
Vol. 6, No. 7, Special Issue: Aspect-Oriented Modeling, August 2007

Design-level Detection of Interactions in Aspect-
UML models using Alloy

Farida Mostefaoui and Julie Vachon,
DIRO, University of Montreal, Quebec, Canada

Aspect-oriented (AO) programming has emerged as a promising paradigm to improve
modularity by providing mechanisms to capture and execute crosscutting concerns in
software applications. Among others, AO allows developers to incrementally modify
the behavior of a base program, by introducing aspects which implement crosscutting
concerns having effects at various points throughout a program. Hence, despite the
clean separation of concerns in aspect-oriented systems, it remains difficult to predict
the effect of a given aspect on this base program. Once woven, does an aspect
still achieve what it was intended for? Does it violate base program properties that
should be preserved? Does it interfere with the properties of other aspects? These
questions address the well known aspect interaction problem, encountered within the
AO paradigm. This article tackles the interaction problem in the context of formal AO
system model analysis and verification. To be more precise, this work considers AO
models written in Aspect-UML (our UML profile). Aspect-UML does not depend on
any AO language specific features nor is it associated with any specific development
process. This paper first explains how Aspect-UML models can be translated into
Alloy, a simple structural first-order logic modeling language which can be formally
analyzed. Given this translation, it then demonstrates how Alloy’s model analyzer can
be used to verify aspect interactions of an Aspect-UML model.

1 INTRODUCTION

The aspect-oriented paradigm [1] allows core functionalities and crosscutting con-
cerns (i.e. aspects) composing a system to be programmed independently in separate
modules. This is possible thanks to the AO compiler that later ”weaves” aspect be-
haviors at specified join points within the base program. Although improving system
modularity, reuse and maintainability, AO still faces an important criticism (as dis-
cussed in [2]) concerning the difficulty to reason about aspect interactions once they
are woven into compiled code. In the AO community, these issues are commonly
known as the aspect-interaction problem. The introduction of new aspects can indeed
compromise the local or global integrity of the system due to undesirable interac-
tions with other aspects or with other base modules composing it. Does an aspect
still achieve what it was intended for? Does it violate base program properties that
should be preserved? Does it interfere with the properties of other aspects? In the
remainder of the paper, we shall concentrate on the detection of such undesirable
interactions (also called conflicts). To deal with aspect composition and conflict de-
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tection, we advocate an approach dealing with aspect interactions at model-level and
relying on formal verification techniques. Being model-based, our approach remains
independent from language specific features, contrarily to other solutions based on
static analysis of programs. Using formal models, we can count on a meta-model
having a well-defined semantics, a key element for automatic analysis. We consider
models which can easily be enhanced with additional declarative semantic specifica-
tions contributing to a finer analysis of aspect interactions. Most program analysis
approaches are missing this kind of information when time comes to reason about
aspect and object behavior. Compared to programs or requirement specifications,
models present a certain flexibility: they can be more or less abstract. They can
be refined and henceforth reveal conflicts which could not have been detected by a
requirement analysis (which usually offers little insights on concrete conflicts due to
design decisions).

The approach described in this paper considers the analysis of aspect interac-
tions in AO models written in Aspect-UML [3, 4]. Aspect-UML is a simple profile
extending UML with fundamental AO concepts (aspects, advices, pointcuts, joint
points and crosscutting dependencies). It also allows for formal annotations, such
as pre and post conditions, to accurately specify the behavior of sensitive elements
such as join points and advices as well as context passing at pointcuts. Thanks to
these annotations, Aspect-UML models provide additional information to analyze
aspect interactions from a semantic point of view. This work therefore goes a step
further than traditional approaches based on program static analysis by detecting
semantic conflicts between aspects. With no regards to AO language specific fea-
tures, Aspect-UML models might just as well be produced within the context of a
forward as of a backward engineering process (model extraction).

Aspect-UML models can be checked for aspect interactions. One way to auto-
mate the verification process is to translate Aspect-UML models into an Alloy spec-
ification. Alloy provides a simple specification language based on first order logic as
well as a model analysis and simulation tool [5]. An Alloy model is composed of a
set of signatures defining objects1 sets and relations over them. This model can be
further constrained by predicates and assertions. A model is an abstraction which
actually defines a set of finite model instances. Alloy implements model verification
by searching for model instances satisfying some specified property. A model can be
checked to be valid or satisfiable within model instance size constraints. Indeed, the
Alloy analyzer limits the search to model instances whose size (in terms of objects)
is inferior to some bound fixed by the user. Alloy justifies its verification approach
by putting forward the small scope hypothesis according to which counterexamples
invalidating a model tend to occur in small models instances already.

With the aim to formally verify aspect interactions in AO models, this paper pro-
poses a generic and modular approach for the translation of Aspect-UML models into
Alloy’s analyzer. Our translation takes into account not only structural elements

1Alloy is not object-oriented. Objects are similar to records. They are defined by signatures
and have no implicit identity.
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of Aspect-UML models but also the descriptive specifications of their behavior. On
the one hand, it is worth noting that, to this day, most work concerned with aspect
conflict detection is based on some static analysis of AOP source code (or of some
AOP operational notation). It however seems important to also take into account
the semantics of operations to identify the ”real conflicts” i.e. the set of interactions
which violate the desired properties of a system or its initial assumptions. This is the
spirit of our verification approach. On the other hand, achieving formal verification
of aspect interactions requires a non trivial formalization and practical solutions to
cope with tractability issues. Alloy seemed to be the most appropriate framework to
achieve this. There were already a few attempts at translating UML/OCL into Al-
loy [6, 7], but none seems yet to have come with a generic process to translate object
interactions into Alloy. In this sense, our modular and automatizable translation
of Aspect-UML (advice composition and weaving) sort of provides the milestones
of a systematic approach for the formalization and verification of object and aspect
interactions using Alloy.

To verify Aspect-UML models, we first assume that the base system and the
aspects have both been proved to be individually correct. By translating Aspect-
UML models into Alloy, our formal verification process aims to reveal two kinds of
aspect interactions problems: (1) violation of local properties: an advice or a join
point’s pre/post condition is violated due to the weaving of an aspect.; (2) violation
of a class, aspect or system invariant due to the addition of an aspect.

The organization of the paper is the following. Section 2 describes the case
study used to present our modeling and verification approach. Section 3 presents the
Aspect-UML profile, and illustrates by means of the case study, the various concepts
introduced by the profile. Section 4 gives a short overview of the Alloy language
and of its analyzer. Section 5 describes how Aspect-UML models are translated into
Alloy models. The application presented in Section 2 is used to illustrate and to show
how the translation works. Section 6 outlines the formal verification of Aspect-UML
models, using Alloy’s model analyzer, to detect conflicting interactions between
aspects in the case study. Section 7 discusses related work, whereas comments and
ideas on future work conclude this article.

2 CASE STUDY

To illustrate our approach, we use an application example describing an aspect im-
plementation of a telephony application which handles phone calls. This application
is a simple simulation of a telephony system in which customers can initiate and
drop calls. The basic system provides core functionalities to simulate customers,
devices and connections. To these basic functionalities, other services can be added,
such as the interrupting callee and the call forwarding features described below.

