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Abstract

Fully autonomous exploration and mobile manipulation in rough terrain are still beyond
the state of the art—robotics challenges and competitions are held to facilitate and bench-
mark research in this direction. One example is the DLR SpaceBot Cup 2013, for which we
developed an integrated robot system to semi-autonomously perform planetary exploration
and manipulation tasks. Our robot explores, maps, and navigates in previously unknown,
uneven terrain using a 3D laser scanner and an omnidirectional RGB-D camera. We de-
veloped manipulation capabilities for object retrieval and pick-and-place tasks. Many parts
of the mission can be performed autonomously. In addition, we developed teleoperation
interfaces on different levels of shared autonomy which allow for specifying missions, moni-
toring mission progress, and on-the-fly reconfiguration. To handle network communication
interruptions and latencies between robot and operator station, we implemented a robust
network layer for the middleware ROS. The integrated system has been demonstrated at the
DLR SpaceBot Cup 2013. In addition, we conducted systematic experiments to evaluate

the performance of our approaches.
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1 Introduction

Robotic systems that explore and manipulate their environment have many potential applications such as
search and rescue, remote inspection, or planetary exploration (e.g. [Mehling et al., 2007|Deegan et al., 2000,
Guizzo and Deyle, 2012, [Stilman et al., 2009, Borst et al., 2009, [Schenker et al., 2003]). Robots operating
within such real-world environments will have to navigate in complex terrain and reach, physically interact,
pick up, retrieve and manipulate a variety of objects. Such mobile manipulation is an activity that humans
naturally perform by combining two capabilities: locomotion and manipulation. The need of mobile manip-
ulation has been addressed in the past with the development of a variety of mobile manipulation systems

consisting of robotic arms installed on mobile bases—with the mobility provided by wheels, chains, or legs.

While for many application domains fully autonomous operation in the complex, unstructured environments
is not yet feasible, it is desirable to increase the level of autonomy in order to reduce the operator workload
and to overcome communication restrictions. Autonomy also enables faster operations, which is an important

feature in time-critical application scenarios such as search and rescue operations.

In this paper, we present an advanced robotic system for semi-autonomous exploration and manipulation
tasks. With our system we competed in the DLR SpaceBot Cup 2013 robotics competition. In this competi-
tion, a robot has to explore previously unknown planetary-like terrain and build a 3D map of the environment.
The robot needs to find and retrieve objects such as a cup-like container and a battery, and install them at
a base station. One further difficulty of the competition setting is a communication link between operator

station and robot that is affected by several seconds of latency and intermittent wireless connection.

Our Explorer robot, shown in Fig. [[l carries multiple 3D sensors, has a fast onboard computer, and a
robust wireless communication link. With its six-wheeled drive and a 7DoF manipulator, it can operate
with a high level of autonomy. We developed efficient methods for allocentric and egocentric mapping of
the environment, assessment of drivability, allocentric and egocentric path planning, object manipulation,
intuitive teleoperation interfaces, and a robust communication system. In this article, we describe robot
hardware and our novel software contributions which utilize the rich sensory equipment of our robot. We
evaluate the system in several field experiments and report on the performance at the DLR SpaceBot Cup

2013 competition.



Figure 1: Left: Explorer robot with six-wheeled drive and 7DoF arm for mobile manipulation in rough
terrain. Center: The sensor head carries a 3D laser scanner, eight RGB-D cameras, and three HD cameras.
Right: Our operator station consisting of four monitors and input devices including a joystick.

2 Related Work

Several robot application domains include navigation in unknown, rough terrain, mobile manipulation, and

shared autonomy. E.g., the tasks performed by rescue robots range from exploration and mapping to mobile

manipulation. The books of [Tadokoro, 2010] and [Murphy, 2014] give a good overview about the state-

of-the-art in disaster-response robots. Space applications for exploration robots have a stronger focus on

navigation with shared autonomy under communication latency and restrictions in the availability of com-

munication [Chhaniyara et al., 2012, Maimone et al., 2007} Biesiadecki et al., 2007/Seelinger et al., 2012].

2.1 Exploration and Navigation in Rough Terrain

Frequently, the application domains require the robot to navigate in uneven, rough terrain. Recently, much
research has been devoted to simultaneous localization and mapping (SLAM) in 3D, exploration, and navi-

gation in rough terrain.

For mapping and localization in a previously unknown environment, early research focused on the 2D sub
problem—assuming the robot moves on flat ground. As robots are increasingly deployed in less constrained
environments, 3D mapping and localization has become an active research topic. To be applicable on
autonomous robot platforms, sufficient onboard sensors are required, and the methods must be memory and

run-time efficient.

Using multi-resolution maps to maintain high performance and low memory consumption has been inves-



tigated by several groups. |[Hornung et al., 2013|, for example, implement a multi-resolution map based on

octrees (OctoMap). |[Ryde and Hu, 2010] use voxel lists for efficient look-up. Both of these approaches

consider mapping in 3D with a voxel being the smallest map element. Similar to our approach, the 3D-

NDT [Magnusson et al., 2007] represents point clouds as Gaussian distributions in voxels at multiple res-

olutions. Our multi-resolution surfel maps (MRSMap [Stiickler and Behnke, 2014]) adapt the maximum

resolution with distance to the sensor to incorporate measurement characteristics. Our registration method
matches 3D scans on all resolutions concurrently, utilizing the finest common resolution available between
both maps, which also makes registration efficient. By exploiting the neighborhood of scan lines due to the

continuous rotating 3D scan acquisition, map aggregation can also be made very efficient.

For SLAM, pose graph optimization methods are state-of-the-art. They adjust the scan poses to min-
imize scan registration errors. A stop-and-scan scheme as used in our approach can be beneficial, as
it simplifies mapping and avoids inaccuracies that could arise with approaches performing mapping un-
der motion. This comes with a trade-off for exploration speed, though. Some SLAM approaches

integrate scan lines of a continuously rotating laser scanner into 3D maps while the robot is mov-

ing, e.g. [Bosse and Zlot, 2009, [Elseberg et al., 2012, [Stoyanov and Lilienthal, 2009, Maddern et al., 2012,

[Anderson and Barfoot, 2013|Droeschel et al., 2014.[Holz and Behnke, 2014].

For online localization in a 3D map, several approaches have been proposed. [Kuemmerle et al., 2007], for

example, apply Monte Carlo localization in multi-level surface maps [Triebel et al., 2006], which represent

occupied height intervals on a 2D grid. [Klaess et al., 2012] model the environment in surfel maps in a fixed

resolution, similar to the 3D-NDT [Magnusson et al., 2007]. They then localize in these maps using a tilting

2D laser by matching line elements extracted from the 2D scan lines in a particle filter framework, assuming
motion of the robot in the horizontal plane. Our approach does not need to make this assumption and is

suitable for rough terrain.

Path planning for navigating in planar 2D indoor environments is a well-studied topic in

robotics [Hornung et al., 2012 [Klaess et al., 2012]. For navigation on non-flat terrain, several approaches

generate 2D cost maps from sensor readings to essentially treat path planning in 2D |Lee et al., 2008

|Gerkey and Konolige, 2008, [Ferguson and Likhachev, 2008|. Frequently, the terrain is modeled in eleva-

tion grid maps, on which planning can be performed |[Kwak et al., 2008, [Kewlani et al., 2009]. Recently,

[Stoyanov et al., 2010] proposed a wavefront-propagation path planner in 3D-NDT maps. We use efficient

search-based planners and propose a robust approach to transition between neighboring 3D scans.



