
anomaly manifestation (buffer overflow). In practice, oficge, each of these elements
can be significantly more complex. For example, the tramsébion itself may involve
not just one instruction but a few millions of instructions.

//\INPUT
DWORD dwBytesRead;

ReadFile(hFile, sBigBuf, 16, &dwBytesRead, NULL);
//INPUT TRANSFORMATION
for(int i=0; i< (dwBytesRead-2); i++)

sBigBuf[i] +=sBigBuf[i+1];

//PATH CONDITION

void StackOverflow(char *sBig,int num)
{
char sBuf[8]={0}; //Small Local buffer
for(int i=0;i<num;i++) //Oveflow when num>8
{
sBuf[i] = sBigli];
}

If(sBigBuf[0]=="b’") return;
//Vulnerable Function }
StackOverflow(sBigBuf,dwBytesRead);

Fig. 2. Example: A Conditional Buffer Overflow Program

Static Processing There are two main components for static processing. One com
ponent is responsible for pre-processing the binary cateatly and building a map
from each native instruction to a set of IR instructions. & component consists of
a set of simple static analysis on the resulting IR, e.g. émiidly interesting locations
that are potential targets of the subsequent dynamic dsalys

Table 1 shows the mapping from a few instructions used by thgram in Fig. 2
to the IR instructions. In this table, the native x86 instimts are shown in the first
column. The corresponding IR translations are shown inglersd column. For exam-
ple, the native x86 instruction at the addres80401073 is mapped to the sequence of
REIL instructions from the imaginary address0040107300 to the imaginary address
0x0040107306. We postpone our detailed presentation of the IR formaled&EIL

(for reverse engineering intermediate language), to rextian. For now, we only show
the mapping.

After the REIL IR is constructed, a set of simple static aselynay be conducted.
For example, one analysis may be used to measure the Cy@aoatplexity of each
function in the IR. The cyclomatic complexity is believedlie useful in identifying
a set of functions where bugs most likely hide. Another asialynay be used to de-
tect loops heuristically and annotate the loop counterswter possible. This is useful
because loops, as well as recursive call sites, are placeewlnt-of-bound buffer ac-
cesses and non-termination most likely occur.

Table 1. The Mapping from Native Instructions to REIL IR Instruct®n

[Native Instruction (x86) [REIL IR Instruction

00401073 movsx edx, byte 40107300: add [DWORD FFFFFFFO, DWORD ebp, QAORD t 0]
ss:[ebp-10] 40107301: and [QAORD t 0, DWORD FFFFFFFF, DWORD t 1]
40107302: | dm [DWORD t1, EMPTY , BYTE t2]

40107303: xor [BYTE t2, BYTE 0x80, BYTE t3]
40107304: sub [BYTE t3, BYTE 0x80, DWORD t4]
40107305: and [DWORD t4, BYTE FFFFFFFF, BYTE t 5]
40107306: str [DWORD t5, EMPTY , DWORD edx]

00401077 cmp edx, 0x62| 40107700: and [DWORD edx, DWORD 0x80000000, DWORD t 0]
40107701: and [DWORD 98, DWORD 0x80000000, DWORD t 1]
40107702: sub [DWORD edx, DWORD 98, QAORD t 2]
40107703: and [QAORD t 2, QWORD 0x80000000, DWORD t 3]
40107704: bsh [DWORD t3, DWORD - 31, BYTE SF]
40107705: xor [DWORD t0, DWORD t1, DWORD t 4]
40107706: xor [DWORD t0, DWORD t3, DWORD t5]
40107707: and [DWORD t4, DWORD t5, DWORD t 6]
40107708: bsh [DWORD t6, DWORD - 31, BYTE OF]
40107709: and [QAORD t 2, QWORD 0x100000000, QAORD t 7]
4010770A: bsh [QAORD t7, QWORD -32, BYTE CF]
4010770B: and [QAORD t 2, QWORD FFFFFFFF, DWORD t 8]
4010770C:. bisz [DWORD t8, EMPTY , BYTE ZF]
0040107a jnz loc40108e | 40107A00: bisz [BYTE ZF, EMPTY , BYTE tOQ]

40107A01: jcc [BYTE t0, EMPTY , DWORD 0x40108e]

Dynamic Tracing There are three main components for dynamic tracing. Tegeth
they are responsible for generating a logged executior tralsich will be the starting
point of the subsequent offline analysis. Notice that, in ®¢stem, there is a clear
separation betweeonline trace generation andfflinetrace analysis. This makes our
trace analysis as platform independent as possible. Anfengxisting binary analysis
tools, some have adopted online analysis [6, 14], meangighle analysis takes place
at the time the program is executed, while others have adagténe analysis [1],
meaning that the trace is captured and then analyzed latevever, all of them are
tied to a particular platform, making it difficult to maintaand extend to a different
platform. In contrast, our system does not have such prablem

In Fig.1, the components labeled Dynamic Binary Instruragon and Whole-
system Emulation implement the two popular approachestaddpy many existing
tools. However, these two components alone doe not meetetinamd of our system,
for the following reasons. Popular DBI tools, such as PIN BydamoRIO, provide
user mode x86 binary instrumentation but do not supportx8hISAs. Valgrind sup-
ports non-x86 ISAs such as ARM, PowerPC, and MIPS, but ruiysamnLinux. None

of them provides kernel mode instrumentation. Whole-systenulators can provide
kernel instrumentation, but often through an additionsirinmentation layer that is not
portable to new versions. For example, tools built on the QE&imulator, such as
TEMU [6], DroidScope [15], and S2E [14], have different mshentation layers. In
each case, the implementation is tied to a specific microasdd by QEMU, making
it difficult to port. Therefore, although it is well-knownahAndroid builds upon a cus-
tomized version of QEMU, porting the aforementioned tool&ndroid is challenging.

In contrast, we propose to use tebug breakpoinmechanism [7] for dynamic
tracing. This mechanism, already used by interactive dgésysuch agdb, is sup-
ported by almost all processors and operating systemsefidrer it provides a unified
approach for collecting execution traces from differemttforms. It can collect traces
in kernel mode. It can also collect traces on real devicek agcCisco routers and An-
droid phones, since almost all of these devices have deweloptools that provide the
breakpoint capability. Thidebug breakpoirdpproach has significant advantages over
DBI tools. Running inside the target process, DBI tools mftiésturb the behavior of
the target program, e.qg. by affecting the target’s stackieagh layout. This is a serious
problem becausiterestingscenarios in security applications tend to manifest only in
certain program states.