• The interrupting callee feature is offered to handle busy lines by simply in-
terrupting the called party. It intervenes at the beginning of a connection,
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by checking if the destination is busy, in which case the current connection is
interrupted, and the destination status is set to idle.

• The call forwarding feature allows calls addressed to a party (destination)
which is unavailable (busy) to be redirected to another telephone number
(destination). It intervenes at the beginning of a connection, by checking if
the destination is busy and if the number is in the forwarding list. If so, the
connection is re-routed to another destination specified in the forwarding list.

In an aspect implementation of this application, the interrupting callee and the
call forwarding features are both captured by aspects. At first sight, nothing let’s
think that these two aspect interfere with each other since the respective concerns
they implement seem unrelated. In fact, adding the interrupting callee and the
call forwarding aspects to the base phone service causes unexpected interactions
between the aspects and with the base phone service itself. Using this example, we
will demonstrate how our specification and verification approach can detect potential
conflicts generated by the these aspects. To be specific, the interaction problem can
be presented as follows:

Let P1, P2, P3 be properties respectively satisfied by the interrupting callee as-
pect, the call forwarding aspect and the base system: (P1)“Completing a connection
to a busy destination, causes the interruption of the current connection”; (P2)“If
the phone number of a given destination is in the forwarding list, then calls to this
destination must be forwarded consequently, if it is busy” and (P3)“Emergency calls
are never interrupted”. If no undesirable interaction occurs, P1, P2 and P3 should
still hold in the final woven system; otherwise we can conclude there is a conflict.

3 ASPECT-UML

UML [8] is a general purpose modeling notation for specifying and visualizing soft-
ware systems. It has emerged as the standard modeling language endorsed by the
Object Management Group (OMG). To fulfill modeling needs of specific domains,
UML provides extension mechanisms such as stereotypes, tagged values and con-
straints. Extensions defined to model the particular elements of a domain are gath-
ered into a UML profile.

To model AO systems at an early stage of the development life-cycle, we proposed
in [3] a UML profile called ”Aspect-UML”. This profile is a natural extension of
UML, which introduces the basic concepts of the aspect paradigm, within both class
and use case diagrams. Concerned with the verification of aspect interactions, this
profile is enhanced with formal annotations, such as pre and post conditions, to
accurately specify the behavior of sensitive elements such as join points, advices
and pointcuts [4].

Figure 1 shows how the interrupting and the forwarding requirements are inte-
grated into the UML class diagram, using Aspect-UML notation. These crosscutting
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Figure 1: Aspect-UML class diagram for the Telecom application

requirements are respectively captured by aspects Interrupting and Forwarding

which are depicted as UML classifiers decorated with stereotype � Aspect �. These
aspects crosscut the basic application through the OpComplete pointcut which is
modeled as a special interface accordingly stereotyped. A � crosscuts � depen-
dency relationship is then used to related the pointcut to the join points it denotes.

The OpComplete pointcut interface contains an abstract operation named opCom-

plete(c:Connection) to be executed when one of its join points is reached. Both
the Interrupting and the Forwarding aspects implements the OpComplete point-
cut interface and thus each provide a corresponding advice to implement it.

Each advice extending a pointcut interface will be triggered at all join points
designated by the pointcut. In this case, OpComplete is composed of a single join
point, that is the complete method of the Connection class. A realization rela-
tionship relates each aspect to the pointcuts it implements. As for advices, they are
annotated with either one of the stereotypes � before �, � after � or � around �2,
depending on whether they must be executed before, after or in place of the join
points referenced by the pointcut.

Aspect-UML models are to be enhanced with annotations and constraints which
formally specify the semantics of model fragments such as join points, advices and
pointcuts. The semantics of these elements is required to later achieve the verifi-
cation of aspect interactions. Aspect-UML constraints are specified directly on the
class diagram using UML notes (shown as rectangles with down-right corner bent

2To simplify the presentation of the translation in Alloy, the around advice will not be considered
in the sequel.
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over on Figure 1). Alternatively, these constraints can be listed in some independent
text file. These are briefly covered below, for more detail refer to [4].

• Specification of join points and advices. Join points and advices are
both associated to operations. The behavior of these operations is specified
declaratively using pre and post conditions (e.g., see the annotation attached to
the complete operation in class Connection on Figure 1). These specifications
are given the following frame semantics: any thing which does not appear in
the pre or post conditions of an operation is assumed to remain unchanged
while it is executing.

• Specification of pointcuts. Aspect-orientation allow advices to take on the
contextual data captured by join points. Pointcuts are used, among other, to
expose the context of join points and pass it over to advices. This context typi-
cally contains the identity of the object invoked by the method called/executed
at the join point and the actual parameters of this method call. A pointcut
specification defines how the execution context is passed from join points to
related advices. Aspect-UML proposes a simple notation for pointcut spec-
ifications (e.g., see the annotation attached to the OpComplete pointcut on
Figure 1).

• Precedence constraints. If several aspects crosscut a base model at the
same join point and offer advices of the same type (i.e. before or after),
the developer can clear up execution ordering ambiguities between advices
by defining a precedence relationship between the conflicting aspects and by
specifying it on the class diagram. A priority annotation Interrupting <
Forwarding could have been added to disambiguate the execution order of
these two aspects. We will later see the impact of this omission on aspect
interactions.

4 OVERVIEW OF ALLOY

Alloy [5, 9] is a structural modeling language, based on first-order logic and designed
for the specification of object models through graphical and textual structures. It
is based on ideas inspired from Z [10] and the many attempts to formalize object
modeling3.

To introduce the reader to the Alloy specification language, let’s consider a sim-
ple example taken from [11]. This example serves as a means for illustrating the
standard features of the language and their associated syntax. Suppose we want to
specify a simple address book for an email client that maintains a mapping from
names to addresses. To start, we define the sets of atoms that we will be using
for denoting names and addresses. In Alloy, such sets of atoms are defined using
signatures as shown below:

3Alloy is not object-oriented but simulates some O-O concepts using abstract data types.
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sig Name, Addr {}

A basic type is implicitly associated to each declared signature and can thus
be used in other declarations. With type for name and addresses elements, we can
now specify what constitutes an address book. Since an address book constitutes a
mapping from names to addresses, we introduce a Book signature containing a field
addr linking names to addresses.

sig Book {addr: Name-> lone Addr}

In fact, addr is a ternary relation associating books, names, and addresses, such
that (B, N, A) ∈ addr means that, according to addr, book B links name N to
address A. The expression b.addr denotes the mapping from names to addresses
for book b. The keyword lone in the declaration indicates the relation multiplicity:
in this case, each name is mapped to at most one address.