Judging traversability of terrain and avoiding obstacles with robots—especially planetary rovers—has

been investigated before. [Chhaniyara et al., 2012] provide a detailed survey of different sensor types and

soil characterization methods. Most commonly employed are LIDAR sensors, e.g. |Gingras et al., 2010,

[Hebert and Vandapel, 2003|, which combine wide depth range with high angular resolution. Chhaniyara et

al. investigate LIDAR systems and conclude that they offer higher measurement density than stereo vision,
but do not allow terrain classification based on color. Our RGB-D terrain sensor provides high-resolution
combined depth and color measurements at high rates in all directions around the robot. We employ omnidi-
rectional depth cameras, which provide instantaneous geometry information of the surrounding terrain with
high resolution. In many environments, color or texture do not provide sufficient traversability information,

so 3D geometry is needed.

We present an integrated system for obstacle-avoiding driving, SLAM, and path planning in rough terrain.
In the context of space robotics, integrated navigation systems with shared autonomy have been successfully

deployed for planetary exploration missions. The NASA Mars Exploration Rovers demonstrated semi-

autonomous navigation on Mars for several years [Maimone et al., 2007, Biesiadecki et al., 2007]. They use

stereo visual odometry to accurately track the position of the rover, such that slip in difficult terrain can
be detected, and hazardous commands can be aborted. Operators plan paths via waypoints which are then
executed using hazard-avoiding control on the robot. Since command sequences can be transmitted typically
up to once per day, autonomous navigation into the unknown has proven to be an important feature to utilize

mission time well.

2.2 Mobile Manipulation

Telemanipulation systems have been developed for applications that are inaccessible or hazardous for hu-

mans such as minimally invasive surgery [Ballantyne and Moll, 2003, Hagn et al., 2010], explosive ordnance

disposal [Kron et al., 2004], and undersea [Whitcomb, 2000] or space applications [Pedersen et al., 2003].

The premise of telemanipulation systems is to utilize the cognitive capabilities of a human operator to solve
dexterous manipulation tasks such as object pick-and-place, opening a door, or tool-use. However, this
approach also leaves significant load to the operator. Implementing the required cognitive capabilities in
autonomous systems is an open research topic. Many approaches to grasp and motion planning in unstruc-

tured environments assume that the geometry of objects is known and identify a set of stable grasps on

objects in an offline phase [Miller et al., 2003|[Berenson and Srinivasa, 2008|Nieuwenhuisen et al., 2013|. To

grasp the objects in the actual scene, the grasp set is pruned by identifying those grasps that are reachable



under kinematic and free-space constraints. Hsiao et al. [Hsiao et al., 2010] proposed a reactive approach to
grasping that plans grasps at raw partial 3D measurements of objects, evaluating the resulting grasps for
reachability by time-costly motion planning. In [Stiickler et al., 2012], this approach has been extended to
provide grasps and reaching motions very fast in situations, where parametric arm motion primitives can be

used instead of costly planning of reaching motions.

Manipulation scenes can be segmented visually into object candidates through bottom-up cues without
explicit knowledge about specific objects. For instance, Rusu et al. [Rusu et al., 2009] propose to describe
and classify the local context of points by Fast Point Feature Histograms. They regularize the classification in
a conditional random field on the point cloud to obtain coherent object segments. We adapt the segmentation
approach of [Holz et al., 2012], which uses integral images to quickly estimate normals from RGB-D images

and segments objects on flat support surfaces.

3 System Design

3.1 Explorer Robot Hardware

Our Ezplorer robot, shown in Fig. [, is equipped with three wheels on each side for locomotion. The wheels
are mounted on carbon composite springs to adjust to irregularities of the terrain in a passive way. As the

wheel orientations are fixed, the robot is turned by skid-steering, similar to a differential drive system.

In addition to the omnidirectional RGB-D sensor, our robot is equipped with a rotating 2D laser scanner
for allocentric navigation, an inertial measurement unit (IMU) for measuring the slope, and four consumer
cameras for teleoperation. Three of these cameras cover 180° of the forward view in Full HD and one wide-

angle overhead camera is looking downward and provides an omnidirectional view around the robot (see

Fig. [Gal).

For object manipulation tasks, the robot is equipped with a 7 DoF arm build from Robotis Dynamixel Pro
actuators. These actuators come in three sizes which are distributed from strongest on the robot base (ca.
40 Nm continuous torque at 855g) to weakest in the wrist (ca. 5.6 Nm at 340g). The actuators have little
backlash and are backdrivable. We built a custom gripper with two 3D printed fingers on rotary joints,
actuated by Dynamixel MX-64 servos. Our lightweight and inexpensive gripper is specifically designed for

the objects relevant to the DLR SpaceBot Cup.



3.1.1 Omnidirectional RGB-D Sensor

For local navigation, our robot is equipped with eight RGB-D cameras (ASUS Xtion Pro Live) capturing
RGB and depth images. The RGB-D cameras are spaced such that they create a 360° representation of the
immediate environment of the robot (Fig.[5b)). Each camera provides 480x 640 resolution depth images with
45° horizontal angle. Because the sensor head is not centered on the robot, the pitch angle of the cameras
varies from 29° to 39° to ensure that the robot does not see too much of itself in the camera images. The
camera transformations (from the optical frame to a frame on the robot’s base) were calibrated manually.
We carefully treat potential inaccuracies at the interfaces between the RGB-D images in later steps of the
processing pipeline, such that, e.g., no artificial obstacles occur in the local navigation map. We observed

no significant changes in this calibration, despite driving on rough terrain for many operation hours.

The high data rate of eight RGB-D cameras poses a challenge for data acquisition, as a single camera
already consumes the bandwidth of a USB 2.0 bus. To overcome this limitation, we equipped the onboard
PC with two PCI Express USB cards, which provide four USB host adapters each. This allows to connect
each RGB-D camera on a separate USB bus which is not limited by transmissions from the other devices.
Additionally, we wrote a custom driver for the cameras, as the standard driver (openni_camera) of the ROS
middleware [Quigley et al., 2009] was neither efficient nor stable in this situation. Our driver can output
VGA color and depth images at up to 30 Hz frame rate. The source code of the custom driver is available

onlind.

3.1.2 Continuously Rotating 3D Laser Sensor

To map the terrain and for localization, our robot is equipped with a continuously rotating 3D laser scanner.
It consists of a Hokuyo UTM-30LX-EW 2D laser range finder (LRF) which is rotated by a Dynamixel MX-64
servo actuator to gain a 3D FoV. The scanning plane is parallel to the axis of rotation (pointing upwards)
and the heading direction of the scanner is always orthogonal to it. The 2D LRF is electrically connected

by a slip ring, allowing for continuous rotation of the sensor.

The Hokuyo LRF has an apex angle of 270° and an angular resolution of 0.25°, resulting in 1,080 distance
measurements per 2D scan, called a scan line. Due to its restricted FoV, the sensor has a blind spot of 90°.
We point the center measurement beam of the sensor 225° downwards (if 0° points upwards). Pointing the

laser downwards allows for 3D scanning the terrain in each half rotation. Additionally the laser is mounted

Ihttps://github.com/AIS-Bonn/ros_openni2_multicam
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Figure 2: Overview of our communication link. Terrestrial components are shown in yellow, components at
the destination site in red. The systems marked with the ROS logo (9 dots) run a ROS master.
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with its scan plane off the axis of rotation. In this way, the FoV close around the robot is increased, and also
occlusions by robot parts such as the WiFi antenna are reduced. The Dynamixel actuator rotates the 2D
LRF at 1Hz, resulting in 40 scan lines and 43,200 distance measurements per full rotation. Slower rotation
is possible if a higher angular resolution is desired. For our setup, a half rotation leads to a full 3D scan of

most of the environment. Hence, we can acquire 3D scans with up to 21,600 points with 2 Hz.