Our experience shows that breakpoint based tracing istefefor short and in-
teractive analysis. To support long traces, our systenrdews existing DBI tools and
whole-system emulators, e.g. PIN plug-in for Windows/Lx{x86 for trace generation.
We have implemented a heuristic algorithm to automatiallych between these tech-
nigues, in order to use the best instruction tracer avalmbdach individual application
scenario.

Trace Format The execution trace starts with a snapshot of the prograte, sthich
consists of the module, thread, stack, and heap informalibe program state is a
valuation of the seR of registers for all threads, including privileged regist®r kernel
mode, and a global memory map. Therefore, we have the program state represented
asPS ={R,M}.

A tracer on a particular platform would record the finite seage ofeventsstarting
from the initial state. An event is an execution instance rofirestruction that trans-
forms the program statB.S into a new program statBS’. Each event in the trace has
a unigue sequence number. The vast majority of events irca & of the form =
{instInfo, threadl D, rel evant Regi sters, nenoryAccess},where nstlnfo
contains the address of the instruction, the encoding pgtes the sizet hr eadl d
is the index of the thread that executes this instructian,evant Regi st ers and
menor yAccess contain values of the related registers and memory elenisitse
this instruction is executed.

Trace can be optimized to reduce the size while maintairtiegsame amount of
information required by the subsequent analysis. In outémgntation, we record only
the information that is relevant to the subsequent anallfsisexample, for instruction
movsx edx, byte ss:[ebp-1QJour trace includes the values of registedx andebp.
For user mode analysis, we capture the precondition andgqudition of each system
call or call to a standard library function as a function susinynto avoid recording the
large number of instructions inside the function. For exygfter a call t(ReadFi | e,
we record the address of the input buffer, the input size th@dontent of the buffer.

3 Cross-Platform Binary Symbolic Execution System (CBASS)

In contrast to existing symbolic execution tools, where tbee analysis algorithms
are tied to specific DBI tools or whole-system emulators, SBAperforms symbolic
execution on the platform independent REIL IR. This is adagaous because any
enhancement to the core analysis algorithms would autoatgtbenefit all platforms.

3.1 TheREILIR

REIL stands for Reverse Engineering Intermediate Lang{&gje It is a platform in-
dependent intermediate representation of disassemblbel coiginally designed for
supporting static code analysis. We adopt REIL in our sygtarthree reasons:

— Translators for statically mapping the native instructen to REIL IR are readily
available for most of the ISAs, including x86, ARM, PowerR@d MIPS.

— The REIL instructions are sufficiently close to native instions on most platforms
and therefore can be used to preserve the native registeestsily.

— The semantics of REIL instructions can be encoded in SMT fbesprecisely by
using the bit-vector theory, and therefore is amendablgrtbslic analysis.

REIL has only seventeen instructions, each of which has plsigffect on the program
state. Each REIL instruction has three operands. The ficsoperands are always the
sourceoperands and the last operand is alwaygigh&tinatioroperand. One or more of
the operands can be empty. Table 2 summarizes the severilemBtructions. For a
more detailed description of REIL, please refer to the antiocument [17].

Table 2. The REIL Instructions and Their Semantics

[Category | REIL Instruction | Semantics
Arithmetic ADD s1, s2,d d=sl+s2
SUBs1, s2,d d=sl s2
MUL s1, s2, d d=slxs2
DIVsl,s2,d d=s1/s2
MOD s1,s2,d d=s1mods2
BSH s1, s2,d if $2>0 d = sk2°?
elsed=s17 "7
Bitwise AND s1, s2,d d=s1&s2
ORsl,s2,d d=s1]s2
XOR s1,s2,d d =s1xor s2
Logical BISZ s1, £, d ifsl=0,d=1elsed=0
JCC sl d iff sS1£0, seteip=d
Transfer LDM sl, 4, d d = mem[sl]
STMs1, 4, d mem[d] =s1
STRs1,4d d=sl
Other NOP, £, £, f No op
UNDEF /4, £.d Undefined instruction
UNKN 4, £, £ Unknown instruction

Designed for reverse engineering purposes, REIL provitdesapport to statically
translate native instructions in x86, ARM, PowerPC, and $1tB their IR equivalents

for an instruction, a function, or the entire program. Margortantly, REIL provides
a one-to-one mapping of the native instruction addresseddrttaginary IR address.
For example, in Table 1, the x86 instructiorovsx edx, byte ss:[ebp-10&t address
0x401073 will always be mapped to a list of REIL instructions fra@40107300 to
0040107305. Therefore, it is easy to map the analysis results back todlige forms
before reporting them to the user.

REIL has a simpleegister-basedrchitecture, which can keep native registers and
create temporary registers when needed. Preserving magjisters is particularly use-
ful for implementing the offline concrete and symbolic (oncolic) execution. Recall
that in concolic execution, the program state has to be sduedg trace generation
and later reconstructed during the offline analysis. Atiraat our trace generator will
only save the native program state (related native registed global memory). During
the offline analysis, we can compute the IR program statettiiréiom these native
registers and the memory.

In all of the seventeen REIL instructions, tthestinatioroperand can be represented
by a mathematical or logical formula of tseurceoperands. Consider the second native
instruction00401077 cmp edx, 0x6i Table 1. Notice that the REIL instructions use
a few basic mathematical and logical operations to preciseipute all thef | ags;
in other words, all theef | ags can be represented as an expression in ternesiof
and0x62. For exampleZF = (edx 98) and Oxffffffff.In some sense, REIL
instructions are compatible with the input language of titesBability modulo theory
(SMT) solver Z3 [18], which supports the theories of integgdit-vectors, and arrays.

3.2 Symbolic Execution
The symbolic execution procedure consists of three steps:

1. Mark taint source and symbolize its vallitere, taint sources refer to the untrusted
data in the target program. When a program variable is ma&edaint source, our
tool symbolizes the variable, by replacing its concrete&alith a symbolic one (a
free variable). Traditionally, the taint sources are paoginputs. However, during
interactivesecurity analysis, the user may be interested in trackihgrgirogram
variables as well. For example, some sensitive data iterols as the password
and the registry key may become the focus of the analysisnytiene during the
program execution, CBASS can mark any byte in any registet any memory
location as the taint source.

