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Abstract. Texture analysis is used in numerous applications in various fields. 
There have been many different approaches/techniques in the literature for 
texture analysis among which the texton-based approach that computes the 
primitive elements representing textures using k-means algorithm has shown 
great success. Recently, dictionary learning and sparse coding has provided 
state-of-the-art results in various applications. With recent advances in 
computing the dictionary and sparse coefficients using fast algorithms, it is 
possible to use these techniques to learn the primitive elements and histogram 
of them to represent textures. In this paper, online learning is used as fast 
implementation of sparse coding for texture classification. The results show 
similar to or better performance than texton based approach on CUReT 
database despite of computation of dictionary without taking into account the 
class labels.  
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1   Introduction 

Texture provides important information in various fields of image analysis and 
computer vision. It has been used in many different problems including texture 
classification, texture segmentation, texture synthesis, material recognition, 3D shape 
reconstruction, color-texture analysis, appearance modeling, and indexing [1-4].  

As texture is a complicated phenomenon, there is no definition that is agreed upon 
by the researchers in the field [2, 3]. This is one of the reasons that there are various 
analysis techniques in the literature, each of which tries to model one or several 
properties of texture depending on the application in hand. 

Among these techniques, the approaches based on representing textures using 
some primitive elements, either predefined or learned, has recently shown great 
success in texture analysis. These approaches have roots in influential paper by Julesz 
[5]. He introduced textons as fundamental primitive elements that can describe 
textures. However, he did not propose any method how to compute these primitive 
elements in [5].  



Based on Julesz proposal, two techniques have recently obtained prevalence in 
texture analysis. First, techniques based on local binary patterns (LBPs) [6], in which 
fixed operators, i.e., LBPs and their histogram are used to represent a texture. Second, 
texton-based approach where learned textons (composed in a dictionary) are used as 
primitive elements to represent a texture. Our focus in this paper is on this latter 
approach, i.e., learned dictionary of textons. 

Leung and Malik were the first to develop a complete texture classification system 
using texton-based approach [7]. They defined 2D textons as the cluster centers in 
filter bank responses, which made it possible to generate textons from the images 
automatically as the prototypes representing the source textures. These textons formed 
a dictionary from which a texton histogram could be constructed for each image using 
a similarity measure. Their work was further improved by Schmid [8], Cula and Dana 
[9], and Varma and Zisserman [10, 11]. 

In texton-based approach, the textons in the dictionary are learned using a 
clustering algorithm such as k-means. However, as explained in [10], one main 
shortcoming of k-means is that it can be only applied to points within a texture class. 
It cannot be applied across classes as it merges data points (by taking mean of points) 
and thus the resultant cluster centers cannot be identified uniquely with individual 
textures. This means that the cluster centers computed using k-means across classes 
are not representing textures in a class anymore.  

A solution to this problem is computing the dictionary using dictionary learning 
approaches based on sparse coding or using matrix factorization1. Previously, these 
approaches for dictionary learning were too slow to be utilized in these applications. 
However, with recent advances in this field and by introducing fast algorithms such as 
online learning [12], rank-one downdate (R1D) [13], and coordinate descent [14], it is 
now computationally feasible to compute the dictionary on millions of patches (data 
samples in general) in reasonable time. This means that the dictionary can be learned 
on whole training set (not per class) using these approaches. The main advantage is 
that we do not use the class labels at this stage, i.e., learning dictionary is fully 
unsupervised.  

Here, we propose using online learning [12] for learning a dictionary on the whole 
training set and computation of sparse coefficients over the whole dictionary and 
show that despite of fully unsupervised learning of dictionary, on standard databases 
such as Columbia Utrecht Reflectance and Texture (CUReT) database [15], it 
performs similar to or better than texton-based approaches using k-means, where 
dictionary is learned per class. 

The rest of the paper is organized as follows: Section 2 presents the theory of 
dictionary learning and sparse coding (DLSC) related to our work. Experimental 
setup is described in Section 3 followed by results in Section 4. The paper is 
concluded in Section 5. 

                                                           
1 The connection between matrix factorization and dictionary learning using sparse coding is 

explained in [12]. 



2   Dictionary Learning and Sparse Coding  

In this section, we first provide an overview of dictionary learning and sparse coding 
(DLSC) and its connection to texton-based approach for texture classification. Then 
we provide the formulation for dictionary learning with sparse representation for 
texture classification.  