Moreover, Alloy allows the definition of sub-signatures as extensions of already
defined basic signatures. Sub-signatures define subtypes (which are also basic types),
that can in turn be extended. As specified in the definition below, BookWithSpamAlert
is a subset of Book. In fact, BookWithSpamAlert is a special kind of address book,
in which a subset of addresses are recognized as spams.

sig BookWithSpamAlert extends Book{spams: set Addr}

Relations defined by signatures can be constrained using facts. In Alloy a fact
is a constraint that is assumed to always hold. For example, the following fact can
be added to force any book that contains two identical addresses to map them over
the same names.

fact {all b: Book | all r,r’: Addr | r=r’ => b.addr.r=b.addr.r’}

We have shown so far how the structure of data domains can be specified in Alloy.
As for operations, they are usually modeled using predicates and functions, which
can themselves be seen as relations over defined signatures. As an example, let’s
consider defining two new operations: one for adding a new address to an address
book; and another one to look up a name in an address book.

pred add(b,b’:Book, n: Name, a: Addr){b’.addr = b.addr + n -> a}
fun lookup(b: Book, n: Name): set Addr {(b.addr).n}
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The first operation is a predicate with four parameters respectively denoting the
state of the book before adding the address, the state of this book just after, the
name and the address to be added to the book. This predicate is true if it satisfies
the constraint composing its body. In this example, the body of the predicate is
a constraint that says the address mapping in the new book must be equal to the
address mapping in the old book, with the addition of a link relating the new name
to the new address. As for the lookup operation, it is written as a function rather
than a predicate: its body is an expression, and says that the result of a lookup is
whatever set of addresses the name n maps to under the addr mapping of b.

More than a specification language, Alloy provides an analyzer which can, among
other things, check the validity of assertions over a model, modulo the size of model
instances being considered. An assertion is a constraint that is intended to be valid:
it must be true for all model instances within some specified scope. For example,
the following assertion says that adding an entry for a name n should not affect the
lookup result of other names n′ 6= n:

assert addLocal {b,b’:Book, n,n’: Name, a: Addr |
add(b,b’,n,a) && n!=n’ => lookup(b,n’) = lookup(b’,n’)}

To check if a model satisfies an assertion, the analyzer requires the user to specify
upper bounds on the number of objects of each signature which can be contained in
a model instance. This therefore entails the search through model instances to be
finite.

Simple and flexible, Alloy quickly appeared to be a suitable tool to achieve some
of our immediate goals concerning the formal verification of aspect interactions in
Aspect-UML models.

5 TRANSLATION OF ASPECT-UML MODELS INTO ALLOY

Since aspect interactions are to be analyzed using Alloy, each Aspect-UML model
must be translated into an Alloy specification. Aspect-UML semantics has formerly
been defined in terms of Petri Nets[4, 12]. The Petri net marking graph of an
Aspect-UML model is a simple state machine that can be simulated and analyzed
within Alloy. This section explains how the translation to Alloy can be done.

A classic solution. It is worth noting that Alloy has no fixed idiom to describe
state machines, although many examples proved the relevance of some modeling ap-
proaches for this task. One usual technique consists in describing states as signatures
and transitions as predicates (i.e. constraints) over states.

• In Aspect-UML, a system state is given by the set of states of individual
objects. Classes (set of objects with attributes) can be modeled by Alloy
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signatures (i.e. set of atoms with fields). The state of an object is therefore
obtained by consulting field values in the corresponding signature.

• As for transitions, they are described by a predicate (i.e. constraints) relating
source states to target states. Two states are related if and only the predicate
is true.

This approach would pose no problem if Alloy’s signature fields were mutable
and could be assigned different values in function of time, like it is the case for
attributes in imperative languages. But Alloy’s signature fields can only denote
a single value within a given model (like variables in mathematics). To simulate
some sort of multiple assignment, we simply modify the type of fields, thus forcing
them to denote traces of relational values over time. To do this, we append a Time
signature to each signature field type. A field f with type A → B therefore becomes
a dynamic relation of type A → B → Time matching ”A”-values to a ”B”-values
over time. As explained later, we introduce Time as a signature defining a set of
ordered atoms.

An elegant solution. The above modeling strategy might not be the most flex-
ible, neither the most elegant with regard to genericity. Trying to build a generic
translation template for advice composition, we encountered one of Alloy’s limita-
tion concerning high-order relations. Alloy only allows the definition of flat relations
(relations that don’t contain relations). This was sort of an inconvenient for us. To
model the weaving of two or more Aspect-UML advices at a single join point, we
thought of generalizing the composition of two advices by defining a compose Adv\3
predicate. This predicate would have been parameterized by two advices (modeled
as relations satisfying some given predicate) to be composed, and would have con-
strained its third parameter to be the sequential composition of the first two. Yet,
to avoid defining a predicate such as compose Adv\3 for each relational type associ-
ated to an advice, we wished compose Adv\3 could be defined to accept parameters
of any relational type. Of course, there is no such universal relational type within
Alloy. On the other hand, if we agree to define a predicate compose Adv\3 for each
relational type, the analyzer might encountered tractability problems. Consider-
ing such a predicate is parameterized three n-ary relations typed over s signatures
bounded by m atoms, verifying the satisfiability of this predicate may require the
SAT solver to explore up to ((m ∗ s)n)

3
states.

Considering these drawbacks, we propose to adopt a modeling approach which
will lead us to some elegant and nicely generalized Alloy solution. The Alloy transla-
tion model will treat Aspect-UML methods/advices as first class citizens and allow
their easy composition by the definition of generalized constraints. In other words,
this means that methods/advices will be reified into Alloy constrained signatures,
rather than being translated into predicates. The solution we propose is inspired
by a case study found in [11] which itself has its source in McCarthy’s situation
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calculus [13]. The idea consists in translating each method/advice into a signa-
ture extending some abstract signature (called Operation) denoting the set of all
method/advice operations. Each concrete signature extending Operation is to pro-
vide individual fields representing the method/advice’s specific arguments and target
object. Pre and post conditions are to be described by facts constraining respective
concrete signatures. Advice compositions at join points will be represented by sig-
nature Composition declared as an extension of Operation. General composition
rules are to be expressed as facts over the Composition signature. These rules shall
therefore apply to all advice compositions, no matter what is the type of the advices
being composed. Since all advice compositions are atoms grouped under a common
Composition type, we evacuate the need for a universal relational type within Alloy.

The sequel of this section presents the details of Aspect-UML’s translation into
Alloy. Examples coming from our telephony case study are used to illustrate how
the translation works. In short, the translation proceeds in three main steps. First,
structural elements (classes, aspects, data types) of an Aspect-UML model are trans-
lated into Alloy. The second step is concerned with the translation of Aspect-UML
behavioral specifications (pre and post conditions associated to methods/advices,
context passing rules defined by pointcuts). The third step takes up the transla-
tion of the weaving process. It is in way concerned with connecting behaviors to
structures. It consists of two sub-stages: a) the composition of individual advices
executing at the same join point, 2) the effective weaving of advice compositions at
respective join points.

Translation of Aspect-UML structural elements

An Aspect-UML model typically gathers a set of structural elements composed of
classes, aspects, enumerations and primitive data types. These elements are defining
sets either of objects or of data values. Each one can be naturally translated into an
Alloy signature. Aspect-UML’s primitive type integer is however an exception. It
is directly mapped onto Alloy’s predefined int data type. Alloy provides a certain
number (although limited) of arithmetic and comparison operators which can be
used for the translation of Aspect-UML expressions containing integer values. The
translation of the other Aspect-UML structural elements is explained below.