2. Symbolic execution of REIL instructiof@BASS implements the symbolic execu-
tion engine based on the REIL IR. As we have already mentiotihedsemantics
of REIL instructions can be close to that of the input languafithe SMT solvers.
Therefore, the symbolic encoding procedure, which takdfarace as input and
returns an SMT formula, is straightforward. In our impleration of the proposed
system, we have used the Z3 SMT solver, which is capable gfngpformulas
expressed in the theories of bit-vectors and arrays.

3. Check taint sink to construct constraim@epending on the application, security
analysts may mark different memory location or registeate interesting point
as the taint sinks. For example, to generate potential @gpthe taint sinks are
usually registers such & P. We may create a constraint to steer the execution into
a desired code section and makeP equals to the address of that code section. To
detect vulnerabilities, the taint sinks are usually thexph@red branches. When we

encounter a branch instruction, we create a path condittbe branch predicate is
tainted by a symbolic input.

As shown in Table 2, there are four categories of REIL instons directly related
to symbolic execution. Mathematical and logical instroet perform the correspond-
ing operations on constants, registers, or memory. Menmstylictions handle memory
read or write operations, which propagate values betwegistegs and memory. Con-
trol instructions decide where to jump if the branch comdisi are true. During symbolic
execution, we usee@oncrete and symbolic memory (CSkap to represent the memory
state. It has both the concrete value and the symbolic vBbhrenemory instructions, if
the address is symbolic, also called a symbolic pointer, awe to under-approximate
it by using the concrete value derived from the actual executace.

3.3 The Running Example

We use the instructions in Table 1 to demonstrate how to oactsa path condition
during symbolic execution and how to generate the SMT foamis the IR instructions
are fed to the symbolic execution engine, CBASS creates slicntariables for the
taint sources and constructs the symbolic expressiongdatr IR instruction, it creates
a new symbolic expression for the destination operand ifcdrilge source operands is
symbolic. If all the source operands have concrete valbes,it uses the concrete value
for the destination operand.

Table 3.Example: The REIL IR based Symbolic Execution

Native InstructREIL Instructions
tions

00401073
movsx edx, bytg

ss:[ebp-10]

Symbolic Execution, with ebp = 0x12ff4
and mem[12ff74] = INPUT

40107300: add [DWORD FFFFFFFO, DWORD €t~ 0x12ff84+0xfffffff0 = 10012ff74
QWORD t0]

40107301; and [QWORD 10, DWORD FFFFFF
DWORD t1]

FE= t0 and Oxffffffff =Ox12ff74

40107302: I[dm [DWORD t1, EMPTY , BYTE 2]

2= mem[t1] =INPUTVAR[S]

40107303: xor [BYTE t2, BYTE 0x80, BYTE t3]

t3 = INPUT_VARI8] xor 0x80

40107304: sub [BYTE t3, BYTE 0x80, DWORD |

BYTE t5]

40107305: and [DWORD t4, BYTE FFFFFFRB, = ((INPUT.VAR[8] xor 0x80) -0x80

i3 = (INPUT_VAR[S] xor 0x80) -0x80

and Oxffffffff

40107306: str [DWORD t5, EMPTY , DWORD el

eldx = ((INPUTVAR[8] xor 0x80) -0x80
and OXxffffffff

00401077
edx, 0x62

cmpt0107700:

and [DWORD
0x80000000, DWORD t0]

edx,

DWOR

D = ((INPUT.VAR[S] xor 0x80) -Ox80
and Oxffffffff)and 0x80000000

40107701; and [DWORD 98, DWORD 0x800000
DWORD t1]

[@0,= 98 and 0x80000000 = 98

20107702
QWORD 2]

sub [DWORD edx, DWORD

9& = ((INPUT VAR[S] Xor 0x80) -0x80

and Oxffffffff) - 98

Ignore irrelevant temps ...

DWORD t§]

[4010770B: and [QWORD 2, OWORD FFFFFFRB= ((INPUTVAR[S] Xor 0x80) -0x80

and Oxffffffff) 98) and Oxffffffff

4010770C: bisz [DWORD t8, EMPTY , BYTE ZF

ZF = ite(t8==0,1,0)

0040107a
loc 40108e

jnz

40107A00: bisz [BYTE ZF, EMPTY , BYTE t0]

10 = te(ZF==0,1,0)

40107A01: jcc [BYTE t0, EMPTY , DWOR

0x40108¢]

ip = ite(t0==1,0x40108e,0x40107c)

Table 3 shows the symbolic execution of the REIL instructionhthe three native
x86 instructions. Notice that each native instruction ipped to a sequence of REIL in-
structions. The REIL instructions take the native regssserd memory values as input,
transform them by using intermediate registers, and rehemesults back to the native
registers and memory. For example, the instructiadxdp1073 has the native register
ebp and memory value at addre8s12f f 74 as input, and the native registedx as
output. Just before executing the instruction, the coraraiue ofebpis assumed to be
0x12f f 84 and the memory at the addre®sl2f f 74 has a symbolic value. From the
first two REIL instructions, we havel = 0x12ff 74. Thel dminstruction set$ 2 =
men{ 0x12f f 74] , which contains a symbolic value, and theh = | NPUT_VAR] 8] .

After carrying out the symbolic execution as shown in Tahlén8 branch condition
before executin@040107a jnz loc40108ebecomes te(ite(((((1 NPUTVAR] 8]
xor 0x80) -0x80) and Oxffffffff) 98) and Oxffffffff). Thisis equiv-
alent to the SMT formula shown in Fig. 3. By negating the pathdition and asking
the SMT solver for a satisfying solution, we can compute e imput value to bes,
which corresponds teBi gBuf [0] == b in the original code in Fig. 2.

(set-logic QF_AUFBV)

(declare-fun _INPUT_VAR () (_ BitVec 8))

(declare-fun EXPR_0 () (_ BitVec 32))

(assert (= EXPR_0 (bvsub ((_sign_extend 24) (bvxor _ INPUT_VAR (_bv128 8))) (_ bv4294967168 32))))

(assert (= (ite (not (= (ite (not (= (bvand ((_ extract 63 0) (bvsub ((_ sign_extend 32) (bvand ((_ extract 31 0) EXPR_0)
(_bv4294967295 32))) (_ bv98 64))) (_ bv4294967295 64)) (_bv0 64))) (_bvl 32) (_bv0 32)) (_bv0 32))) (_bvl
8) (_bv0 8)) (_bv0 8)))

(check-sat)

(get-value (_ INPUT_VAR))

Fig. 3. Example: The Path Constraints in Z3 SMT Formula

4 Taint-Enabled Reverse Engineering Environment (TREE)

To unleash the analysis power of CBASS in security practigeneed to suppoih-
teractiveanalysis. Toward this end, we have developed the infrastreithat can (1)
generate REIL traces on demand, (2) visualize the analysidts on demand, (3) per-
form taint tracking on demand. Together, these new feafaresthe basis of our taint-
enabled reverse engineering environment (TREE).

