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Abstract. Texture analysis is used in numerous applicationgrious fields.
There have been many different approaches/techmiquehe literature for
texture analysis among which the texton-based agprdhat computes the
primitive elements representing textures uskageans algorithm has shown
great success. Recently, dictionary learning andssepeoding has provided
state-of-the-art results in various applicationsithWrecent advances in
computing the dictionary and sparse coefficientsigidast algorithms, it is
possible to use these techniques to learn the tprémeélements and histogram
of them to represent textures. In this paper, enl@arning is used as fast
implementation of sparse coding for texture clasaifon. The results show
similar to or better performance than texton basegproach on CUReT
database despite of computation of dictionary withiaking into account the
class labels.
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1 Introduction

Texture provides important information in variouglds of image analysis and
computer vision. It has been used in many diffenerdblems including texture
classification, texture segmentation, texture sgsithy material recognition, 3D shape
reconstruction, color-texture analysis, appearangéeling, and indexing [1-4].

As texture is a complicated phenomenon, there idafmition that is agreed upon
by the researchers in the field [2, 3]. This is of¢he reasons that there are various
analysis techniques in the literature, each of twhites to model one or several
properties of texture depending on the applicatiomand.

Among these techniques, the approaches based oeseating textures using
some primitive elements, either predefined or ledrnhas recently shown great
success in texture analysis. These approachesbatgein influential paper by Julesz
[5]. He introduced textons as fundamental primitekements that can describe
textures. However, he did not propose any methotd ttocompute these primitive
elements in [5].



Based on Julesz proposal, two techniques have thgceltained prevalence in
texture analysis. First, techniques based on loicary patterns (LBPS) [6], in which
fixed operators, i.e., LBPs and their histogram are tsedpresent a texture. Second,
texton-based approach whéearned textons (composed in a dictionary) are used as
primitive elements to represent a texture. Our $oou this paper is on this latter
approach, i.elegarned dictionary of textons.

Leung and Malik were the first to develop a complitxture classification system
using texton-based approach [7]. They defined 2@otes as the cluster centers in
filter bank responses, which made it possible tnegate textons from the images
automatically as the prototypes representing tliecgotextures. These textons formed
a dictionary from which a texton histogram coulddoastructed for each image using
a similarity measure. Their work was further impgdwby Schmid [8], Cula and Dana
[9], and Varma and Zisserman [10, 11].

In texton-based approach, the textons in the diatip are learned using a
clustering algorithm such alsmeans. However, as explained in [10], one main
shortcoming ok-means is that it can be only applied to pointdinita texture class.

It cannot be applied across classes as it mergagpdants (by taking mean of points)
and thus the resultant cluster centers cannot éetifted uniquely with individual
textures. This means that the cluster centers ctedpusingk-means across classes
are not representing textures in a class anymore.

A solution to this problem is computing the dicton using dictionary learning
approaches based on sparse coding or using matiarizatioh. Previously, these
approaches for dictionary learning were too slovbéoutilized in these applications.
However, with recent advances in this field andrisoducing fast algorithms such as
online learning [12], rank-one downdate (R1D) [1&}d coordinate descent [14], it is
now computationally feasible to compute the diciignon millions of patches (data
samples in general) in reasonable time. This mawtshe dictionary can be learned
on whole training set (not per class) using thgge@aches. The main advantage is
that we do not use the class labels at this stige,learning dictionary is fully
unsupervised.

Here, we propose using online learning [12] foriéag a dictionary on the whole
training set and computation of sparse coefficiamter the whole dictionary and
show that despite of fully unsupervised learninglictionary, on standard databases
such as Columbia Utrecht Reflectance and Texturd REI) database [15], it
performs similar to or better than texton-basedre@ghes using-means, where
dictionary is learned per class.

The rest of the paper is organized as follows: iBec2 presents the theory of
dictionary learning and sparse coding (DLSC) relate our work. Experimental
setup is described in Section 3 followed by resiftsSection 4. The paper is
concluded in Section 5.