The 2D laser scanner has a size of 62x62x87.5mm and a weight of 210g. Together with the actuator (72 g)

and the slip ring, the total weight of the 3D scanner is approximately 400 g.

3.2 Mission Control Station

Our robot can be teleoperated from a dedicated Operator Station. The Operator Station consists of a
workstation with four monitors (see Fig. [[l). It is connected to the robot over the communication link
described in Section 3.3l The three upper monitors always show the images from the three Full-HD webcams
mounted in the sensor head. The lower monitor shows telemetry from the robot and contains controls for

teleoperation.

3.3 Communication Link

Our communication system has been designed according to the requirements of the DLR SpaceBot Cup,
which include latency and communication interruptions. It consists of a chain of four devices (see Fig. 2I):
The operator station, a network latency emulator, a lander station, and finally the robot. To ensure mobility,
the link between the lander station and the robot is implemented wirelessly, while all other elements of the

chain are connected using Fast Ethernet.

The operator station is built from a standard PC (see section B2). It offers two Ethernet interfaces—one

directly connected to the network emulator, the other one available to connect further PCs or notebooks for



L. Navigation Stack
Mission Control &

Operator RetEing RGB-D Cameras
Laser Scanner

Mission Plan Allocentric Map
] Egocentric Motion
— Waypoint - Goal Pose A Command
[Allocentnc Planner ]—> Egocentric Planner

Figure 3: General overview of our navigation stack.
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further visualization or debugging tasks.

The network emulator introduces a communication delay into the communication link. This simulates a
deep-space connection, where long distance creates latency imposed by the speed of light. Note that deep-
space connections can often still guarantee data transmission with high probabilities, as they use advanced

Forward Error Correction (FEC) codes and multiple redundant links.

The lander station contains a small form factor PC (Apple Mac mini). The decision to include processing
power at the lander station was taken to have the ability to buffer packetized telemetry at the lander station,
as will be explained below. Additionally, the lander station possesses a high-gain wireless antenna (Ubiquiti
Networks Bullet M5-HP). The robot carries a matching high-gain wireless antenna (see Fig.[I]). The wireless
communication takes place using the proprietary Ubiquiti Networks AirMax protocol, which offers better
scalability and robustness in outdoor scenarios than standard WiFi (IEEE 802.11). Note that this local

wireless link is not affected by space latency—a fact that we will exploit below.

4 Rough Terrain Navigation

To navigate in previously unknown rough terrain, the robot needs to possess advanced navigation capabilities
ranging from autonomous mapping over localization to navigation. Furthermore, the operator needs to be
able to interact with the navigation process on different levels. To facilitate this, we designed a two-layer
navigation stack (see Fig.[3) consisting of a high-level SLAM approach—including path planning—and a low-
level local navigation method. The higher, allocentric layer calculates an egocentric goal pose which is then
approached by the lower, egocentric layer. The layers run on different time scales and are highly decoupled,
even using different sensors for terrain sensing. While such a two-layer hierarchical approach is not new, we

developed efficient algorithms on both levels that allow for 3D SLAM, rough terrain traversability analysis,



and path-planning on-line.

The following sections will describe the navigation stack in more detail. Full descriptions of the allocentric and
egocentric navigation components can be found in [Schadler et al., 2014] and [Schwarz and Behnke, 2014],

respectively.

4.1 Visual Odometry

Our local navigation uses odometry to propagate waypoints specified in an ego-centric coordinate frame
while driving towards a waypoint. Accurate odometry is especially useful when the operator is manually
giving goal poses in this ego-centric frame, which can be necessary when higher levels of autonomy are not
available. Odometry is used then to shift the given local goal pose as the robot moves. Note that during
autonomous navigation, our allocentric path planner updates the ego-centric waypoint of the local planner

at higher frequency, such that accuracy in odometry becomes less important.

The odometry measured from wheel movements can be very imprecise, especially in planetary missions
with sand-like ground. Visual odometry is not affected by wheel slip and can provide accurate estimates
even on difficult terrain. Hence, we first estimate movement for each camera with fovis [Huang et al., 2011]
from gray-scale and depth images. Individual camera movement, wheel odometry and IMU data are then

combined into a fused odometry estimate.

4.2 Egocentric Navigation

Figure M gives an overview of our local navigation pipeline. The input RGB-D point clouds are projected on

a gravity-aligned plane, locally differentiated and then used as cost maps for existing navigation components.

4.2.1 Omnidirectional Height Map

For wheeled navigation on rough terrain, slopes and obstacles have to be perceived. Because we can measure
the gravity direction with the integrated IMU, we calculate a 2.5D height map of the immediate environment
which contains all information necessary for local navigation. This step greatly reduces the amount of data

to be processed and allows planning in real time.

To create an egocentric height map, the eight separate point clouds are transformed into a local coordinate

system on the robot base, which is aligned with the gravity vector measured by the IMU.
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Figure 4: Data flow of our local navigation method. Sensors are colored blue, data filtering/processing
modules yellow and navigation components in red.

The robot-centric 2.5D height map is represented as a 8x8m grid with a resolution of 5x5cm. For each
map cell H(z,y), we calculate the maximum height of the points whose projections onto the horizontal plane
lie in the map cell. If there are no points in a cell, we assign a special NaN value. The maximum is used
because small positive obstacles pose more danger to our robot than small negative obstacles. The amount of
memory used by the resulting height map is two orders of magnitude smaller than the original point clouds

of the eight cameras.

4.2.2 Drivability Assessment

An absolute height map is not meaningful for planning local paths or for avoiding obstacles. To assess
drivability, the omnidirectional height map is transformed into a height difference map. We calculate local
height differences at multiple scales I. Let Dj(z,y) be the maximum difference to the center pixel (z,y) in

a local [-window:

Di(z,y):= max |H(z,y) — H(u,v)]|.
|lu—z|<luz
lo—y|<lvy

H (u,v) values of NaN are ignored. If the center pixel H(z,y) itself is not defined, or there are no other

defined I-neighbors, we assign D;(x,y) := NaN.

Furthermore, we do not allow taking differences across camera boundaries. In cells which are visible from two
cameras, the local height differences are calculated for each camera independently and the maximum value

is used. This prevents small transformation errors between the cameras from showing up in the drivability



Figure 5: Several exemplary navigation situations. a) Wide-angle overhead camera. b) Downscaled point
cloud, color-coded according to height. The color scale is chosen in each situation to highlight the important
features. Red is high, blue/purple is low. ¢) Drivability map Dp with planned path (blue) to local goal
(red). d) Obstacle map D; for precise trajectory rollout with optimal trajectory (blue).

First row: Slightly sloped ground, one close pair of rocks. Second row: Driving backwards through the
opening between two rocks. Third row: Driving towards persons standing at the top of a large ramp.

maps as obstacles. In the relevant ranges close to the robot, this additional constraint does not reduce
information, because the camera fields of view overlap. The required precision of the camera transformation

calibration is thus greatly reduced.