4.1 Interactive Trace Generation

TREE leverages existing features of IDA, a popular revenggreering tool, to support
on-demand trace generation. IDA is a widely used tool in steéam security prac-
tice. It has become thde factostandard tool for conducting vulnerability and malware
analysis. IDA can statically disassemble binary code onentiean 50 processors and
support a wide range of operating systems.

10

We have implemented théebug breakpoinbased trace collection framework in
IDA and integrated it seamlessly with the existing featusé$DA. Our experience
shows that the debug breakpoint based approach works waligporting interactive
trace generation, which typically involves short tracest EEngthy traces and large
interactive sessions, we rely on the traces generated fremmore traditional DBI tools
such as PIN, and whole-system emulators such as QEMU.

Compared to the existing tools, the dynamic trace genematdREE has the fol-

lowing features:

— Interactive tracingThe user can select a starting point and an end point at aey tim
during the analysis and request the tool to conduct a deepérsas on a relatively
short trace segment. This feature can be used by securitysst quickly verify
or refute a hypothesis.

— Kernel tracing: The trace generator in TREE can generate traces on anynpfatfo
that supportsi ndbg andgdb server, allowing kernel mode traces to be generated
from both Windows and Linux.

— Mobile tracing: The trace generator in TREE can generate traces on AndiRM/A
platforms through IDA's debug agent. IDA supports real degisuch as Android
phones and tablets. IDA also supports some versions of BhWmdows CE, and
Symbian OS, although these platforms have not been inestyveith TREE.

4.2 On-Demand Taint Analysis

Broadly speaking, taint dependencies fall into three eaieg: data dependency, ad-
dress dependency, and control dependency.

— Data dependency means that the taint source affects thestaknthrough data
movement, mathematical operations, or logical operatidhe value of the taint
source often directly affects the value of the taint sink.

— Address dependency means that the taint source affectaititesink through its
address for read or write, but the taint source does notttliraffect the value of
the taint sink. One example for address dependency is thefustainted data as
the index to access a look-up table. Without tracking theesikddependency, we
would lose track of the tainted data after such a table lookup

— Control dependency is a form of implicit information flow.tAbugh it can happen
in benign programs, it is often more deliberately used bywaegg. It can be of the
formif x =0 then y=0 el se y=1. If x is tainted, the value of is dependent
of x. But there is no direct link between the valuexadind the value of.

In security analysis, it is often challenging to keep tratklbthree types of dependen-
cies. In the remainder of this section, we will show how TREE make it easier.

The main difficulty in taint tracking for the x86 instructi@et is to handle the large
number of instructions and their variants, since these@atstructions often have com-
plex side effects. REIL provides a unified framework for cajotg these side effects,
e.g. by breaking down a native x86 instruction into a seqe@fsimple REIL instruc-
tions. Notice that there are only seventeen REIL instrusti¢-urthermore, each REIL
instruction has only one effect, making taint tracking etsymplement. Fig. 4 (1)
shows a comparison of the native x86 instructions and theesponding REIL in-
structions. The REIL instructions capture the side effefthe native instructions on
ef | ags includingSF, OF, CF andZF.

11

Native Instruction: sub esi, ss:[esp+12] IRs: Native Instruction: 7¢9033cb rep movsb IRs:

add [DWORD 12, DWORD esp, QWORD t0] 7C9033CBO0: bisz [DWORD ecx, EMPTY , BYTE t0]

and [QWORD t0, DWORD 4294967295, DWORD t1] 7C9033CBO1: jcc [BYTE t0, EMPTY , ADDRESS 7C9033CB12]

Idm [DWORD t1, EMPTY, DWORD t2] 7C9033CB02: [dm [DWORD esi, EMPTY , BYTE t1]

and [DWORD esi, DWORD 2147483648, DWORD t3] 7C9033CBO3: stm [BYTE t1, EMPTY , DWORD edi]

and [DWORD t2, DWORD 2147483648, DWORD t4] 7C9033CBO04: jcc [BYTE DF, EMPTY , ADDRESS 7C9033CB10]

sub [DWORD esi, DWORD t2, QWORD t5] 7C9033CB05: add [DWORD esi, DWORD 1, WORD t2]

and [QWORD t5, QWORD 2147483648, DWORD t6] 7C9033CB06: and [WORD t2, BYTE 4294967295, BYTE esi]

bsh [DWORD t6, DWORD -31, BYTE SF] 7C9033CB07: add [DWORD edi, DWORD 1, WORD t3]

xor [DWORD t3, DWORD t4, DWORD t7] 7C9033CB08: and [WORD t3, BYTE 4294967295, BYTE edi]

xor [DWORD t3, DWORD t6, DWORD t8] 7C9033CB09: jcc [BYTE 1, EMPTY , ADDRESS 7C9033CBOE]

and [DWORD t7, DWORD t8, DWORD t9] 7C9033CBOA: sub [DWORD esi, DIWORD 1, WORD t4]

bsh [DWORD t9, DWORD -31, BYTE OF] 7C9033CBOB: and [WORD t4, BYTE 4294967295, BYTE esi]

and [QWORD t5, QWORD 4294967296, QWORD t10] 7C9033CBOC: sub [DWORD edi, DWORD 1, WORD t5]

bsh [QWORD t10, QWORD -32, BYTE CF] 7C9033CBOD: and [WORD t5, BYTE 4294967295, BYTE edi]

and [QWORD t5, QWORD 4294967295, DWORD t11] 7C9033CBOE: nop [EMPTY, EMPTY , EMPTY]

bisz [DWORD t11, EMPTY, BYTE ZF] 7C9033CBOF: sub [DWORD ecx, DWORD 1, QWORD t6]

str [DWORD t11, EMPTY , DWORD esi] 7C9033CB10: and [QWORD t6, DWORD 4294967295, DWORD ecx]
7C9033CB11: jcc [DWORD 1, EMPTY , ADDRESS 7C9033CB00]
7C9033CB12: nop [EMPTY, EMPTY, EMPTY |

(1) REIL IR makes side effects explicit (2) REIL IR static analysis for complex native instructions

Fig. 4. TREE Uses REIL IR for Comprehensive Taint Analysis

REIL also supports static analysis that can provide hintdymamic analysis. They
can be useful for x86 instructions that have embedded dondibr loop structures.
For examplecnpxchg compares the values in the, AX or EAX registers with the
destinationoperand, and depending on the comparison result, diffeqgetands may
be loaded into theestinationoperand. Some x86 instructions with prefix such as
behave like a loop. Fig. 4 (2) shows the REIL instructions X86 instructionr ep
novsh. Since dynamic analysis can only follow one path at a timggineral, it cannot
handle the branch and loop dependency. However, a conisergitic analysis on
REIL IR often can reveal the branch and loop structure. Tiké case forep novsb
where such analysis can identiégx as the loop counter. We have incorporated such
analysis into our REIL-based dynamic taint analysis.