1 The connection between matrix factorization andtiahary learning using sparse coding is
explained in [12].



2 Dictionary Learning and Sparse Coding

In this section, we first provide an overview otittnary learning and sparse coding
(DLSC) and its connection to texton-based apprdachexture classification. Then
we provide the formulation for dictionary learningith sparse representation for
texture classification.

2.1 Background

Dictionary learning and sparse representation/gpdie two closely related topics in
the literature. The initial work on these two tapievas originated from two
communities and problems under two different names,sparse coding (SC), which
was originated by neurologists as a model for stmg@lls in mammalian primary
visual cortex [16, 17]; and, independent componanalysis (ICA), which was
originated by researchers in signal processing stimate the underlying hidden
components of multivariate statistical data (refef18] for a review of ICA). These
two problems merged, eventually, into similar tdgbes, but somewhat different
description (the connection between SC and ICAsg explained in [18]).

The main result of these two research works watsaltdass of signals with sparse
nature, such as the images of natural scenes,ecegpbesented using some primitive
elements that form a dictionary, and that eachasignthis class, can be represented
by using only few elements in the dictionary (spaespresentation).

In fact, there are, at least, two ways in the ditere to exploit sparsity [19]: first,
using a linear/nonlinear combination of sopredefined bases, e.g., wavelets [20].
Second, by using primitive elements inlearned dictionary, such as techniques
employed in SC or ICA. This latter approach is fmaus in this paper.

As mentioned in the introduction, dictionary leagiwas introduced to the field of
texture analysis by Julesz theory that stated testocan be represented using a few
primitive elements [5] and following the work dome[7, 8, 9, 10, 11] that initiated
the texton-based approach in texture classificafl@xton-based approach is mainly
consists of two steps, dictionary learning and cataiion of models (features) for
each texture image. In the first step, extractedhes from each texture image in a
class are submitted to a clustering algorithm sask-means and obtained cluster
centers are used as primitive elements (calledis)tthat form the dictionary. In the
second step, for each texture image, a histograrextdns is computed. To compute
this histogram, patches are extracted from eacturnexmage and each patch is
compared with the textons in the dictionary. Thesekt match based on a similarity
measure such as Euclidean distance is used toeupiatcorresponding bin in the
histogram of textons. Thus, each patch in a texitege is represented by only one
single texton in the dictionary (the closest matchhis is a kind of sparse
representation, in which only one atom in the ditdiry is active per patch. These two
steps can be performed using DLSC, which is desdniext.



2.2 Mathematical Formulation

Considering a finite training set of sign&s= [x;,X,, ...,X,,] € R*™, they can be
represented by a dictionabyand a set of sparse coefficientsising
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where 1 is a regularization parameter ap(l) is a sparsity inducing function. The
most common sparsity inducing functior/isnorm and the corresponding problem is
known as thé.asso [21]
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To prevent obtaining very large valuesfwhich consequently lead to very small
values ofa;, a constraint is imposed on the column®duch that they have uri
norm [12].

Solving (2) using one of the approaches in theditee such as online learning
[12] yields the dictionaryp and the sparse coefficients If the dictionary has been
already computed (using &, i = 1, ..., m in the training set), (2) can be used to find
the sparse coefficients for a signah test setD is fixed in this case).

2.3 Texture Classification

Texture classification using dictionary learninglaparse representation based on (2)
can be done in two steps. In first step, the digtig D € R4**(k is the number of
primitive elements in the dictionary) is learnedngsX = [X;,X;, ..., X,,,] € R®*™,
wherex;,i = 1, ..., m are patches extracted with si¥é x vd from texture images in
training set in all classes. With fast algorithnogts as R1D or online learning, this
can be performed in few minutes over millions afchas.