2.1   Background   

Dictionary learning and sparse representation/coding are two closely related topics in 
the literature. The initial work on these two topics was originated from two 
communities and problems under two different names, i.e., sparse coding (SC), which 
was originated by neurologists as a model for simple cells in mammalian primary 
visual cortex [16, 17]; and, independent component analysis (ICA), which was 
originated by researchers in signal processing to estimate the underlying hidden 
components of multivariate statistical data (refer to [18] for a review of ICA). These 
two problems merged, eventually, into similar techniques, but somewhat different 
description (the connection between SC and ICA is also explained in [18]). 

The main result of these two research works was that a class of signals with sparse 
nature, such as the images of natural scenes, can be represented using some primitive 
elements that form a dictionary, and that each signal in this class, can be represented 
by using only few elements in the dictionary (sparse representation). 

In fact, there are, at least, two ways in the literature to exploit sparsity [19]: first, 
using a linear/nonlinear combination of some predefined bases, e.g., wavelets [20]. 
Second, by using primitive elements in a learned dictionary, such as techniques 
employed in SC or ICA. This latter approach is our focus in this paper. 

As mentioned in the introduction, dictionary learning was introduced to the field of 
texture analysis by Julesz theory that stated textures can be represented using a few 
primitive elements [5] and following the work done in [7, 8, 9, 10, 11] that initiated 
the texton-based approach in texture classification. Texton-based approach is mainly 
consists of two steps, dictionary learning and computation of models (features) for 
each texture image. In the first step, extracted patches from each texture image in a 
class are submitted to a clustering algorithm such as k-means and obtained cluster 
centers are used as primitive elements (called textons) that form the dictionary. In the 
second step, for each texture image, a histogram of textons is computed. To compute 
this histogram, patches are extracted from each texture image and each patch is 
compared with the textons in the dictionary. The closest match based on a similarity 
measure such as Euclidean distance is used to update the corresponding bin in the 
histogram of textons. Thus, each patch in a texture image is represented by only one 
single texton in the dictionary (the closest match). This is a kind of sparse 
representation, in which only one atom in the dictionary is active per patch. These two 
steps can be performed using DLSC, which is described next. 



2.2   Mathematical Formulation 

Considering a finite training set of signals � � ���, ��, … , �	
 � �
�	, they can be 
represented by a dictionary D and a set of sparse coefficients a using 

 

min�,� � �1
2 ��� � ������ � l j���� 
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where l is a regularization parameter and j(.) is a sparsity inducing function. The 
most common sparsity inducing function is ℓ� norm and the corresponding problem is 
known as the Lasso [21] 
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To prevent obtaining very large values of D, which consequently lead to very small 

values of ��, a constraint is imposed on the columns of D such that they have unit ℓ� 
norm [12].  

Solving (2) using one of the approaches in the literature such as online learning 
[12] yields the dictionary D and the sparse coefficients a. If the dictionary has been 
already computed (using all �$, % � 1, … , & in the training set), (2) can be used to find 
the sparse coefficients for a signal x in test set (D is fixed in this case).  

2.3   Texture Classification 

Texture classification using dictionary learning and sparse representation based on (2) 
can be done in two steps. In first step, the dictionary � � �
�'(k is the number of 
primitive elements in the dictionary) is learned using � � ���, ��, … , �	
 � �
�	, 
where �$, % � 1, … , & are patches extracted with size √) � √) from texture images in 
training set in all classes. With fast algorithms such as R1D or online learning, this 
can be performed in few minutes over millions of patches.  

After learning the dictionary, we need to find the model (feature set) for each 
texture image in training and test sets. To this end, patches of the same size as what is 
used in dictionary learning step are extracted from each texture image, i.e., � �
���, ��, … , �*
 � �
�*, where n is the number of patches extracted, which is not 
necessarily the same as m. Then using (2), the corresponding coefficients a$ �
�'�*, % � 1, … , + are computed. For each patch ��, most of the elements in the 
corresponding coefficient �� are zero. The nonzero elements in �� determine the 
primitive elements in the dictionary D that contribute towards the representation of 
the patch ��. If we sum up all these coefficients for all patches extracted from a 
texture image, we effectively find the histogram of primitive elements contributing 
towards the representation of this particular texture, i.e., 



 

H��� � ∑ ��*�!� .  (3) 