Translation of enumerations and primitive data types. An Aspect-UML
enumeration data type E composed of a set of literals l1, l2, ..., ln is translated into
an Alloy abstract signature E extended by the respective singleton signatures li
created for each literal. In our case study, an enumeration type called Status is
provided to qualify the actual state of a connection. Its Alloy translation is the
following signature:

abstract sig Status {}
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one sig connected, disconnected extends Status{}

Aspect-UML’s primitive types such as Booleans, Real, Date, etc. must be
translated as if they were enumeration types. Function operating over these types
must be explicitly translated into Alloy functions. Indeed, Alloy does not provide
any other primitive data type than int. It does not even have a boolean type
(see [11] for explanations). Alloy nevertheless offers a module containing a signature
for boolean atoms, as well as a collection of functions simulating boolean operators.

Translation of classes and aspects. From a data perspective, Aspect-UML
classes can be seen as sets of objects sharing a common collection of attribute dec-
larations. The same thing can be said about aspects with the little difference that
they are singletons. A class C (resp. an aspect A) can reasonably be translated
into an Alloy signature C (resp. A) containing a field fi with type C → Fi (resp.
A → Fi) for each attribute fi : Fi, 1 ≤ i ≤ n declared in C (resp. A).

Methods/advices are not translated into fields of a class/aspect signature. As
briefly explained above, we rather reify them as atoms belonging to an abstract
Operation signature. Yet, this is not altogether satisfactory. As we know, Alloy is
a declarative language used to specify what a system do, rather than how it does it
(like imperative languages would do). Intermediate states are not naturally taken
into account by Alloy which only provides non mutable fields. We need to overcome
this limitation to specify how advices are composed and what are their intermediate
effects on object states. To achieve this, each field declaration (denoting a class
attribute likely to evolve) is extended with a Time signature, as it is shown in the
following example.

open util/ordering[Time] as timeorder
sig Time {}

sig Connection {
status: Status one -> Time,
origin: Device,
destination: Device-> Time}

Attributes appearing in pre and post conditions of methods/advices are typically
identified as the ones likely to evolve. These attributes, translated into signature
fields, are ended by the Time signature. This is what we observe in the Alloy
translation of the Connection class above. As specified by pre and post-conditions,
connections can change status (e.g., change from disconnected to connected) as well
as be transferred to a new destination. Both status and destination field types
are therefore augmented with Time. Before the addition of Time, c.status denoted
a single Status atom. It now becomes a relation while c.status.t denotes the
status of connection c at time t. The Time dimension allows signature fields to keep
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trace of object attribute values at different times of an execution. Type Time is
simply an ordered set of atoms. The ordering is managed by the parameterized
module ordering provided by Alloy.

Translation of Aspect-UML behavioral specifications

The behavior of a particular Aspect-UML model is specified by annotations describ-
ing the respective pre and post conditions that methods/advices must satisfy. Some
behavioral information is also given by the context passing constraints annotating
pointcuts.

Translation of advices and methods used as join points. Not all meth-
ods/advices declared in an Aspect-UML model need to be translated into Alloy.
Methods which do not represent join points can be discarded, as well as advices
which do not implement a pointcut. We also assume that method calls appearing in
pre and post conditions are discarded and replaced by equivalent expressions con-
taining attribute consultation and predefined functions only. Methods and advices
related to a pointcut are the only operations which need to be translated into Alloy
since they are the sole ones concerned by our aspect interaction analysis.

According to our modeling strategy, each method and advice is translated into
a signature extending an abstract signature called Operation defined as follows:

abstract sig Operation { begin, end: Time}

The Operation signature has two fields respectively used to record the beginning
and ending time of an operation. The information is later used to sequentialize
operations and to identify the effect of an operation on object states during some
time interval. Given a method myOp(f1 : t1, ..., fn : tn), a concrete signature myOp
is created which extends Operation. The myOp signature must also declare 1) a
target field to record the object being invoked and 2) an additional field fi of type
ti for each of its parameters. An atom from signature myOp represents a specific
invocation of method myOp.

Being reified into signatures (rather than translated into predicates), meth-
ods/advices can be managed uniformly within Alloy. They can be used in field,
predicate and function declarations. Some operations can be defined as extensions
of others and therefore reuse, for example, the arguments factored out by a parent
operation.

Since playing distinct roles in the weaving process, operations representing ad-
vices need to be distinguished from methods used as join points. This distinction is
realized by the declaration of subtypes Advice and JP.
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abstract sig JP, Advice extends Operation{error: Boolean}
fact indivisible {all op: JP+Advice | op.end = op.begin.next}

Although denoting disjoint sets, JP and Advice both gather operation instances
involved in a weaving process which may or not result in a valid composition. To
track potential composition errors, JP and Advice introduces a field error that is set
to true when such an error is detected. The Alloy model must also assume Aspect-
UML advices and join points to be atomic operations having a unitary duration. A
fact named indivisible is added to specify these behavioral constraints.

Facts applying to abstract signatures JP, Advices and Operation introduce
the generic constraints that any join point or advice must respect. The specific
behavior of an operation still needs to be specified. Aspect-UML suggests to do
this by means of pre and post conditions. Aspect-UML pre and post conditions rely
on a subset of OCL’s formulas which can be translated into Alloy constraints quite
straightforwardly4. Our translation is similar to the ones proposed in [14, 7, 6]. One
must only be careful when translating access to an attribute. Accessing an attribute
a of an object o at a time t requires consulting signature field o.a and navigating
through this relation to find o.a.t i.e. the value of the attribute at time t. Taken
from our case study, here is an example of a join point specification translated into
Alloy.

sig Complete extends JP {self: Connection }
{ (self.status.begin = disconnected) //precondition
=> (self.status.end = connected) && //postconditions

(self.origin.d_status.end = busy) &&
(self.destination.end.d_status.end = busy) &&
(self.origin.current.end = self) &&
(self.destination.end.current.end = self) &&
(error = False)

else (error = True) } //error

The join point described by signature Complete implicitly satisfies the generic
constraints imposed to all JP atoms, while together satisfying the specific pre and
post conditions introduced in the Complete signature fact. This join point has a
single parameter self representing the connection targeted by the method call. To
achieve a complete operation (line 7), a connection must a priori be disconnected
(line 1) otherwise an error is signaled (line 8). At the end of its execution, the
complete operation must leave the connection in a connected state (line 2), have
marked the destination or origin devices as busy (lines 3-4), have linked origin and
destination devices to the actual connection denoted by self(lines 5-6). The time
values respectively associated to the before and after states of the connection are
compelled to matched the begin and end field values of the Complete operation.