We use the same example for CBASS symbolic execution to shewngjor steps
in dynamic taint analysis. Fig. 5 shows the details of thippathm. After merging the
temporary register nodes, the final taint graph for natig&ructions is shown in the last
column of this table.

4.3 Replay with Taint-enabled Breakpoints

In an interactive analysis session, the user may want tdisize a particular program
behavior repeatedly. TREE provides a replay mechanismppatisuch analysis. One
application is to reconstruct the execution states. Coimgao tools such agdb and

| DA, the replay mechanism in TREE is significantly more powerfar example, it
allows the user to break at any tainted points, after themseks the initial taint source
and specifies the type of impact (taint policy). This newdeabfbreak by data relation
is key to interactive analysis. It essentially allows thents break at any point that she
is interested, without the need to construct the chain ohsvmentally. In addition,
TREE can presents the chain of events within the proper séeramtext visually.

12

Native

instruction

IR Instructions

IR Taint Graph

Native Taint Graph

00401073 movsx
edx, byte ss:[ebp-
10]

add [DWORD
FFFFFFFO, DWORD
ebp, QWORD t0]

and [QWORD t0,
DWORD FFFFFFFF,
DWORD t1]

Idm [DWORD t1,
EMPTY, BYTE t2]

xor [BYTE t2, BYTE
0x80, BYTE t3]

sub [BYTE t3, BYTE
0x80, DWORD t4]

and [DWORD t4,
BYTE FFFFFFFF,
BYTE t5]

str [DWORD t5,
EMPTY , DWORD
edx]

00401077 cmp
edx, 0x62

and [DWORD edx,
DWORD
0x80000000,
DWORD t0]

and [DWORD 98,
DWORD
0x80000000,
DWORD t1]

sub [DWORD edx,
DWORD 98,
QWORD t2]

Ignore irrelevant
temps ...

and [QWORD t2,
QWORD FFFFFFFF,
DWORD t8]

bisz [DWORD t8,
EMPTY , BYTE ZF]

0040107a jnz
loc_40108e

bisz [BYTE ZF,
EMPTY, BYTE t0]

jcc [BYTE tO,
EMPTY , DWORD
0x40108e]

(Mem[102ff741 >

eip

Fig. 5. Example: Dynamic Taint Analysis

13

We illustrate the replay process by using the same buffaffloveexample in Fig. 2.
When this program runs with a 16-byte input that triggersShackOver f | ow func-
tion, the input bytes at offsets 13 to 16 would overwrite Bn@ bytes. This chain of
events can be tracked by TREE, for which a user-clickablplgimshown in Fig. 6. In
this graph, each node represents a byte, annotated byrisdrenation instruction and
followed by its edge type. D is the default edge type thatdddor data dependency.
The first byte ofel P (id =207) is overwritten by input bytes 13 and 14 (id=13,1#¢ml
a few steps.

First, these two bytes are added to form a new byte at memon0x14f elc(id
=159) . Then the byte is moved to a local buffeldatl 4f df ¢ and overflowed the buffer
at functionst ackOver f I ow() . When the call to this function returns, the byte, at the
top of the stack atremOx14f df c[i d=196] is popped into the first byte of register
El P [id =207]. For this trivial example, there are already7 instructions logged
in the trace, but only 8 unique instructions are involvedhia handling of the input
bytes. In such cases, the taint graph allows the user to fattise most relevant set of
instructions quickly.

[oxiaterc] [oxuaferd] [[oxiatere | [Loxaatent |

[207]reg_eip_0[0x1da:0x133c8]<-retl {D}196
[196]mem_0x14fdfc[0x1ac:0x133c8]<-movb
%dl, -0x8(%ebp,%ecx,1){D}195 | ex0 |[edxo]| ex0 | [edxo][edxo | [edxo |
[195]reg_edx_0[0x1ab:0x133c8][0x1b1:0x133c8

]<-movb (%eax), %dI{D}159

[159]mem_0x14felc[Oxee:0x133c8]<-movb %cl, ecx 0 ecx 0
-0x10(%ebp,%edx,1){D}151
[151]reg_ecx_0[Oxec:0x133c8][0xf7:0x133c8]<-
add %edx, %ecx{D}150 149 Ox14felc I Ox14feld I

[149]reg_edx_0[0xe9:0x133c8][0xed:0x133c8]<-
movsxb -0xf(%ebp,%ecx,1), %edx{D}14

[150]reg_ecx_0[Oxeb:0x133c8]<-movsxb - | edx 0 I | edx 0 I

0x10(%ebp,%eax,1), %ecx{D}13
[13]in_0x14felc[0x0:0x133c8][0xee:0x133c8]<-
0x1331060:ReadFile [(oaatatc | | oxaafdd | [Loxafdte | [Coxtafatt |

[14]in_Ox14fe1d[0x0:0x133c8][0xfd:0x133c8]<-
0x1331060:ReadFile

Cepo] Cooi] [Coez] s

Fig. 6. Taint Graph and Visualization of Running Example

5 Evaluation

We have implemented the proposadss-platform interactive analyssy/stem using
the client/server architecture. More specifically, CBA$8s as the back-end server,
responding to requests from the front-end. It shares thd REIwith TREE. TREE

is responsible for handling OS level differences and mapgie analysis results back
to the native instruction context. The client/server aatture enables parallel develop-
ment and optimization of CBASS and TREE, and makes it easgtieither subsystem
to a different platform without affecting the other.