Small, but sharp obstacles show up on the D; maps with lower [ scales. Larger inclines, which might be

better to avoid, can be seen on the maps with a higher [ value.

4.2.3 Local Navigation Planning

For path planning, the existing ROS solutions were employed. Our method creates custom obstacle maps

for a Dijkstra planner (navfn) and a trajectory rollout planner (base_local_planner). Both components had



to be slightly modified to allow for gradual, non-binary costs in the obstacle maps.

The Dijkstra planner is provided with a linear combination of D; maps to include information about small
obstacles as well as larger inclines. The summands are capped at a value of 0.5 to ensure that one D; map

alone cannot create an absolute obstacle of cost > 1:

D:= > min{0.5ND}
1€{1,3,6}

In addition, costs are inflated, because the Dijkstra planner treats the robot as a point and does not consider
the robot footprint. In a first step, all absolute obstacles (with a cost greater or equal 1 in any of the maps
D), are enlarged by the robot radius. A second step calculates local averages to create the effect that costs

increase gradually close to obstacles:

Dp(z,y) := max { D(z,y), Z

4.2.4 Robot Navigation Control

To determine forward driving speed and rotational speed that follow the planned trajectory and avoid
obstacles, we use the ROS trajectory rollout planner (base_local_planner). It already sums costs under the
robot polygon. As larger obstacles and general inclines are managed by the Dijkstra planner, we can simply
pass the D; map as a cost map to the trajectory planner, which will then avoid sharp, dangerous edges.

Replanning is done at least once every second to account for robot movement and novel terrain percepts.

4.3 Allocentric Mapping and Navigation

In order to accomplish navigation and exploration on an allocentric scale, a number of problems must
be solved, including environment mapping, localization, drivability assessment, and path planning. The

difficulty in these challenges increases in unconstrained 3D environments such as those encountered during



planetary exploration missions. Additionally, environment sensing hardware should be accurate, efficient,

affordable, and obey auxiliary constraints including weight and space restrictions.

To fulfill sensing hardware requirements, we use a continuously rotating laser scanner for environment percep-
tion. Multi-resolution surfel maps allow for a 3D environment and compact surface representation, efficient
data-extraction from laser scanners, and fast alignment of maps. This makes the maps particularly well
suited for our purpose, compared to other map representations that may lack one of the features such as fast
registration, for instance. We acquire maps of the environment in a stop-and-go scanning scheme (Fig. [[2]).
The 3D scans are registered to each other and aligned into a global map using graph optimization of the 3D

scaln poses.

The 6 DoF robot pose is continuously tracked while the robot is driving, based on the 2D scan lines of
the continuously rotating 3D laser scanner. From multi-resolution surfel maps, we efficiently determine

observation likelihoods of 2D scans allowing for real-time tracking of the 6D robot pose, as detailed below.

Drivability assessment is performed using an allocentric surfel map created during exploration. Due to the
structure of a surfel map, surfaces can be easily extracted and evaluated for drivability characteristics includ-
ing incline, smoothness, and neighbor continuity—resulting in a navigation graph. Using search algorithms,
we determine drivable paths in the map. An intermediate waypoint on the current path is forwarded to the
local navigation module which implements safe obstacle avoiding driving along the path. This waypoint is
determined either at a specific distance ahead the robot on the planned path (e.g., 3m), at the next pose

with high curvature on the path, or at the goal if it is closer than the intermediate waypoint distance.

4.3.1 Simultaneous Localization and Mapping

Counsistent 3D Mapping We use multi-resolution surfel maps (MRSMaps [Stiickler and Behnke, 2014])
to efficiently represent environments. Octrees are the natural data structure for multiple-resolution infor-
mation storage in 3D. Within octree voxels, both the surface shape parameters and surface reflectance
distribution are stored as a surface element (surfel). Surfels approximate points within a voxel, which are
considered normally distributed, by a sample mean and covariance. These statistical properties are stored
through all resolutions in the octree. The maximum resolution at a measured point is determined in linear
dependency of the distance of the point from the sensor. This corresponds to the decreasing sampling density
and increasing noise, which are caused by the constant angular resolution and the measurement principle of

our sensor, respectively.



Figure 6: Left: Image of the DLR SpaceBot Cup arena. Right: Perspective view on aligned 3D scans of the
DLR SpaceBot Cup arena (color codes height). Black rectangular areas occur at the scan poses at which
cubic volumes around the robot have been removed from the 3D scans.

The registration of MRSMaps is implemented in two main steps: surfel association and pose optimiza-
tion. Surfels are efficiently associated between maps from the finest resolution to coarser resolutions until

associations have been determined for the entire map.

Associations are made between surfels having the closest Euclidean distance in position and shape-texture

descriptors [Stuckler and Behnke, 2014] within the query volume. To find the registration between two

MRSMaps, we model pose optimization as finding the pose that maximizes the likelihood of observing
one map at the pose in the other map. This procedure can be efficiently implemented using Levenberg-
Marquardt’s and Newton’s method. Since this optimization method has local convergence property, we

obtain an initial guess using particle filter localization (see Sec. L3.T]).

Graph optimization is used to globally optimize the tracked pose from 3D laser scans. For each input 3D
scan, a key-view is generated and globally aligned to a reference key-view, which is generated at the start
of the mission. This alignment implies a geometric constraint between the key-views and is thus maintained
as an edge in a key-view graph. As an additional step, all key-views deemed “close” are registered against

each other to add edges to the constraint graph. The key-views are optimized in a probabilistic pose graph

using the g2o framework [Kuemmerle et al., 2011].

After each 3D scan has been converted into a local MRSMap and inserted into the key-view graph, the
updated poses of all key-views are used to create an allocentric MRSMap. This allocentric map is used
by the particle filter for matching observations. Fig. [6] shows the resulting aligned 3D scans of the DLR

SpaceBot Cup arena.

Localization The 6 DoF pose of the laser scanner between key-views in the surfel map is tracked with

a particle filter. This pose estimate is used to initialize the registration transform for the next key-view.



Compared to other filtering methods that allow for non-linear motion and measurement models such as
an Extended Kalman Filter (EKF), the particle filter allows for simple integration of a scanline-to-map
measurement model and also has the ability to solve the global localization problem for future applications.

The general idea of a particle filter is not discussed here; see [Chen, 2003] for a detailed introduction.

To compute a suitable state estimate, we model the state transition with a time-discrete linear dynamics
model. The state estimation problem is posed as the estimation of the full 6 DoF configuration of the
laser scanner. Odometry is also given as input to the propagation model with assumed Gaussian noise in
translational and rotational parts. For our rover-type robot, we project the propagated pose onto the drivable
surface. With an inertial measurement unit (IMU) given, the state propagation model also constrains pitch

and roll orientation of the robot.