4We do not claim nor expect translating the whole OCL into Alloy.
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Adding time to signature fields compels us to reason with dynamic domains. Not
only do we need to specify what each operation changes in a system (using pre and
post conditions), but we must also explicitly specify all the signature fields that it
does not modify. This might be tedious if the number of unchanged fields is impor-
tant for each operation. This matter is known as the frame problem. Fortunately,
it can be solved without needing to explicitly state all the conditions that must
not change with regard to each operation. A more succinct approach consists in
adding explanation closure axioms [15] to assert which operations are likely to have
modified some given field. In the case of Aspect-UML models, it comes to adding
facts stating things such as ”if a field f has changed, then some advice or join point
e happened”. Following this approach, a new fact called unchanged is added to our
translation model, thus solving the frame problem succinctly and modularly.

fact unchanged { all t: Time - last | let t’= t.next |
some e: JP + Advice {
((current.t=current.t’) || (e in Complete && e.error = False)) &&
((status.t=status.t’ && d_status.t=d_status.t’) ||
(e in Complete + OpCompleteInterrupting && e.error=False)) &&

((interruptedC.t = interruptedC.t’) ||
(e in OpCompleteInterrupting && e.error = False)) &&

((destination.t = destination.t’) ||
(e in OpCompleteForwarding && e.error = False))}}

Translation of context passing constraints. In Aspect-UML, a pointcut is a
sort of abstraction used to expose the context of a certain number of join points
under a common interface. An aspect is said to implement a pointcut if it provides
an advice of the right type to be executed either before or after one of the pointcut’s
join points. An advice crosscutting a join point must be able to access the context in
which the join point is executed. Pointcuts are used to pass the context of join points
(i.e. its actual parameters) to advices in some generic way. In Aspect-UML models,
each pointcut is annotated with a set of mapping rules specifying how to relate join
points arguments to advice parameters. The Alloy translation of pointcuts therefore
consists in creating a predicate passCtxt(p : JP ) enforcing the mapping of p’s actual
parameters over the arguments of each crosscutting advice a.

For example, in the Telecom application, a passCtxt(p:JP) predicate is created
which, among others, forces context passing from join point Complete to crosscutting
advices OpCompleteInterrupting and OpCompleteForwarding.

pred passCtxt( p:PJ ) {
(p in Complete => (Complete.self = OpCompleteInterrupting.c)&&

(Complete.self = OpCompleteForwarding.c))
(p in Drop => ... ) ... }
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Translation of advice composition and weaving

To model and analyze aspect interactions, the Alloy translation must show how
aspects are composed together and how they are woven to the base model. As we did
previously for join points and advices, we use abstract signature constrained by facts
to specify composition and weaving operations. Alloy’s non-recursive functions and
flat relations would not have been an appropriate choices to deal with the recursive
composition of advices. This approach allows us to define a modular translation
which avoid suffering from some of Alloy’s limitations.

Composition of advices. According to the aspect paradigm, when a join point is
reached during an execution, one or many advices may have been declared to execute
at this point. Conflicts can arise if two or more advices require to execute exactly
at the same time (i.e. either all before, or all after the join point). Aspect-UML
allows developers to define a precedence relation between aspects. This relation can
be used to solve out conflicts and therefore justify the sequential composition of
two conflicting aspects. If no ordering is imposed, conflicting aspects can execute in
any order. They are composed into a non deterministic sequence of advices. Each
collection of before/after conflicting advices will therefore give rise to a composition
of advices to be executed respectively before or after corresponding join points. The
composition of advices is naturally defined as a recursive operation. Alloy does not
allow recursion inside predicates and functions, but it does accept recursive relations.
Taking advantage of this, we reify the composition operation into an Alloy abstract
signature Composition extending the Operation signature previously defined. This
Composition signature introduces two new recursive relations: comp1 maps the
composition on either an advice or composition, while comp2 relates it to another
composition. In short, a composition is either an advice or a pair of compositions.

abstract sig Composition extends Operation{}
{comp1: Composition + Advice, comp2: lone Composition}

As mentioned above, we need to distinguish sequential compositions from non-
deterministic sequential ones. This is achieved by defining two sub-signatures Seq-
Composition, NDComposition extending Composition. The particular behavior of
each kind of compositions is specified by a signature fact that constrains the be-
ginning and ending time of the composition itself and of its nested components.
Figure 2 schematizes the internal coordination constraints that each kind of compo-
sitions must satisfy.

In Alloy, the two kinds of compositions are straightforwardly modeled by the sig-
natures shown below. These signatures include facts entailing internal coordination
constraints. Let’s remark the use of predicate lte (”less than or equal”) to ensure
the end of an operation precedes the beginning of the next one. Forcing equality
would have allowed no possibility for later interleaving.
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Figure 2: Coordination constraints for SeqComposition and NDComposition

abstract sig SeqComposition extends Composition{}
fact seqComposition {all s: SeqComposition |

(s.begin= s.comp1.begin) &&
(no s.comp2 => s.end = s.comp1.end

else (s.end = s.comp2.end &&
timeorder/lte(s.comp1.end, s.comp2.begin) ) }

abstract sig NDComposition extends Composition{}
fact nonDeterministicComposition {all nd:NDComposition |

no nd.comp2 => (nd.begin = nd.comp1.begin && nd.end= nd.comp1.end)
else ((nd.begin = nd.comp1.begin &&

nd.end = nd.comp2.end &&
timeorder/lte(nd.comp1.end, nd.comp2.begin) )
||
(nd.begin= nd.comp2.begin &&
nd.end = nd.comp1.end &&
timeorder/lte(nd.comp2.end = nd.comp1.begin)) ) }

Given those signatures, conflicting sets of advices can now easily be translated
into Alloy. Let Conflbef≺ be a set of conflicting before advices partially ordered
by a precedence relation ≺. Let a≺1 , a≺2 , ..., a≺n be the list of ordered advices5 from
Conflbef≺ such that for each i = 1..n, a≺i is translated into an Alloy signature ads

i

extending Advice. Similarly, let a 6≺1 , a6≺2 , ..., a 6≺n be the list of unordered6 advices from
Conflbef≺ such that for each j = 1..m, a 6≺j is translated into an Alloy signature adnd

j

extending Advice.

The translation of the composition of advices in Conflbef≺ consists of:

1. creating a collection of signatures seq1, ...seqn extending SeqComposition;

5i.e. a≺i ≺ a≺i+1 for each i = 1, ..n− 1,
6i.e. ∀j ∈ {1...m}.∀a ∈ Conflbef

≺ . ((a6≺j 6≺ a) and (a 6≺ a6≺j ))
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2. creating a collection nd1, ...ndm extending NDComposition;

3. adding facts to constrain seqi, 1 ≤ i ≤ n and ndj, 1 ≤ j ≤ m signatures to
behave as if composed in a structure having the following shape:

nd1(adnd
1 , nd2(adnd

2 , ..., ndn(adnd
m , seq1(ads

1, seq2(ads
2, ..., seqn(ads

n, ∅)...)))...)))

For this, each signature seqi, i = 1..n− 1 is added the constraint seqi.comp1 =
ads

i && seqi.comp2 = seq(i+1). Since it ends the sequence, signature seqn is
constrained by seqn.comp1 = ads

n && (no seqn.comp2).

Similarly, each signature ndj, j = 1..m−1 is added the constraint ndj.comp1 =
adnd

j && ndj.comp2 = nd(j+1). To link the non-deterministic composition of

Conflbef≺ to its sequential composition, we simply need to constrain signature
ndm by ndm.comp1 = adnd

m && ndm.comp2 = seq1.

Accordingly, nd1 denotes the composition of all advices in Conflbef≺ . Facts con-
straining NDComposition and SeqComposition ensure nd1 to denote all the possible
interleaving of advices in Conflbef≺ with respect to precedence relation ≺.