14

Currently, CBASS and TREE are able to run on Windows and Limaund support
target programs running on the x86 and Android/ARM platfer@BASS is written
in Jython, a Python-based language that can access Jaeésaije call Java libraries.
CBASS interfaces with REIL through the REIL Java library fi@rtranslation. TREE is
implemented as ahDA Pr o plug-in. TREE also uses Qt/Pyside and extends the IDA
graph to support a number of visualization features and im$eraction. During the
process of developing TREE, we have found a number of bugstmIDA and REIL
related tools. In most cases, the IDA and REIL developers hasponded to our bug
reports promptly and provided fixes in their latest releases

In the remainder of this section, we will first provide an oxew of our detailed
evaluation and then present a case study with a real-wogtication. Together, they
demonstrate the effectiveness of our system in supportiogseplatform interactive
security analysis.

5.1 Overview

We have conducted two sets of experiments. The first setstsrediunit level tests for
the CBASS and TREE subsystems. The second set consistseoftoalses using real-
world applications. At the unit testing level, we have uséarge number of binary pro-
grams (each around 100 LOC) to check if the core analysisittigos in TREE/CBASS
are implemented correctly. We have designed various wamsition functions to pro-
cess the input (taint source) and created the correspotesh@racles to ensure that
TREE and CBASS produce correct results. The test prograereoanpiled on different
platforms (Windows, Linux, and Android) using differentrapilers (VC, GCC) with
various optimization settings. This also allows us to eatduthe effectiveness of our
front-end subsystems, which are crucial for the crosdgiatanalysis.

With real-world applications, the goal of our case studyisvaluate the effective-
ness of TREE/CBASS in analyzing vulnerabilities. More sfeally, we would like to
know whether security analysts, armed with our tool, carckjyidiscover the chain
of critical events leading to the real vulnerability. Towahis end, we have selected
a set of Windows/Linux applications with known vulnerati#s. Table 4 shows the
statistics of the benchmark programs. In the following, Wwallsbriefly describe each
vulnerability and then focus on using WMF (CVE-2005-45@03xplain in details how
TREE/CBASS can help reduce the analysis time required ttifigehe root cause.

The first two columns in Table 4 show the application namesiver, and vulnera-
bility identifier. Both the WMF (CVE-2005-4560) and the ANTYE-2007-0038) vul-
nerabilities were present on many Windows versions pridYitadows Vista, and could
be triggered by applications including Picture and Fax \éesyInternet Explorer, Win-
dows Explorer, and various email viewers. Audio Code 0.$48 a buffer overflow
vulnerability that can be triggered when adding a craftey pist (.Ist) file. This vul-
nerability can enable arbitrary code execution. Streatm@&s75 has a stack buffer
overflow, allowing attackers to use the htiper - Agent field to overwrite the return
address of a function call. POP Peeper 3.4.0.0, an emait,dgena vulnerability in
its Fr omfield, where the stack buffer can overflow to overwrite theimetaddress and
the Windows Structural Exception Handler (SEH). PEID is puylar tool for detecting
packers, cryptors and compilers found in PE executable Blearefully crafted EXE
file can be used to exploit this vulnerability to run arbijraode. SoulSeek 157 NS12d,
a free file sharing application, has a vulnerability thatisamemotely exploited to over-
write SEH. SoX (Sound eXchange) is a sound processing apiolicin Linux. ItSWAV

15

Table 4. Results of Our Analysis on Real World Vulnerabilities

Program Name arfWfulnerability [Binary Code anfraint Total/Unique Total/Unique

Version Identifier Trace Size(KB)|Sources |Instructions Tainted Inst.
(Byte)

GDI32.dll CVE-2005-456(272 / 2,422 68 76,618 /5,677 |206/115

5.1.2600.2180

User32.dll CVE-2007-0038564 / 53,548 (4,385 [250,534 /23,868 (7,195 /1,043

5.1.2600.2180
AudioCoder 0.8.18 |OSVDB-2939 |731/29,000 |620 473,922 / 27,265 {12,666 / 66
Streamcast 0.9.75 |CVE-2008-055(0804 / 26,541 (1,230 83,204 / 3,354 8,351 /35
POP Peeper 3.4.0.0BugTrag-34192/1,436 / 68,731 {400 182,382/8,226 |1,106/2

PEID 0.95 OSVDB-94542 214 /14,163 |1,000 [32,779/9,501 |25/20
SoulSeek 157 ExploitDB-87773,410/147,931 |49 4,435,526/142,22(»17/121
So0X12.17.2 CVE-2004-0557225 /14,441 1,184]180,034/2,801 |56,138/647

header handling code has a known buffer overflow vulnetgitihiat can be exploited
by the attacker to execute arbitrary code.

The third column in Table 4 shows the size of the binary codkthe size of the
trace, respectively. Recall that the on-demand trace tagsgfarts when the target pro-
gram reads the taint source (inputin all these test casa$}taps when the tainted data
have taken control of program, e.g. whElinP contains a tainted value or the program
jumps to the tainted memory location. The fourth column shthve number of bytes of
the taint sources, ranging from a few dozen bytes to a fewsdnadibytes. For all cases,
CBASS/TREE can successfully build the taint graph previodsscribed.

For any specific taint sink, the CBASS/TREE system can géaeralice of the
tainted instructions from the taint sources to the taint.sifhe last two columns in Ta-
ble 4 show the total and unique instructions in the trace th@tbtal and unique tainted
instructions for all the tainted sources and sinks, re$gslgt In general, tainted in-
structions are only a very small portion of the total instiwies (<5%). For any specific
byte of the tainted target, for example, a tainted register @inted memory location,
usually only a few dozen tainted instructions are involved.

For more real world vulnerabilities to which we have appll&®EE/CBASS, please
refer to http://code.google.com/p/tree-cbass/. We wifittmmue our ongoing evaluation
process and update the results on this website.

5.2 Case Study: WMF (CVE-2005-4560)

In this section, we will illustrate how TREE/CBASS can suggnteractive security
analysis by using CVE-2005-4560, also known asWkE Set Abort Proc Escape
vulnerability. WMF stands for Windows Metafile Format. Theerhal specification of
WMF is very complex. In short, the overall WMF file structurashone meta header,
followed by zero or more meta records. The key structure eMHVF file format is
shown in Fig. 7.