The observation model of a scan line is similar to the model for 3D scan registration—a single scan line
does not contain enough information to register it to a target surfel map in 6 DoF, though. We circumvent
this issue using the particle filter and determine the likelihood of a scan line, given a particle pose x. The
observation model measures the alignment of the scan line Z = {2;}" € R® with n point measurements to

the current target map my, given a particle pose x:

n

p(Z|:Z?, mt) = Hp(2i|117, A(Zla €, mt))a

=1

A(z;, x,my) = argmin dprane(s¢, T'(x)2;), (1)

St

where A(z;,x,m;) associates the transformed measurement point Zranstormed = 1 (2)z; to the surfel within
the target map having the smallest distance dpjane between the surfel plane and the target point. We only
consider surfels for matching in a local volume around the transformed measurement point. The observation
likelihood of a measurement to a surfel is given by the distance of the measurement end-point from the surfel

plane under the normal distribution of the surfel.

p(zi|$7 A(Z“ x, mt)) = p(21|$7 St) = N(dplane(8t7 T(:E)Zu :E); 07 Esz (.’L’)),

Sex(2) = B, + R(2)Z:, R(2)", (2)

where ¥, represents the point measurement covariance in R? and dpiane (s¢, T'()z;) is defined as the distance
between the s; surfel plane and the transformed measurement 7'(z) z;. Since we use the motion model as

proposal distribution in the particle filter, the importance weight for each particle is given by its observation



likelihood.

4.3.2 Allocentric Navigation Planning

For navigation planning, we assume that the drivable surface can be projected onto a horizontal 2D rep-
resentation, i.e., there are no overhanging structures the robot needs to drive under or upon. Thus, we
choose a two-dimensional surfel grid as the data structure for drivability assessment and planning. Surface
information must be stored within the grid to allow for terrain assessment—surfels lends themselves well to

this task.

Using the allocentric localization map for planning could be prone to slight misalignment errors between
the 3D scans. To give our approach more robustness, we fuse the MRSMaps of each individual 3D scan at
a predefined resolution in the 2D grid. We overcome discretization effects by generating the MRSMaps in
a common reference frame. By iterating over all surfels in each map, we can generate a global 2D surfel
grid. Surfels within a specific distance from the origin of a scan, the ones supported by many measurements,
are integrated directly. Outside of this distance, we keep the surfel with higher mean height, if the height
difference between the surfels is larger than a threshold. Otherwise, the height difference is small and we
choose the surfel supported by the largest number of measurements. Within a 3D scan, we merge surfels

along the height direction to avoid the discretization of inclines.

We find the drivable cells in the 2D grid using region growing. We evaluate the drivable characteristics of
the current grid cell from the robot coverage region in the grid map. This region is modeled by a bounding
circle—an overestimate that neglects the effects of orientation on cost and allows for arbitrary steering. The

drivability of an individual surfel is determined from several features which we detail in the following.

Data Coverage Data coverage is modeled by the number of cells containing valid surfels divided by
the total number of cells within the region. The recommended region coverage depends on several factors
including environment properties, safety considerations, and mapping resolution. It is, however, not possible

to require a coverage of 100% due to occlusions and similar data limitations causing missing surfel data.

Bumpiness We define local bumpiness b(c) of a cell ¢ as the maximum difference between the surfel mean

height p,(c) of the cell and the mean height of all eight directly neighboring surfels n € A/(c):

b(C) = nrenj\%?c)(ﬂz (C) — Mz (TL)) (3)



Figure 7: Top: Picture sequence of grasping a water-filled cup and placing it in its holder at the DLR
SpaceBot Cup. Bottom: Grasping a battery pack, placing it in its holder, and removing it again. For both,
photographs (left) and RGB-D image segmentation with estimated grasp poses (right) are shown.

The bumpiness threshold should be set depending on the robot ground coverage, robot wheel size, and

general planning safeness required.

Incline Incline refers to the angle of a surface with reference to gravity, measured by the IMU. To determine
the incline of a cell, we aggregate the statistical data of all surfels within the robot region to model a “region
surfel”. The normal vector of this surfel is compared against the gravity vector for determining incline 4, (c).
The incline threshold should be related to the driving characteristics of the robot considering both motor

capabilities and tipping resistance.

Drivability Cost The cost of a cell C(c) is dependent upon both region bumpiness and incline. The cost
is calculated as C'(c¢) = ab,(c) + Bi,(c), where « and 8 are the weight parameters for bumpiness and incline,
respectively. Thresholding these combined cell costs offers extra safety limitations against the simultaneous

effects of bumpiness and incline.

Path Planning Cost-optimal paths are planned using the A* algorithm in the resulting 2D grid. We use

the Euclidean distance as its heuristic and consider traversion and drivability costs as edge and node costs.



5 Object Manipulation

Our Explorer robot can grasp objects and place them in its object holders (see Fig. [7). The holders are

designed for a cup filled with water and a battery as used in the DLR SpaceBot competition.

Each object requires a specific type of grasp. We use side grasps for the cup and top grasps for the battery.
The type of grasps is not only constrained by the environment and kinematics but also by the placement in

the object holders.

Our approach segments RGB-D images for the desired object using the method of [Holz et al., 2012]. We
describe the shape of each object segment by mean position, direction and length of its principal axes, and

its maximum height above the floor.

Based on the object position and orientation, we plan all possible grasps for the desired object. The planning
algorithm only considers the arm, which means that the robot base will not move for grasping the object.
If no grasp is found, the robot drives again towards the object and tries to plan a grasp again. Given the
segmented RGB-D image, we compute the two principal axes of the object and its sizes. For the calculation
of the side grasp, we compute an ellipse that fits the boundaries of the object and sample poses from the
computed ellipse every 10°. For the top grasps, we sample poses from the larger principal axis. Our objective
is that we can grasp the battery in a manner that we can carry it without dropping it, and place it in its
holder. Thus, we sample the grasp poses from a small area around the center of mass of the battery. We
use three different positions and another three different orientations which results in 9 grasps per battery
position. The orientation sampling is performed only on the pitch axis where we deviate from a pitch angle
of 90° due to arm kinematic constraints. All computed grasps are ranked according to reachability criteria
which depend on the distance and the angle between the grasp pose and the base of the arm. We discard all
grasp poses that have distance larger than the length of the arm or form an angle larger than 90°. We rank
the remaining grasp poses with respect to the similarity of the grasp pose orientation and the angle formed
between the object and the base of the arm. The top ranked grasp is the one with the smallest difference of

these two angles.

For the top-ranked grasps, we find a feasible trajectory for the robot arm. We feed the trajectory planning
algorithm with a sequence of end effector poses and the type of interpolation from one pose to the next.
The sequence of poses include a start pose, a pre-grasp pose, the grasp pose, and a final holding pose that

interfaces with a predefined placement motion of the object into its holder. For each pair of poses, we



interpolate, in 3D Cartesian space or in polar space in the XY plane, with constant acceleration for the first
half of the motion and constant deceleration for the second half. When a new pose is computed, we obtain
the corresponding values in joint-space through inverse kinematics. In order to not spill water in the cup, we
choose a slow and smooth motion, while the cup must be carried in upright orientation at all times during
the motion. Thus, we interpolate in XY plane and not in 3D Cartesian space. Besides that, the motion
does not follow any other particular velocity or acceleration constraints. In order to not spill water onto the

robot, the robot pours a small portion from full cups before placing the cup in its holder.

Once a trajectory is successfully planned, the robot performs the motion.

6 Communication

The communication link imposes constraints on all communication between the system components (see

Section B.3)). In particular:

1. The deep-space link has large latency.

2. The local planet-side communication over WiFi is unreliable.

Our approach makes the following additional assumptions:

1. The deep-space link is reasonably reliable (could be implemented by strong FEC algorithms and
multiple redundant communication links).

2. The planet-side communication has small latency.

Our software stack deals with the imposed constraints on two levels. A low-level communication module
provides network transparency for the ROS systems running on each PC. Furthermore, we designed the

high-level software to exploit the different characteristics of each communication link.