After learning the dictionary, we need to find thedel (feature set) for each
texture image in training and test sets. To thi, @atches of the same size as what is
used in dictionary learning step are extracted fremeh texture image, i.eX =
[X1,X,, ..., X,] € R™ wheren is the number of patches extracted, which is not
necessarily the same as Then using (2), the corresponding coefficientse
R¥*" i =1,..,n are computed. For each patgh most of the elements in the
corresponding coefficient; are zero. The nonzero elementsap determine the
primitive elements in the dictionay that contribute towards the representation of
the patchx;. If we sum up all these coefficients for all pashextracted from a
texture image, we effectively find the histogramprimitive elements contributing
towards the representation of this particular textue.,
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We impose a positive constraint @ar in (2) such that we eventually obtain a
histogram H with positive values in all bins. Thiso prevents cancelling the effect
of different patches when they are summed up inH&8hce, we rewrite (2) as follows
to consider this constraint as well as the constrae considered oB columns in
previous subsection

= 4)

whered; is thej™ column ofD. In this way, while in texton-based approach each
patch is represented using only the closest teixtdhe dictionary, here each patch is
represented by using several primitive elementthendictionary and hence it can
potentially provide richer representation than eexbased approach. The number of
nonzero elements ia; can be controlled usingin (4) [12].

The distance between two normalized histogramseasured usingt? statistic,
i.e., using A?(Hy, Hy) = 1/2%; (hy; — hyi)?/(hy; + hy;). One nearest neighbor is
used as the classifier as suggested in [11].

Although, dictionary learning is also used in [A8} texture classification, our
work is different in following three aspects. Hiystin [22] one dictionary is learned
per class and then these dictionaries are comygesadatenated) to form the overall
dictionary (this is the same as what is reporteth@literature for finding dictionary
usingk-means). We find the dictionary on the whole tnagnset (not per class) and
this means that we do not use class labels atsthge at all. Secondly, to find the
sparse coefficients, in [22] part of dictionary walniis most similar to the current
patch is considered (it is not explained what lafhdimilarity is used) and the reason
mentioned is that using the whole dictionary is patationally very expensive. We
find the sparse coefficients on whole dictionahiqtis possible with recent advances
in computation of thé.asso in the literature as mentioned before). Thirdlg have
placed positive constraint on the coefficients asawentually sum them up to find the
histogram of primitive elements (in the dictionaag the feature set for an image to
be classified. In [22] this positive constraint thie coefficients is not considered and
this might not be needed as they do not find theffdents on whole dictionary but
just on part of dictionary most similar to the @nt patch. In fact, our experiments
show that without this positive constraint on tleefficients, the performance of the
classification system is very poor.



3 Experimental Setup

The performance of the proposed classification esysis evaluated on CUReT
database. The database is used the same as wiabited in [11]. That is, there are
92 images per class and 61 classes. Each ima@® is 200 pixels with the intensity

resolution of 8 bit/pixel. The comparison is madihwexton-based approach using
raw pixel representation. This means that no flienks are used.

Data Preparation and Preprocessing. To make the images indiscriminable to the
average intensity level and contrast, the meamxtite images is removed and they
are also normalized to have unit standard deviation

Computation of Dictionary. To compute the dictionary, 500 random patches are
extracted from each texture image in the trainigty Batch sizes of 65, 7x 7, and 9

x 9 are used in the experiments. No filter banks applied and raw pixel
representation is used. The mean of patches amvezhto make the images locally
invariant to the average intensity. In texton-basadproach, Weber's law
normalization is used as reported in [10, 11]. InSK, each patch is normalized to
have unit?, norm. This is done based on the constraint onifivienelements in the
dictionary as stated in (4). In texton-based apghpall patches belonging to one
class are submitted to tlkemeans algorithm to find the cluster centers. Trabgster
centers over all classes are then composed intinglesdictionary. In DLSC
approach, all patches from all classes are useth@ for learning the dictionary.
Hence, no class labels are used at this stagen@®tdarning [12] is used for the
implementation of (4) in DLSC. As suggested in [1iPE regularization parameter
in (4) is chosen a$.2/+/d, whered = (patch size)?. This yields about 10 nonzero
coefficients in average for the patches of 9.

Learning M odels (Histograms). After computation of the dictionary, we need tadfi
the model. To this end, small overlapping patchéh the same size as what was
used in the previous step are extracted from tpedfi to the bottom right of each
ROI. As in the dictionary learning, no filter baiskused and raw pixel representation
is considered. The mean of each patch is removedrery are normalized according
to Weber's Law in texton-based approach and to#nitorm in DLSC. In texton-
based approach, Euclidean distance is used asirthikardy measure to find the
closest texton in the dictionary to each patch. I$LC, online learning
implementation of (4) is used with the samh@alue as previous step with positive
constraint on the coefficients. Each coefficient is normalized to sum to one ald
of them are then summed up to yield the overaljdency histogram of primitive
elements for each texture image, which is usedhasstgnature (model) of the
particular texture image after normalization.