Each meta data record is an encoded Windows GDI (GraphickE®éwterface)
function call. It is a means of storing and playing back themowand sequence that nor-
mally would be sent to GDI to display graphics. Among the nretrds, one type is
called theescapeaecord. Although this type of record is deprecated, the ¢bdehan-
dles the record has not been removed in a timely fashion. ésaapaecord contains

16

typedef struct _WindowsMetaHeader typedef struct _StandardMetaRecord

{ {

WORD FileType; /* Type of metafile (0=memory, 1=disk)*/ DWORD Size;

WORD HeaderSize; /* Size of header in WORDS (always 9) */ /* Total size of the record in WORDs */
WORD Version; /* Version of Microsoft Windows used */ WORD Function;

DWORD FileSizg; /* Total size of the metafilein WORDs */ /* Function\number (defined in WINDOWS.H)
WORD NumOfObjects; /* Number of objects in the file */ *

DWORD MaxRecordS§ize; /* The size of largest record in WORDs */ WORD Parameters][];

WORD NumOfParams;¥ Not Used (always 0) */ /* Parameteryalues passed to function */

} WMFHEAD; } WMFRECORLD;

File Edit Search Address \Bookmarks Tools XViscript Help
DSEX ¥ @A E § N\

010009 0000 0122 0000 O‘JIGQ 79 61 6E 69 64 2D 45 0] 04 00 00 0q 06 26 OSICCCCCC]
1D CCCCCCIBOOOOOO 'A|02/00/00 000000 0000 0000 09070000 0dFCMH2 O

i i oo

0

Shellcode

SetAbortProc

Adr. hex 43 Chardec:0 |Overwrite

Fig. 7. Case Study: The WMF Key Data Structures

certain values for the Function (0626) and Parameters (8@)sfidefined in the WM-
FRECORD structure, the SETABORTPROC escape will inform @&Ddall a function
provided in the file. This vulnerability allows remote attats to execute arbitrary code
via a WMF format image with a crafted SETABORTPROC GDI Escapetion call,
related to the Windows Picture and Fax Viewer (SHIMGVW.DLLt)s relatively easy
to craft a WMF image file and cause the viewer application &sler

The lower part of Fig. 7 shows an WMF file with 68 bytes. From timee the
viewer program finishes reading the file to the point where@pgtion happens, 76,618
instructions would be executed. Given that most people dammv WMF format well,
we can assume that it is difficult to manually identify whicytds of the WMF file
are responsible for the crash, how many instructions aeetjrinvolved in rendering
the file, from which functions, and under what condition. Mgt such information, it
would be difficult to understand the root cause of this vudibdity. From the exploit
development point of view, it would not be obvious which ihpytes are critical to a
working exploit, and what are the constraints a working eiphust satisfy.

With the dynamic analysis techniques provided by TREE/CBABe are able to
answer the aforementioned questions in a few minutes. Maeeifically, the tool can
generate a trace that leads to the crash. Furthermore, itepday the trace by first
marking the whole 68 bytes of the file as the taint sources,thed stopping at the
tainted points. From the taint graph, we are able to see thaeation between the
instruction that caused the crash (eak whereeax = 0xa8b94) and some of the file
structures. We have identified 12 unique instructions in Wi are directly related
to moving and processing the file and causing the applicatianash. Since our tool
can generate an interactive graph, the user can navigatg #te chained data and
instructions by clicking on each tainted node in the graph.

17

Fig. 8 shows part of the WMF crash taint graph. The right side $napshot taken
from the TREE GUI. The nodes in green show the taint sourcesbfVMF file), and
the nodes in red show the bytes pointectly in thecal | eax instruction that caused
an exception. The left side of the figure shows some inteexalrepresentation of the
taint graph. For example, the no8&5 shows the tainted node 0ka8b94. Following
theDlink (highlighted in bold), we can see that it is data-departdn node 233, which
in turn is data-dependent on node 29, an input byte that sporeds to part of the
shell-code section. Following thelink (highlighted by underline), we can see that it
is affected by a loop whose iteration number depends on thesérom the 7th to the
10th bytes in the WMF file. When looking back at tWeHead structure, we find that
bytes 7-10 actually correspond to tiie eSi ze field.

WMF(CVE-2005-4560)

- Partial WMF Taint Graph Visualization
Taint Graph |

(Taint Sources)
Input Bytes 7th-10th

i = " "
BEFORE Exception of call eax (eax=0xa8b94) (FileSize)

[355]mem_0xa8b94[0xc5cf:0]
<- REP movsdl (%esi), (%edi) {D}233
{C}319 320 321 322

LOOP Counter
[233]mem_0xa8804[0xb142:0][0xcdd9:0] Dependency

<-rep movsdl (%esi), (%edi){D}29 [C]

[29]mem_0xa9f76[-0x1:-1] <- INPUTN (Taint Sources)
Parameters
[319]reg_ecx_0_0[0xc5¢3:0][0xc5d9:0]

<-movl 0x10(%ebp), %ecx{D}311

(Taint Sources)
Initial Input Bytes
29th(0x1d)-32th(0x20)
(Parameters)

[311]Jmem_0xb4fc08[0xbd8c:0][0xc616:0]
<-movl %eax, 0x10(%ebp){D}299

[299]reg_eax_0_0[0xbd89:0][0xbd94:0]
<-add %eax, %eax{D}291 292 293 294

[291]reg_eax_0_0[0xbd7d:0]

<-movl 0x6(%edi), %eax{D}211 Depondency

[211]mem_0xa87ee[0xb13c:0][0xce09:0] 355<-233

<-rep movsdl (%esi), (%edi}D}7

- Security-Sensitive
[7lmem_0xa9f76[-0x1:-1] <-INPUT (Taint Sources) Locations
FileSize (Taint Sinks)

Fig. 8. Case Study: The WMF Crash and Taint Graph

ALL Nodes are
Clickable to Take
User to IDA CFG

6 Related Work

Independently, Heelan and Gianni [19] have explored tha mfesupporting manual
vulnerability detection in their work called Pinnacle. Hever, Pinnacle is limited to
taint tracking on the x86 instruction set only. In contrasty system can handle bi-
nary code from multiple platforms. Furthermore, our intdinee analysis is significantly
broader than the scope of Pinnacle, including not only walbidity analysis but also ex-
ploitation analysis and malware analysis. Our system alpparts symbolic execution
and replay, which Pinnacle does not. Among the offline bimaalysis tools, SAGE [1]

is the closest to ours. However, SAGE is designed primaoilywhite-box fuzzing and

18

works only for the x86 instruction set. It does not focus deiiactive analysis and does
not support multiple platforms.