In the Telecom application the signature shown below describes the non deter-
ministic composition of the two advices OpCompleteInterrupting and OpComplete-

Forwarding. (We eliminated the empty set at the end of the composition.) It is
worth remarking that the sequential composition of these two advices would differ
from the one given below (for the non-deterministic sequence) only by removing the
name of the extended class NDComposition and changing it to SeqComposition.

sig Compos extends NDComposition
fact compos {all s:Compos| s.comp1= OpCompleteInterrupting &&

s.comp2=OpCompleteForwarding }

Weaving

Once composed, advices need to be weaved at join points. Following the same reifi-
cation approach, we defined a signature Weaving extending Operation to describe
the weaving of advices at a given join point. The weaving process requires three
parameters which we record in the signature’s fields: the join point (jp: one JP)
and the two advice compositions to be woven respectively before and after this join
point (beforeAdvice, afterAdvice : lone Composition).

abstract sig Weaving extends Operation{}
{jp: one JP, beforeAdvice, afterAdvice: lone Composition}
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fact mustWeave {all w:Weaving |
(w.beforeAdvice!=none || w.afterAdvice!=none) }

fact weavingBefore {all w:Weaving |
w.afterAdvice =none => (w.begin=w.beforeAdvice.begin &&
w.end=w.jp.end && w.beforeAdvice.end=w.jp.begin)}

fact weavingAfter {all w:Weaving |
w.beforeAdvice =none => (w.begin=w.jp.begin &&
w.end=w.afterAdvice.end && w.jp.end=w.afterAdvice.begin) }

fact WeavingBeforeAfter {all w:Weaving |
(w.beforeAdvice !=none && w.afterAdvice !=none )=>
(w.begin=w.beforeAdvice.begin && w.end=w.afterAdvice.end &&
w.beforeAdvice.end=w.jp.begin && w.jp.end=w.afterAdvice.begin)}

The Weaving signature is constrained by fact mustWeave to have at least one
advice composition to weave (either before or after the join point). The following
facts (weavingBefore, weavingAfter, weavingBeforeAfter) describe the three
possible executions of a weaving: weaving an advice composition 1) before the join
point, 2) after, or 3) both. These facts coordinates the sequential execution of the
before advice composition (if need arises) followed by the join point operation and the
after advice composition (if need arises). Again, coordination between operations
is possible thanks to the begin and end fields of supertype Operation.

Coming back to our case study, the weaving of the advice composition Compos at
join point Complete is defined by the following signature. A fact is added to specify
the actual parameters of the weaving operation and the context passing constraints
for the join point.

sig WeavingBeforeComplete extends Weaving {}
fact weavingBeforeComplete { all w:WeavingBeforeComplete |

(w.jp= Complete) && passCtxt(w.jp)
&& (w.beforeAdvice=Compos) && (w.afterAdvice=none)}

Each join point in the Aspect-UML model of the Telecom application is to
be tackled the same way as join point Complete. The translation of each join
point implies 1) composing advices reusing abstract signatures SeqComposition

and NDComposition, and 2) weaving advice compositions at the join point reusing
the Weaving signature.

6 VERIFICATION

Our verification approach, for the detection of aspect interactions, lies within the
scope of Model-Based Verification ”MBV”. MBV aims to provide systematic means
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for finding errors in software requirements, designs or code [16]. It relies on the use of
mathematical formalism and models, as well as on a disciplined and logical analysis
practice. Following the MBV spirit, our verification approach requires the creation
of a formal system behavioral model to be analyzed against formal representations
of expected properties. Figure 3 shows the verification process of aspect-oriented
systems using Aspect-UML as design notation and Alloy as formal analysis tool.
The Aspect-UML model to analyze can as well be the result of a forward or of a
backward engineering process.

Figure 3: Aspect interaction detection process in Aspect-UML models

Assuming the base system and the aspects are both individually correct, the
formal verification process focuses on the discovery of errors due to aspect interac-
tions (either with the base program or with other aspects). Aspect-UML allows us
to define formal micromodels of AO systems, therefore capturing the essence of the
weaving mechanism, without having to take into account the whole set of system
requirements or design decisions. Solely retaining critical parts of a system (join
points, advices and weaving specifications), we can focus on the verification of as-
pect integration within the base system as well as on interactions between aspects.
More precisely, this verification aims to reveal important interference problems such
as:

1. Violation of local properties. Operations within the system (such as meth-
ods/join points and advices) are locally specified by means of pre and post condi-
tions. Aspect weaving can cause the violation of the base program properties at join
points or the violation of other advices also executing at these join points; an advice
specification can also be violated by the base program itself.

2. Violation of global properties. This category includes the violation of a
system invariants, following the introduction of new aspects.

Alloy analysis of Aspect-UML models

The Alloy analyzer is a tool, based on algorithms of SAT solvers, for analyzing small
model instances. Alloy’s model analysis relies on a fundamental premise called

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 155



DESIGN-LEVEL DETECTION OF INTERACTIONS IN ASPECT-UML MODELS USING ALLOY

the small scope hypothesis [11]. It states that negative answers tend to occur in
small model instances already. Absence of errors in small instances can thus boost
one’s confidence in the effective correctness of the model. Indeed, most flaws in
models can be observed in small instances, since they arise from some shape being
handled incorrectly. Whether the shape belongs to a large or small instance makes
no difference. When using Alloy analyzer, the recommended strategy consists in
starting with a small scope analysis and to increase it gradually until a fault is
found or until a satisfying approximation is reached.

Alloy supports two kinds of automatic analysis: simulation and checking. The
first one is used to demonstrate the consistency of a given predicate: a state of the
model is generated that satisfies this predicate. The second one is used to prove
the validity of assertions by attempting to generate a counterexample. All analysis
are carried within some user-defined bounded scope that limits the size of model
instances being explored. When the Alloy analyzer finds a counterexample the
assertion is necessarily false (violated), otherwise no conclusion can be drawn about
its validity.

Once Aspect-UML models are translated into Alloy, the analysis of aspect in-
teractions is carried by the means of assertions. Assertions are constraints intended
to be valid i.e. true for all the models instances. All there is to do is to formulate
the desired properties to be verified by the woven (final) system as assertions and
to run the Alloy analyzer over each of them. In each case, Alloy will try to find a
counterexample invalidating the assertion i.e. proving that at least one instance of
the model does not satisfy the set of specified constraints. Local property verifica-
tion of Aspect-UML models is not carried out the same way as the global property
verification. According to the kind of properties (local vs global) being verified, the
assertion to be checked will be formulated following one of two patterns, as explained
below.

Verification of local properties. At a given join point, it is possible that an
aspect advice interferes with the base system or the other aspects by violating their
pre/post conditions. Considering the verification of aspect interactions at a given
join point, we must formulate an assertion which 1) takes into account all the sig-
natures describing the weaving at this join point; 2) takes into account the initial
hypothesis advocating the correctness of the base system and of individual aspects;
3) specifies the final conditions that must be satisfied by the woven system; and 4) en-
sures that no error has been encountered during the composition and the weaving
processes. The pattern used to describe such an assertion is the following:

assert localVerifAtJP {all w: WeavingAtJP |
initialCondAtJP[w] => finalCondAtJP[w] && noErrorAtJP[]}

pred initialCondAtJP(w:WeavingAtJP){//specification of initial hypotheses
about the base system and about the aspects, before the weaving at JP}
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pred finalCondATJP(w:WeavingAtJP){//specification of final conditions at JP,
after the weaving}

pred noErrorAtJP(){//indication that no error happened during the
weaving of advices at JP, ie. operations executed correctly}

This pattern indicates that for any weaving operation at a given join point JP ,
if initial conditions hold before the weaving, then final conditions must hold after
the weaving, and the method (join point) together with the advices must also ex-
ecute correctly. If a counterexample is found by the Alloy analyzer while checking
this assertion, this means that the Aspect-UML model has some aspect interaction
problem at join point JP .