 
We impose a positive constraint on �� in (2) such that we eventually obtain a 
histogram H with positive values in all bins. This also prevents cancelling the effect 
of different patches when they are summed up in (3). Hence, we rewrite (2) as follows 
to consider this constraint as well as the constraint we considered on D columns in 
previous subsection 
  

min�,� � �1
2 ��� � ������ � l ����� 

	

�!�
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            s.t. ./ � 1, … , 0,   1231� � 1     &     �� 5 0 , 

(4) 

 
where 27 is the jth column of D. In this way, while in texton-based approach each 
patch is represented using only the closest texton in the dictionary, here each patch is 
represented by using several primitive elements in the dictionary and hence it can 
potentially provide richer representation than texton-based approach. The number of 
nonzero elements in �� can be controlled using l in (4) [12].  

The distance between two normalized histograms is measured using � � statistic, 
i.e., using � ��H�, H8� � 1 2⁄ ∑ �:�� � :���� �:�� � :���⁄� . One nearest neighbor is 
used as the classifier as suggested in [11]. 

Although, dictionary learning is also used in [22] for texture classification, our 
work is different in following three aspects. Firstly, in [22] one dictionary is learned 
per class and then these dictionaries are composed (concatenated) to form the overall 
dictionary (this is the same as what is reported in the literature for finding dictionary 
using k-means). We find the dictionary on the whole training set (not per class) and 
this means that we do not use class labels at this stage at all. Secondly, to find the 
sparse coefficients, in [22] part of dictionary which is most similar to the current 
patch is considered (it is not explained what kind of similarity is used) and the reason 
mentioned is that using the whole dictionary is computationally very expensive. We 
find the sparse coefficients on whole dictionary (this is possible with recent advances 
in computation of the Lasso in the literature as mentioned before). Thirdly, we have 
placed positive constraint on the coefficients as we eventually sum them up to find the 
histogram of primitive elements (in the dictionary) as the feature set for an image to 
be classified. In [22] this positive constraint on the coefficients is not considered and 
this might not be needed as they do not find the coefficients on whole dictionary but 
just on part of dictionary most similar to the current patch. In fact, our experiments 
show that without this positive constraint on the coefficients, the performance of the 
classification system is very poor. 



3   Experimental Setup 

The performance of the proposed classification system is evaluated on CUReT 
database. The database is used the same as what is reported in [11]. That is, there are 
92 images per class and 61 classes. Each image is 200 ä 200 pixels with the intensity 
resolution of 8 bit/pixel. The comparison is made with texton-based approach using 
raw pixel representation. This means that no filter banks are used.    

Data Preparation and Preprocessing. To make the images indiscriminable to the 
average intensity level and contrast, the mean of texture images is removed and they 
are also normalized to have unit standard deviation. 

Computation of Dictionary. To compute the dictionary, 500 random patches are 
extracted from each texture image in the training set. Patch sizes of 5 ä 5, 7 ä 7, and 9 
ä 9 are used in the experiments. No filter banks are applied and raw pixel 
representation is used. The mean of patches are removed to make the images locally 
invariant to the average intensity. In texton-based approach, Weber's law 
normalization is used as reported in [10, 11]. In DLSC, each patch is normalized to 
have unit ℓ� norm. This is done based on the constraint on primitive elements in the 
dictionary as stated in (4). In texton-based approach, all patches belonging to one 
class are submitted to the k-means algorithm to find the cluster centers. These cluster 
centers over all classes are then composed into a single dictionary. In DLSC 
approach, all patches from all classes are used at once for learning the dictionary. 
Hence, no class labels are used at this stage. Online learning [12] is used for the 
implementation of (4) in DLSC. As suggested in [12], the regularization parameter l 
in (4) is chosen as 1.2 √)⁄ , where ) � �patch size��. This yields about 10 nonzero 
coefficients in average for the patches of 9 ä 9. 

Learning Models (Histograms). After computation of the dictionary, we need to find 
the model. To this end, small overlapping patches with the same size as what was 
used in the previous step are extracted from the top left to the bottom right of each 
ROI. As in the dictionary learning, no filter bank is used and raw pixel representation 
is considered. The mean of each patch is removed and they are normalized according 
to Weber's Law in texton-based approach and to unit ℓ� norm in DLSC. In texton-
based approach, Euclidean distance is used as the similarity measure to find the 
closest texton in the dictionary to each patch. In DSLC, online learning 
implementation of (4) is used with the same l value as previous step with positive 
constraint on the coefficients �. Each coefficient is normalized to sum to one and all 
of them are then summed up to yield the overall frequency histogram of primitive 
elements for each texture image, which is used as the signature (model) of the 
particular texture image after normalization. 