6.1 Low-Level Communication Software

Since both the operator station and the robot run the ROS infrastructure which offers built-in network
transparency, we investigated this built-in capability. In the default configuration, ROS uses the TCP
protocol for all connections over the network. This is unacceptable in our setting, since the TCP protocol

enforces a 3-way handshake for opening connections, which quickly causes high delays since the connection



may be lost and needs to be re-opened during the mission. Furthermore, TCP gives a transmission guarantee
for all data packets. This (usually desired) property is not needed for all types of data (e.g. streamed, live
camera images) and can cause the bandwidth to be exhausted with re-transmissions of data which is not

interesting, because it is too old already.

Hence, we decided to design our own communication infrastructure which hooks into ROS and provides
network transparency without the aforementioned problems. Our communication module offers send-
ing/receiving ROS topic data over TCP or UDP, and ROS service calls over TCP. Its features include
automatic rate limiting (with upper and lower bounds) and transparent BZip2 compression for large data
packets. Our solution is a so-called multimaster approach, since we use autonomous ROS instances on the

control station PC and on the robot.

The UDP protocol option is used whenever possible, since it is handshake- and connectionless and thus offers
low latency and high robustness against temporary communication blackouts. If a transmission guarantee is
needed (see Sec. [6)), we use the TCP transport. However, even in this situation our package has advantages
over the standard ROS approach, since we use a single permanent TCP connection for all communications.
This avoids delays caused by opening connections during service calls. Furthermore, we activate TCP

timeouts in the Linux kernel, which prevents hang-ups.

Note that ROS offers its own UDP protocol option (without the advanced rate-limiting and compression
features of our module). Sadly, even if it is enabled, TCP is still used for topic discovery and connection

setup, which makes the built-in ROS solution not suitable for our application.

6.2 High-Level Design Decisions

The two constraining elements in our communication link (see Fig.[2]) are the Ethernet link over the network
emulator (introducing latency) and the WiFi link between lander station and robot (unreliable). Since the

two effects of latency and unreliability occur in different sections, we can deal with them separately.

For instance, the maps generated by our SLAM component need to be displayed to the operator to increase
situational awareness. Since the maps are generated very infrequently, we want to be sure that each map
arrives at the operator station. A naive approach would be to use the TCP protocol with a direct connection
from robot to the operator station. But this solution greatly increases communication latency, since each

missing packet can only be re-transmitted after a 4s delay. Instead, we first transfer them to the lander



Figure 8: Left: Pre-mission planning on a rough height map. Right: Interactive plan refinement on an
updated height map. Red cells indicate that the height of the refined map deviates by a great amount from
the rough heightmap. This information is used by the operator to align the two maps precisely.

station using the TCP protocol, since re-transmissions of dropped packets are not expensive over the WiFi
link. The complete map is then transmitted to the operator station in a single UDP burst. This way, we

eliminate the unreliability of the WiFi link without increasing latency.

7 Mission Control Interfaces

Our system exposes three levels of control to the operating crew. On the highest level, it is possible to
specify entire missions, which the robot then carries out autonomously. The mid level allows the operator
to specify short-term tasks, such as grasping an object or navigating to a specified pose. Finally, the lowest
level can be used for direct remote control, e.g. driving the robot with a joystick. The following sections will

describe each level in more detail, starting at the highest level.

7.1 Mission Planning

Without a high grade of autonomy, it would not be possible to complete the tasks defined by the SpaceBot
Cup in acceptable time. Our mission control layer is thus able to carry out most of the tasks autonomously,

except for the manipulation at the base station, which is done by means of semi-autonomous teleoperation.

Since a rough height map (1m horizontal, 0.3 m vertical resolution) was available before the competition,
the operator can specify the initial mission tasks on this rough map (see Fig. 8 left). The displayed height
map is refined from the SLAM map that is aggregated from the robot 3D scans (see Section f31]) during

the mission. During an initial setup phase, the height map is aligned manually with the SLAM map.

The operator receives new terrain maps after each time the robot stops for mapping (see Section E3.T]).



Figure 9: Left: Motion Keyframe Editor GUI for semi-autonomous robot arm teleoperation. The real
position of the arm is indicated in true colors (black/white). The currently edited keyframe is shown in yellow.
Interactive markers can be used to modify the keyframe pose in 6D. Other keyframes of the same motion
can be seen in the lower right, rendered only as end effector positions (green) to reduce screen cluttering.
Right: The same GUI embedded in our teleoperation GUI, also showing a transmitted downsampled point
cloud in the same 3D view and images from the eight RGB-D sensors on the right.

Since the updated data may indicate that the mission plan needs to be changed, the operator can modify
the mission plan on the updated map (see Fig. B right) and upload it at any point in time to the robot.

The mission control layer then automatically aborts current tasks and immediately starts on the new plan.

If the operator judges that the robot is not able to perform the needed tasks autonomously, he or she can
pause the mission plan execution and perform the problematic task using the lower-level controls. After

deleting the task from the mission plan, autonomous mission execution can be resumed.

7.2 Semi-Autonomous Control

The mid layer consists of smaller sub-tasks, which are called either from the mission control layer or directly

by the operator.

The available manipulation tasks include variable keyframe motions either in joint-space or in Cartesian
space. To facilitate motion entry, we designed a keyframe editor GUI on top of the standard ROS rviz GUI
(see Fig[lleft). The operator can specify arm motion keyframes in the form of 6D end effector poses. End
effector velocity and joint velocity can be constrained. The interpolation between keyframes can be executed
in joint space or Cartesian end effector space. The operator can also see a downsampled RGB-D point cloud

of the robot environment to increase situation awareness (see Fig[d right).

For semi-autonomous navigation, the operator can specify goal poses relative to the robot. Using the local

navigation component (see Section [.2]), the robot navigates to the goal position while shifting it using the



visual odometry (see Section [£]). Since this mode of operation is not dependent on localization, it can be

used even if the robot is delocalized.

7.3 Direct Teleoperation Interfaces

Finally, the operator can directly control the robot drive using a connected joystick. Of course, it is not
possible to drive fast using direct teleoperation, since the communication delay limits reaction speed. For
this reason, this mode of operation is only used for small movements, e.g. when the higher-level navigation

controls fail to reach the target position.

8 Evaluation

We demonstrated our system during the DLR SpaceBot Cup 2013, which focused on exploration and mobile
manipulation in rough terrain. It simulated a planetary exploration mission with a simulated communication
link including a 2s one-way latency in both directions. In addition, we conducted systematic experiments

to evaluate the performance of our navigation and manipulation sub-systems.

8.1 Egocentric Navigation System

Fig. [Qlshows a series of drivability maps taken from a single drive on an S-shaped path through the opening
between two obstacles. The goal pose was given once and then shifted with visual odometry as the robot
approached it. The processing pipeline from eight 240x 320 RGB-D point clouds to the two drivability maps

runs in around 50 ms on the onboard computer, which has an Intel Core i7-4770K processor with 3.5 GHz.

We also evaluated our custom camera driver. The standard ROS driver is not stable enough with eight
cameras for direct comparison, so we can only provide absolute metrics for our driver. Capturing VGA
color and depth images and converting them to RGB-D point clouds at 30 Hz is possible and creates a CPU
utilization of about 40 % on the same processor. At the reduced setting of QVGA resolution and 10 Hz rate,

the CPU utilization is at 16 %.