Since dynamic taint analysis is independent of the vulrityabpecific details, it
can analyze a broad class of attacks controllable via ifffherefore, it has become a
popular technique for detecting attacks such as bufferfloveand control-flow hijack-
ing. However, online taint analysis often has high runtimerbead and requires in-
trusive code instrumentation. To make taint analysis mifigent for online intrusion
detection, Sekar proposed taint inference [20] for webiapfbns by using approxi-
mate string match. Li and Sekar [21] later demonstratedttiat inference could be
used to detect buffer-overflow attacks in low-level binaoge.

Dytan [2] extended the data-flow based taint tracking to mlislude control depen-
dency, and developed a framework to support the x86 ingdruset. Ganaét al. [22]
extended this framework to support multithreaded apptioat Predictive dynamic
analysis provides a new way of conducting trace-based sisdlyr multithreaded ap-
plications [23]. It can detect not only security vulnerélak in the observed execution
traces, but also security vulnerabilities that may appeaome alternative thread inter-
leavings. Wang and Ganai [24] developed a tool for prediotioncurrency failures in
the generalized execution traces of x86 executables.

Newsome and Song proposed TaintCheck [4], which used dyntmimt analysis
for detecting vulnerabilities and for generating vulnéligbsignatures. TaintCheck
was implemented using Valgrind [9]. Portokalidisal. developed Argos [5] based on
QEMU to generate fingerprints for zero-day attacks. Howavene of these existing
tools supports cross-platform interactive security asialy

7 Conclusions

We have presented @oss-platform interactive analysfsamework, which integrates

state-of-the-art dynamic analysis techniques with a nti@am reverse engineering
tool to meet the demand in security practice. Our framewookyprising CBASS and

TREE, supports interactive analysis through on-demandsjimexecution and taint

tracking. It also supports cross-platform analysis, byasafing online trace generation
from offline trace analysis and by using a reverse engingéntermediate representa-
tion. We have implemented the proposed framework and cdadsome preliminary

experimental evaluation. Our results have demonstradesffitctiveness in identifying

root causes of security vulnerabilities in real applicasio

8 Acknowledgments

We would like to thank James Just for his guidance througtisiproject, Xing Li for

implementing the IDA debug breakpoint based tracer, andNigueyen for implement-
ing the taint graph visualization. We would like to thanlkakfGuilfanov and the IDA
team for promptly fixing the bugs that we have reported to tlagich for their sugges-
tions on the GUI integration. We would like to thank Thomadliga and Tim Kornau

of the Google Zynamics team for making their latest versibRBIL available to us.

The second author is supported in part by the NSF grant C@B484 and the ONR
grant NO0014-13-1-0527.

19

References

10.

11.

12.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated wéiiox fuzz testing. In: Network
and Distributed System Security Symposium. (2008)

. Clause, J.A., Li, W.,, Orso, A.: Dytan: a generic dynaminttanalysis framework. In:
ISSTA. (2007) 196-206

. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.l.That, L., Zhang, L., Barham, P.:
Vigilante: End-to-end containment of internet worm epidesn ACM Trans. Comput. Syst.
26(4) (2008)

. Newsome, J., Song, D.X.: Dynamic taint analysis for aaiendetection, analysis, and
signaturegeneration of exploits on commodity software NBSS. (2005)

. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an enmardor fingerprinting zero-day
attacks for advertised honeypots with automatic signagereeration. In: EuroSys. (2006)
15-27

. Song, D.X., Brumley, D., Yin, H., Caballero, J., Jagerkang, M.G., Liang, Z., Newsome,
J., Poosankam, P., Saxena, P.: BitBlaze: A new approachnpuer security via binary
analysis. In: International Conference on Informationt8ys Security. (2008) 1-25

. Paxson, V., et al.: A survey of support for implementindufggers. Available from
ftp.ee.lbl.gov: papers/debugger-support.ps.Z (1990)

. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Loan G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: PIN: Building customized program analysisl$ with dynamic instrumen-
tation. In: PLDI. (2005) 190-200

. Nethercote, N., Seward, J.: Valgrind: A program sup@iframework. Electr. Notes Theor.

Comput. Sci89(2) (2003)

Bellard, F.: QEMU, a fast and portable dynamic translatim: USENIX Annual Technical

Conference, FREENIX Track. (2005) 41-46

Bhansali, S., Chen, W.K., De Jong, S., Edwards, A., MuiRa, Drinic, M., Mihocka, D.,

Chau, J.: Framework for instruction-level tracing and wsial of program executions. In:

International Conference on Virtual execution environtegACM (2006) 154-163

GNU GDB: Process Record & Replay. http://sourcewagégaib/wiki/ProcessRecord

. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the Wit Most Popular Disassem-

bler, San Francisco, CA, USA (2008)

Chipounov, V., Kuznetsov, V., Candea, G.: The s2e platf®esign, implementation, and

applications. ACM Trans. Comput. Sy80(1) (2012) 2

Yan, L.K., Yin, H.: DroidScope: seamlessly reconsingthe OS and Dalvik semantic

views for dynamic android malware analysis. In: USENIX Ségu(2012) 29-29

Dullien, T., Porst, S.: REIL: A platform-independenteirmediate representation of disas-

sembled code for static code analysis. In: CanSecWest9]200

REIL: URL: http://www.zynamics.com/binnavi/mandmthl/reil_language.htm

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. [Fools and Algorithms for the

Construction and Analysis of Systems. Springer (2008) 337—

Heelan, S., Gianni, A.: Augmenting vulnerability arsyof binary code. In: Annual Com-

puter Security Applications Conference. (2012) 199-208

Sekar, R.: An efficient black-box technique for defegtireb application attacks. In: NDSS.

(2009)

Li, L., Just, J.E., Sekar, R.: Online signature genenafior windows systems. In: Annual

Computer Security Applications Conference. (2009) 288-29

Ganai, M.K., Lee, D., Gupta, A.: DTAM: dynamic taint aysik of multi-threaded programs

for relevancy. In: FSE. (2012)

Wang, C., Kundu, S., Limaye, R., Ganai, M., Gupta, A.: Bglit predictive analysis for

concurrent programs. Int. J. Formal Aspects of Computingri{®2011) 1-25

Wang, C., Ganai, M.: Predicting concurrency failuregeneralized traces of x86 executa-

bles. In: International Conference on Runtime Verificati@911)

20