4   Results 

In this section, we present the results of texture classification on CUReT database 
using both texton-based and DLSC approaches.  

Fig. 1 compares the dictionary learned suing these two techniques. In texton-based 
approach 10 textons are learned in each class using k-means and eventually all textons 
are composed in a dictionary (610 textons for 61 classes). As can be seen in Fig. 1, 
every 10 adjacent textons are similar as they are taken from the same class. In DLSC 
approach, all patches extracted from all classes are used for the learning of dictionary 
using (4). Hence class labels are not used at this stage. Different from texton-based 
dictionary, the primitive elements from all classes are spread over entire dictionary in 
DLSC. 

Table 1 shows the performance of one nearest neighbor classifier using texton-
based and DLSC approaches. The experiments are repeated 100 times over random 
sets of training and test sets. The performance is compared for three different patch 
and four different training set sizes. As can be seen from this table, the performance 
of DLSC is similar or better than texton-based approach in all cases. This is while the 
dictionary of DLSC is learned over whole training set at once whereas dictionary of 
texton-based approach is learned per class, i.e., class labels are taken into account in 
this learning. 

 

 
Fig. 1. Dictionary of 610 primitive elements learned using patches of size 7 ä 7 extracted from 
23 training texture images per class using: (left) k-means algorithm where 10 textons per class 
are learned and all these textons are composed into a dictionary and (right) DLSC as described 
in this paper where all primitive elements are learned at once by submitting all extracted 
patches from all classes to (4). 

 



Table 1. Comparison between the classification accuracy of texton-based and DLSC 
approaches. The experiments are repeated 100 times on various random split of training and 
test sets. The dictionary is consisting of 610 primitive elements and results are reported for 
different train and patch sizes. 

    Patch Size 
 

Train Size 

5 ä 5 7 ä 7 9 ä 9 
Texton DLSC Texton DLSC Texton DLSC 

6 
73.76 
≤ 4.25 

74.22 
≤ 4.37 

74.73  
≤ 4.15 

75.77 
≤ 4.27 

75.65  
≤ 3.92 

76.32  
≤ 4.14 

12 
83.46  
≤ 2.60 

84.02  
≤ 2.55 

84.25  
≤ 2.66 

85.03  
≤ 2.55 

85.20  
≤ 2.54 

85.32  
≤ 2.49 

23 
90.09  
≤ 1.56 

90.52 
≤ 1.55 

90.81  
≤ 1.62 

91.33  
≤ 1.57 

91.42  
≤ 1.61 

91.62  
≤ 1.59 

46 
94.83  
≤ 0.95 

 

95.26  
≤ 0.93 

95.49  
≤ 0.93 

95.85  
≤ 0.87 

95.94  
≤ 0.85 

96.14 
≤ 0.87 

5   Discussion and Conclusion 

Sparse representation using few primitive elements learned from data has recently 
shown great success in different fields such as face recognition and denoising. One of 
main obstacles for widespread application of this approach was rather slow algorithms 
for the computation of dictionary and sparse coefficients over millions of data 
samples, which is usually the case in image processing and computer vision tasks. 
The initial algorithm proposed in [16], for example, took hours to compute the 
dictionary over patches extracted from only ten natural scenes.  

With recent fast algorithms proposed for dictionary learning and sparse coding 
such as online learning and R1D, it is now feasible to perform the computation over 
millions patches in few minutes. In this paper, we proposed using one of these 
algorithms, i.e., online learning, for the purpose of texture classification over large 
databases such as CUReT. Despite of k-means algorithm used in texton-based 
approach that has to learn the dictionary per class, the proposed approach can learn 
the dictionary over all classes and hence class labels are not used at all in this step. 
Yet, the results of classification are similar to or better than texton-based approach. 
The positive constraint imposed on sparse coefficients enables learning the 
coefficients over whole dictionary and, consequently, finding the model histogram for 
each texture image is as simple as summing up the sparse coefficients learned for all 
patches extracted from the particular texture image. 

In future work, we would also like to impose positive constraint on the dictionary 
and utilize nonnegative matrix factorization using fast implementations such as R1D 
[13]. We would also like to extend this work to supervised dictionary learning [19] 
and compare it to our current results for possible further improvements.  
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