4 Results

In this section, we present the results of textlessification on CUReT database
using both texton-based and DLSC approaches.

Fig. 1 compares the dictionary learned suing tiesetechniques. In texton-based
approach 10 textons are learned in each class ksimgans and eventually all textons
are composed in a dictionary (610 textons for @ks#s). As can be seen in Fig. 1,
every 10 adjacent textons are similar as theyakent from the same class. In DLSC
approach, all patches extracted from all classesised for the learning of dictionary
using (4). Hence class labels are not used atsthge. Different from texton-based
dictionary, the primitive elements from all classes spread over entire dictionary in
DLSC.

Table 1 shows the performance of one nearest neigtibssifier using texton-
based and DLSC approaches. The experiments arategp&00 times over random
sets of training and test sets. The performanamispared for three different patch
and four different training set sizes. As can bensftom this table, the performance
of DLSC is similar or better than texton-based apph in all cases. This is while the
dictionary of DLSC is learned over whole trainirgt st once whereas dictionary of
texton-based approach is learned per class, lass tabels are taken into account in
this learning.

Fig. 1. Dictionary of 610 primitive elements learned uspaiches of size ¥ 7 extracted from
23 training texture images per class usimgt)(k-means algorithm where 10 textons per class
are learned and all these textons are composea idictionary andr{ght) DLSC as described

in this paper where all primitive elements are riear at once by submitting all extracted
patches from all classes to (4).



Table 1. Comparison between the classification accuracy eofton-based and DLSC
approaches. The experiments are repeated 100 ¢imearious random split of training and
test sets. The dictionary is consisting of 610 i@ elements and results are reported for
different train and patch sizes.

Patch Size 5x5 Tx7 9x 9

Texton | DLSC| Texton| DLSC Texton DLSC
Train Siz

6 73.76 | 74.22 | 74.73 | 75.77 | 75.65 | 76.32
+425| +437| +415| +4.27| +3.92 | +4.14

12 83.46 | 84.02 | 84.25 | 85.03 | 85.20 | 85.32
+260 | +255| +266 | +255| +254 | +2.49

23 90.09 | 90.52 | 90.81 | 91.33 | 91.42 | 91.62
+156 | +155| +162 | +157| +1.61 | +1.59
94.83 | 95.26 | 95.49 | 95.85 | 95.94 | 96.14

46 +095| +093| +093 | +0.87| +0.85| +0.87

5 Discussion and Conclusion

Sparse representation using few primitive elemésasned from data has recently
shown great success in different fields such as facognition and denoising. One of
main obstacles for widespread application of tpisraach was rather slow algorithms
for the computation of dictionary and sparse cogdfits over millions of data

samples, which is usually the case in image praogsand computer vision tasks.
The initial algorithm proposed in [16], for exampl®ok hours to compute the
dictionary over patches extracted from only teruratscenes.

With recent fast algorithms proposed for dictiondggrning and sparse coding
such as online learning and R1D, it is now feasiblperform the computation over
millions patches in few minutes. In this paper, pm®posed using one of these
algorithms, i.e., online learning, for the purpadetexture classification over large
databases such as CUReT. Despitekafieans algorithm used in texton-based
approach that has to learn the dictionary per cldss proposed approach can learn
the dictionary over all classes and hence classidadre not used at all in this step.
Yet, the results of classification are similar tobetter than texton-based approach.
The positive constraint imposed on sparse coeffisieenables learning the
coefficients over whole dictionary and, consequgtithding the model histogram for
each texture image is as simple as summing uppiese coefficients learned for all
patches extracted from the particular texture image

In future work, we would also like to impose pogiticonstraint on the dictionary
and utilize nonnegative matrix factorization usfiagt implementations such as R1D
[13]. We would also like to extend this work to swgsed dictionary learning [19]
and compare it to our current results for posdilfther improvements.
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