For example, in the Telecom application, to verify that aspects Interrupting

and Forwarding are interacting correctly at join point Complete (i.e. they don’t vi-
olate the specification of the base system nor do they interfere with the specification
of the other aspect), the Alloy analyzer is given the following assertion to check:

assert localVerifAtComplete {all w: WeavingAtComplete |
initialCondAtComplete[w]=> finalCondAtComplete[w]&& noErrorAtComplete[]}

pred initialCondAtComplete(w:WeavingAtComplete){ let t0=w.begin |
Complete.self.status.t0= disconnected &&
OpCompleteInterrupting.c.destination.t0.d status.t0= busy &&
OpCompleteForwarding.c.destination.t0.d status.t0= busy &&
OpCompleteForwarding.c.destination.t0.num in (Forwarding.forwardList.To)}

pred finalCondAtComplete(w:WeavingAtComplete){ let t=w.end |
(Complete.self.status.t= connected)&&
(Complete.self.origin.d_status.t=busy)&&
(Complete.self.destination.t.d_status.t=busy)&&
(Complete.self.origin.current.t= self)&&
(Complete.self.destination.t.current.t= self)}

pred noErrorAtComplete() {Complete.error= False &&
OpCompleteForwarding.error= False &&
OpCompleteInterrupting.error=False}

check localVerifAtComplete for 3 but 6 Operation, 4 Time, 1 Complete,
1 OpCompleteInterrupting, 1 OpCompleteForwarding

When verifying join point Complete, we assume the initial hypothesis to be
correct, that is to say the base system and the aspects are individually correct at
the join point Complete. These hypothesis are those imposed by the pre-conditions
defined in the Telecom Aspect-UML model (figure 1). Under these assumptions, the
Alloy analyzer is asked to check that the final conditions at the join point (which
are the post conditions of the join point) hold, and that the operations have been
executed without errors.
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It is worth recalling that Alloy’s assertion checking command requires the defi-
nition of a scope bounding the number of elements in each signature. The scope of
signatures is sometimes easy to determine. For example, in the above assertion, it
is clear that at least six elements Operation (defining the join point, the advices,
the composition and the weaving) are needed, while at least four Time atoms are
required to coordinate the woven execution of join point Complete with advices
OpCompleteInterrupting and OpCompleteForwarding. Of course, only one ele-
ment Complete is needed to specify the join point. Similarly, only one element from
each advice signature is needed.

Figure 4:
Counterexample for localVerifAtComplete

When analyzing the above assertion, the Alloy analyzer found a scenario violating
the assertion. Alloy returned the counterexample shown by Figure 4 (due to lack
of space, only the relevant part of the counterexample is shown here). It clearly
shows that an error occurred during the execution of the OpCompeteForwarding

advice (error = True), while the other operations (OpCompleteInterrupting and
Complete) executed correctly. The error could correspond to the following concrete
scenario:

- Mrs Apple forwarded her message to work.
- Alice is on the phone while she babysits at Mrs Apple’s house.
- Alice answers a second phone call while talking to her friend.
- In the meantime, Peter tries to call Mrs Apple but unexpectedly gets no connection.

Indeed, initially, at state Time0, the destination (Device0) is busy, and its
phone number is in the forwarding list. However, at state Time2, the call is not
forwarded (the destination is still Device0) as we would have expected given the
presence of the OpCompleteForwarding advice. The reason is that, executed first,
the OpCompleteInterrupting advice sets the Device0 to idle (at time Time1),
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thus violating the pre-conditions of OpCompleteForwarding. Alloy indeed identi-
fied a counterexample illustrating a possible conflict between aspects Forwarding

and Interrupting.

Verification of global properties System invariants can easily be added to
the Alloy specification of an Aspect-UML model. Invariants are specified using
predicates. In the Telecom application, two significant invariants can be expressed:

• Emergency calls are never interrupted.

• For any given connection, the origin and the destination are different.

These invariants can be specified by the following predicates:

pred EmergencyNotInterrupted(t:Time){all c:Connection |
(c.destination.t.num=emergencyNum || c.origin.num=emergencyNum)

=> (c.status.t != interrupted)}

pred OriginDestDiff(t:Time){all c:Connection |(c.origin != c.destination.t)}

Considering the verification of system invariants, we must formulate an assertion
which, for each invariant and for each join point, 1) takes into account all the
signatures describing the weaving at the join point; 2) assumes the invariant to
initially hold (in the first state); 3) assumes the join point and the woven advices
to execute without errors; 4) ensures that the invariant holds over all the states
(mapped to Time) of the weaving. The pattern used to define such an assertion is
the following:

assert verifInvariant { all w: WeavingAtJP |
Invariant(w.begin) && noError() => all t: Time | Invariant[t]}

pred Invariant(t:Time){//specifies the invariant to verify}
pred noError(){//indicates that the operations executed correctly}

In the Telecom application, the following assertions were given to the Alloy
analyzer to verify the EmergencyNotInterrupted and OriginDestDiff invariants.

assert verifEmergencyNotInterrupted{ all w: WeavingAtComplte |
EmergencyNotInterrupted(w.begin) && noErrorAtComplete()

=> all t: Time | EmergencyNotInterrupted[t]}

assert verifOriginDestDiff{ all w: WeavingAtComplte |
OriginDestDiff(w.begin) && noErrorAtComplete()

=> all t: Time | OriginDestDiff(t) }
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When these assertions were checked by the Alloy analyzer, counterexamples were
actually found. The first counterexample describes a scenario which we can imagine
as being the following:

- Bob’s call to Alice suddently interrupts Mary’s current connection to the 911.

This counterexample violates the first assertion. Alloy discovers a scenario in
which connection (Connection1), to be completed, has a destination (Device0) al-
ready busy. The current connection of device (Device0) is (Connection0) and its
phone number corresponds to an emergency number. So when the current connec-
tion (Connection0) is interrupted by the execution of OpCompleteInterrupting,
the violation of the first invariant occurs.

The second counterexample found by Alloy relates a case which we can imagine
as follows:

- Bob forwarded his phone calls to his parents for the week-end.
- He forgot to disable the feature when he tried to call Alice once back home.

This counterexample violates the second assertion. The invariant is violated
following the execution of OpCompleteForwarding. Since it has a busy destination
(Device0), connection (Connection1) is forwarded to another destination (Device1)
which is the connection’s origin, yet violating the second invariant.

7 RELATED WORK

Research work related to our project can be resumed under the four following themes.