Of course, obstacle detection is dependent on obstacle size and distance to the obstacle. The limiting factors
here are depth sensor resolution and noisiness of the depth image. To investigate this, we placed several
obstacles, shown in Fig. [[1] at varying distances to the robot on flat ground (carpet). In each situation, 120

frames of the local obstacle map D; were recorded from a static robot position. The objects have been placed



Figure 10: Lab driving experiment. The first image shows the initial situation observed from the robot
overhead camera. Subsequent drivability maps show the planned path (blue line) towards the goal (red
arrow).
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Figure 11: Obstacle detection experiment. The objects are placed at various distances on carpet in front of
the robot and the detection probabilities are estimated by comparing height differences to a threshold.

in approximately the relative angle towards the robot shown in Fig. [Tl To estimate detection probabilities,
we count the number of frames containing cells near the expected obstacle location with a difference value
higher than a pre-defined threshold. As can be seen in Fig. 1] the system can reliably detect obstacles

which pose danger to the robot up to 3.5m away.

8.2 Allocentric Navigation System

Using data collected at the DLR SpaceBot Cup 2013, results are presented illustrating the accuracy of the
SLAM system and the ability to plan trajectories spanning several 3D scans. The data was processed in
real-time using the robot on-board Intel Core i7-4770K (max 3.5 GHz) with 32 GB RAM. Localization is
performed using 250 particles. To ensure dense point clouds from 3D laser scans, we rotate the laser at
a slow speed (% Hz) when creating full 3D scans. For tracking, we wish to maximize visible space per
time period and rotate the laser at 1 Hz. Note that during the recording, persons have walked through the

arena causing spurious measurements. Shown in Fig. [G] the SpaceBot Cup arena models a rough-terrain
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Figure 12: Left: Top-view on aligned 3D scans of the DLR SpaceBot Cup arena (color codes height).
Localization estimate in blue. Right: Drivable region. Grayscale cells colored by cost. Undrivable cells
due to lack of data coverage (red), large incline (blue), large region bumpiness (green), and combined cost
(yellow). Planned path in blue.

terrestrial environment similar to those potentially visited by space exploration. Within the arena, the robot
has been controlled manually to take 14 3D scans at an average distance of 4.33 m. To more closely resemble
the open-environments in space, we have removed ceiling and wall measurements from the 3D scans before
processing. Fig. shows aligned scans, localization estimate, a planning map, and a planned path. The
3D scans align very accurately, and the localization estimate follows the actual path of the robot well. The
visible gap in the localization estimate shows the difference between the localization estimate at one of the
scan poses and its registered, graph-optimized pose. Such drift, for example, occurs through strong drift of
the wheel odometry, or if the laser scan alignment is not constrained along a direction. While localization

can slowly compensate such drift, scan alignment at the next scan pose typically removes the drift.

A typical 3D scan has about 516,000 points, for which a MRSMap is created. For pose graph optimization,
this map is registered with maps of other 3D scans. Such a map-to-map registration takes on average 0.24s
using a maximum voxel resolution of 0.125m. Building the MRSMap representation takes on average 0.49s
in this resolution. The time consumed for graph optimization itself is negligible in comparison and is in the
milliseconds for this size of graphs. Planning time is typically in the seconds and depends on the distance

between start and goal pose and the difficulty of the terrain in between.

We also evaluated the performance of our localization and SLAM system in environments such as a courtyard
and a parking garage (s. Fig. [[3)). In these experiments, we could measure ground truth distances between

the 3D scan poses and compare these relative measurements with the results of localization and pose graph
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Figure 13: SLAM experiments in a courtyard (top) and a parking garage (bottom). Left: image of the
environment. Center: aligned 3D scans. Right: Odometry (black), localization path (blue), 3D scan pose
estimates from localization (green) and pose graph optimization (red).

Table 1: Parking garage distances between 3D scans in meters.

3D Scans 0-1 12 23 34 45 56 Average Error
Ground Truth 4.20 4.94 6.53 4.45 4.54 8.54

Localization 430 5.26 6.39 4.44 4.85 9.40 0.29
SLAM 4.18 490 6.37 4.40 4.49 8.43 0.07

optimization, i.e. SLAM. From Tables [I] and 2 we see that particle filter localization provides good initial
estimates with average errors of 0.29m and 0.20m, respectively. Pose graph optimization, which utilizes
spatial constraints from several combinations of scan-to-scan registrations, yields accurate estimates in the
centimeters. Notably, average accuracy is slightly higher in the courtyard experiment. The parking garage
dataset includes occlusion situations and structures seen from two sides (e.g. the pillars) which can negatively

affect scan registration accuracy.

Compared to the rugged terrain in the DLR SpaceBot Cup arena, the surfaces in these environments appear
flatter. In MRSMaps, we adapt the maximum resolution in the map with distance from the sensor in order
to adapt the representation to the observable sampling rate. Hence, we obtain accurate scan registration

also in the case of rugged terrain as demonstrated in Fig.



Table 2: Courtyard distances between 3D scans in meters.

3D Scans 0-1 1-2 23 34 45 56 Average Error
Ground Truth 6.60 825 6.59 6.69 5.69 4.37

Localization 6.59 8.26 6.47 7.27 597 4.57 0.20
SLAM 6.58 8.18 6.55 6.66 5.67 4.35 0.03

Table 3: Planning time per motion and per grasp and planning attempts until success.

Average Median Maximum Minimum Std. deviation

Time per motion (in s) 1.693 1.813 4.602 0.005 1.246
Time per grasp (in s) 5.622 4.938 14.481 1.677 3.689
Number of attempts 3 3 6 2 2.627

8.3 Object Manipulation

To evaluate the autonomous object manipulation capabilities of our robot, we placed either object
(cup/battery) in a rectangular area in front of the robot which is confined in the forward direction in the
interval [0.45m,0.7m] and [—0.25m,0.1m] in sidewards direction. This area is defined by the workspace
of the robot and the field of view of the two frontal cameras that are used for object perception. Before

grasping, our robot drives towards the objects to bring them into this predefined area.

Grasping has been performed at 10 random positions and orientations for the battery and the cup inside
the predefined area. For each object pose, grasp pose candidates are determined and ranked. These poses
are fed to the planning algorithm which attempts to find a feasible motion in order to achieve the desired
pose. We consider the grasp successful if there is one successful planning attempt among the top-ranked

grasp pose candidates and the robot manages to pick the object as expected and lifts it.

Our evaluation results are shown in Table Bl All grasps were successful in each situation, while not all
grasp candidates yielded a valid motion plan. As shown, we need on average three planning attempts per
grasp. This can be due to a collision or to a missing inverse kinematics solution at a point of the necessary
approach motion. For each planning attempt, we need on average 1.693s, which is mainly constituted by
the computation of the inverse kinematics and the collision checking along the trajectory at our controller

sampling rate.

The amount of time per grasp depends on the number of planning attempts needed, which in turn is affected
by the position of the object within the workspace. More difficult planning situations occur close to the

border of the workspace. If the object is closer to the robot, there is high probability of collisions between



Table 4: Execution time results of teleoperated cup placement on the base station with latency of 2s.

Time (min:sec) Average Median Maximum Minimum Std. deviation
Cup removal from robot 2:21 2:24 2:39 2:10 0:11
Remote Driving 1:10 0:50 1:50 0:42 0:34
Remote Cup Placement 2:03 2:04 2:53 0:57 0:43
Complete Task 5:34 5:26 6:21 3:52 0:38

Table 5: Execution time results of teleoperated cup placement on the base station, without latency.