Aspect-oriented modeling. Considerable research has been done in the area of
Aspect Oriented Modeling to clarify and formalize the main concepts of the AO
paradigm. Most proposals [17, 18] suggest the use of extension mechanisms of UML
for the modeling of AO concepts. Our modeling notation also relies on UML ex-
tensions using stereotypes, but yet stands out by its representation of pointcuts.
Aspect-UML considers pointcuts as a special kind of interfaces. This conceptual
decision proves (1) to provide a better modularization of Aspect-UML models, and
(2) to facilitate the identification of aspect interactions in Aspect-UML class di-
agrams (conflicting aspects implementing a common pointcut interface are easily
spotted). Aspect-UML also distinguishes itself from other profiles by providing an-
notations for the behavioral specification of pointcuts, join points and advices. Al-
though the idea of using semantic annotations in AO models is not totally new [19],
it seems that actual proposals for such annotations have not really been further
developed, neither have they been used to improve AO model verification.

Aspect interactions analysis based on operational specifications. Once
woven, aspect can of course interact with the base program, but may also interfere
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with other aspects executing at the same join point. This is a well-known prob-
lem which many researchers have tried to solve. To date, most work addressed
the problem by tackling the analysis of system source code or some more abstract
operational specification of it. Propositions described in [20, 21, 22, 23] all resort
to static analysis to identify observer aspects within AO programs. Source code is
analyzed to detect if an aspect is indeed an Observer, that is, checking that it can
never modify the state of a system. This kind of syntactic analysis serves proving
interference-freedom, but most often remains non conclusive when aspects are not
observers. Authors in [24] also present a framework to identify interacting advices
from operational specification (rather than source code). Join points are identified
by evaluating similarities in the crosscut specifications of aspects. As for previous
approaches, conflict detection remains a syntactic matter consisting of identifying
shared join points and access to shared variables. Yet, some research is done to im-
prove current static analysis of source code and thus ameliorate both the efficiency
and the accuracy of aspect interaction detection. This is the case of authors in [25]
applying program slicing techniques to identify the precise part of a program af-
fected by a given aspect. All in all, these approaches remain limited with regards to
the partial set of conflicting interactions they can detect and the many false positive
they can’t reject. As long as the semantics of advices and join points is not consid-
ered, semantic conflicts resulting from a violation of individual aspects’ properties
will not be detected by such approaches. Aspect-UML is actually an attempt to
take up this challenge by taking into account the descriptive specification (pre and
post conditions) of advices and join points.

Aspect interactions analysis based on descriptive specifications. Descrip-
tive specification try to describe the properties of a system rather than how it
actually behaves. It can therefore be used to specify which properties advices and
join points are expected to verify for all executions. The semantics of aspects and
of base program operations can therefore be considered. Properties are specified by
means of mathematical formulas which naturally endows them with a precise syn-
tax and semantics. Formal approaches such as model-checking and theorem proving
can be used to verify such specifications. Although less abundantly addressed, the
formal verification of aspect-oriented models is yet the subject of quite a few work.
Among other, authors in [26] present an approach to verify the properties of sys-
tems composed of multiple crosscutting concerns. Concerns are modeled as sets
of concurrent processes specified by labeled transition systems. Concerns can be
composed by means of merge and override operators. Properties of the composed
system are verified using the LTSA model checker. The work in [27] also applies
model-checking techniques. This project aims at encouraging the reuse of generic
aspects to specify collections of aspects which they call superimpositions. They also
define validation aspects denoting initial assumptions about the base program and
the generic aspects. A prototype tool is presented which uses Bandera [28] to con-
struct a model-checker input from a Java program. Verification annotations are kept
separate from the basic program assumption using two different superimpositions.
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To verify an extended AO system, the verification process can reuse previous su-
perimpositions, but must run the model-checker over the whole system again. It
seems that practical restrictions of the model-checker being used are ignored. On
the contrary, our verification approach with Aspect-UML actually intends to avoid
such scalability problems by providing some support for modular verification.

Authors in [29] use model-checking to modularly verify aspect advices. Invari-
ants, assumed to hold over the original base system, are checked to also hold over
aspects added to the system. Verifying a newly added aspect does not require to
run the verification over the entire system. The solution proposed however seems a
little simplistic since it neglects considering the possible side effects (e.g., disabling a
functionality) that overriding aspects may have on the basic system. In [30], authors
suggest an assume-guarantee structure to achieve modular and generic verification
of AO systems. The proposed prototype verifies that for any base state machine
satisfying the assumptions of a given aspect, the woven state machine is guaranteed
to satisfy the desired properties. A single generic state machine is constructed from
an aspect’s assumption (i.e. the pointcut descriptor and the advice state machine)
and is verified for the desired property. Then, when a particular base program is to
be woven with the aspect, it suffices to establish that its base state machine satisfies
the assumption. Concerned about verifying the reusability of aspects over multiple
base programs, this work unfortunately does not deal with the problem of conflicting
aspects. Yet, it is a major issue that Aspect-UML addresses by formalizing not only
the weaving process but also the composition of conflicting advices at join points.

Translation of UML-like models into Alloy. Alloy has been used for quite a
few verification projects. Among them, some were concerned with verifying UML
models augmented with OCL annotations. In [7], authors propose a translation
from UML/OCL to Alloy. The translation deals with class diagram constrained by
OCL invariants. Unfortunately, nothing is said about the translation of more subtle
dynamic properties, such as pre and post conditions, which require relating states
with time. Based on MDA, the transformation tool presented in [6] goes a step
further. The tool does indeed translate OCL methods’ pre and post conditions into
Alloy constraints. But still, it does not explain how to specify their sequential or
parallel execution in Alloy. The task of defining MDA transformation for behavioral
aspects of systems is put off with future work.

Alloy was also used in [31] to verify if a given invariant is satisfied before and after
each model transformation, thus describing aspect weaving as role merging. Again,
this approach is limited to invariant verification, and does not address the translation
of origin models into Alloy. Compared to existing approaches (and other short
examples found in the literature), our translation of Aspect-UML models into Alloy
offers an appreciable amount of insights into how to proceed. It provides a systematic
approach to object/aspect oriented model translation into Alloy. Moreover, it covers
the translation of both structural and behavioral properties of objects as well as the
translation of their dynamics. This task was a key step in achieving the formal
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verification of Aspect-UML interactions using Alloy.

8 CONCLUSION

This paper showed how Aspect-UML models are translated into Alloy to further be
formally verified. The verification aims at revealing possible semantic conflict that
may occur between two aspects or between an aspect and the base system. Alloy
analyzer is somehow used to solve the set of constraints resulting from the compo-
sition and the weaving of advices at join points in Aspect-UML models. Of course,
one may fear the use of automatic verification tools given the well-known state ex-
plosion problem. We intend to evolve our verification approach with scalability in
mind and with solution to cope with state explosion. By limiting the verification to
the critical ”weaving” parts of the system, our approach already confines the verifi-
cation to a subset of the system states. Compositional verification and proof reuse
are also being considered to reduce larger proof obligations. The use of Alloy in our
methodology also favors incremental checking of large systems: by bounding the size
and the number of model instances being explored, partial verification results may
still be obtained even for very large systems.
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vérification de la composition dans les systèmes par aspects. RSTI - L’Objet,
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