Time (min:sec) Average Median Maximum Minimum Std. deviation
Cup removal from robot 2:10 2:02 2:10 2:02 0:04
Remote Driving 0:32 0:33 0:40 0:23 0:08
Remote Cup Placement 1:16 1:16 1:22 1:11 0:04
Complete Task 3:48 3:47 4:00 3:39 0:08

the arm and the robot, because there is limited space between the robot and the object. Such difficult
situations are eventually resolved when the robot reattempts to position itself towards the object if a valid
grasp cannot be computed. Note that while our method requires several seconds to plan and execute a grasp,

it is 100 % successful in our experiment.

8.4 Direct Teleoperation

Our direct teleoperation interfaces allow us to remotely drive the robot and manipulate objects. Our robot
autonomously can pick up objects and place them in its holders in many situations in which the object can
be segmented from its surrounding. In difficult situations, and for installing the object at the base station

or manipulating its switch, the robot can be teleoperated.

We evaluated our teleoperation interface in experiments to measure execution time and the effect of latency
on timing. For this purpose, our trained and experienced operator removed the cup from the robot and
placed it on the base station and turned on the switch of the base station 5 times. We performed the
experiment with network latency of 2s and without network latency. The results of the above experiment

are shown in Tables [l [6] 5] and [ respectively. As expected, the robot and the operator needed more time

Table 6: Execution time results of teleoperated switch manipulation with latency of 2s.

Time (min:sec) Average Median Maximum Minimum Std. deviation
Remote Driving 0:44 0:48 0:56 0:23 0:13
Remote Manipulation 2:33 2:27 2:58 2:02 0:23
Complete Task 3:10 3:10 2:48 3:46 0:22




Table 7: Execution time results of teleoperated switch manipulation, without latency.

Time (min:sec) Average Median Maximum Minimum Std. deviation
Remote Driving 0:38 0:34 0:54 0:25 0:11
Remote Manipulation 1:23 1:16 1:37 1:14 0:11
Complete Task 2:01 2:05 2:23 1:41 0:17

with the 2s latency. All attempts were successful. For the experiment, we placed the base station in 1.5m
distance from the robot in various orientations and positions. Our operator was in a different room and he

obtained information about the environment only from the robot sensors (see Fig. [)).

8.5 Full System Performance at DLR SpaceBot Cup

During our competition run in the SpaceBot Cup, our robot for the first time had the chance to enter the
arena. First, our system created a 3D map of the environment from an initial scan taken at the starting pose.
The robot then autonomously started the execution of a predefined mission. After one of the manipulation
objects, a small cup filled with water, became visible, we took a first check-point to update the mission plan
accordingly. We teleoperated the robot in front of the object and triggered the autonomous grasping of the
object and storing in its appropriate holder. The cup was autonomously grasped and stowed on the robot
without spilling any of the contents (see Fig. [7 top left). Afterwards, we had a lengthy pause caused by a
failure of the driver of our rotating laser scanner. The autonomous execution of the mission could not be

continued and the run was aborted.

Directly after our run, we demonstrated the capabilities of our local navigation component by driving trough

the entire the arena (including a large hill) in a semi-autonomous mode with manually specified ego-centric

waypoints (see Fig. [[4).

After the end of the competition, we could enter the arena again and demonstrated autonomous grasping
of the other manipulation object (a battery) and teleoperated placement of both objects on a base station

object (see Fig. M, Fig.[I4). A video of our participation at DLR SpaceBot Cup is available online .

During the competition, we could demonstrate all components of our robot system in an integrated fashion.
Even getting the system started into the competition has turned out to be difficult for many other teams. A
robust and well tested communication link and a well designed teleoperation interface have been key to get

the robot start its competition mission. Autonomous navigation has been shown by only a few teams. Only

%https://www.youtube.com/watch?v=gHsolnIyEu0


https://www.youtube.com/watch?v=gHso1nIyEu0

Figure 14: Stills from our evaluation at the DLR SpaceBot Cup. The top row contains images from our
competition run, the other images were taken after our run.

two of the ten participating teams could demonstrate obstacle avoidance. Our omnidirectional 3D multi-
camera and laser setup gave us a large advantage in perceiving obstacles, analyzing terrain for traversability,
and path-planning. We were the only team that could demonstrate the manipulation of one of the objects.
For this, the interplay between a specific design of the manipulator and its gripper, fast object perception,
and versatile grasp and motion planning have been important. While teleoperated manipulation was not
shown by us in the competition run, we have been one of the few teams that could demonstrate this capability
on-site to the public. In future work, the situational awareness of the operator needs to be improved, e.g.,
using head-mounted and 3D display. The creation of motion plans for the virtual robot could be made more

intuitive through better user interfaces such as 3D space mice or haptic displays.

Our system was very competitive and could show many functionalities that are required by the competition.

Unfortunately, while our control station interface provides operational status of most system components, the



specific failure of the laser scanner was not displayed. This hints us to the necessity of a generic approach
to automatic failure detection and recovery in our system. The general performance of all teams at the
competition demonstrated that much more research and development needs to be invested to fully solve the

complex problem defined by the DLR SpaceBot Cup.

9 Conclusion

In this article, we presented an integrated robot system for exploration and mobile manipulation in rough
terrain. While our system can handle many parts of the mission autonomously, all aspects from direct control
to mission specification can be teleoperated through intuitive operator interfaces. Because we realized a
robust communication layer on top of ROS, our system also copes well with degraded network communication

between the robot and the operator station.

Our wheeled robot has been designed for driving in rough terrain. It is equipped with a multitude of sensors
such as a continuously rotating 3D laser scanner, an omnidirectional RGB-D camera consisting of eight
individual cameras, and three HD wide-angle cameras. Autonomous navigation in rough terrain is tackled
in a two-level approach. On the egocentric level, the robot drives to local waypoints within the view of the
omnidirectional RGB-D camera. It plans obstacle-avoiding paths, and finds smooth driving controls. This

level also supports teleoperation to select and drive to waypoints in the local surrounding of the robot.

On the allocentric level, a 3D map of the environment is built through registration and SLAM of 3D laser
scans of the environment. The robot localizes by fusing wheel odometry, IMU measurements, and visual
odometry with observations of its pose of the incrementally build environment map. Exploration missions

can be specified as a list of waypoints in a coarse environment map.

For object manipulation, the robot detects objects in front and plans feasible grasps. It executes the grasps
using parametrized trajectories, and stores them in specialized holders. Teleoperation is possible by specifying

trajectory waypoints in an external 3D visualization of the robot and its perceived environment.

The integrated system has been demonstrated at the DLR SpaceBot Cup 2013. During the official run,
the robot autonomously explored and navigated in the arena. We also conducted isolated experiments to
show the quality of our approaches. Our SLAM system is capable of building a visually accurate map of
the environment. Our local navigation approach finds smooth obstacle-avoiding paths, supported by high

frame-rate processing of the images of all eight RGB-D cameras.



In future work, we will further improve the robot design to operate in more difficult rough terrain. For
instance, a legged robot could traverse through debris fields. Also, the use of the manipulator to open
passages by moving debris, or to open doors could be investigated. A dexterous hand or a second arm
would allow the robot to perform more complex manipulation tasks such as tool-use. For improving shared
autonomy, automatic failure detection could be integrated into the system, such that the robot reports

failures and recommends a suitable semi-autonomous control mode for recovery.
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