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Abstract—In this paper, we analyze collision resistance of the ~ Merkle-Damgrd Transform: Let
JH hash function in the ideal primitive model. The JH hash

function is one of the five SHA-3 candidates accepted for the . o i
final round of evaluation. The JH hash function uses a mode of pad : {0,1}* — [ J{0,1}
operation based on a permutation, while its security has been i=1

elusive even in the random permutation model. L . . . .
One can find a collision for the JH compression function only P& an injective padding. With this padding scheme and a

with two backward queries to the basing primitive. However, the predetermined constadt” € {0, 1}2", the Merkle-Damgud
security is significantly enhanced in iteration. Forc < n/2, we transformproduces a variable-input-length functid D|[F :
prove that the JH hash function using an idealn-bit permutation {0,1}* — {0 1}2n from a fixed-input-length functiorF" :
and producing c-bit outputs by truncation is collision resistant {0,1)2" x {0,1}™ — {0,1)2". For M € {0,1}* such that

up to O(2¢/?) queries. )
P @) q |pad(M)| = lm, M D[F]|(M) is computed as follows.
Index Terms—hash function, collision resistance.

Function M D[F|(M)

ul[0] — IV

_ i ) . Breakpad(M) = M[1]||...||M]l + 1] into m-bit blocks
As many hash functions, including those most common in ¢4, ; . | tg +1do

practical applications, have startgd to exhi.bit serious security uli] — Fuli — 1], M[i])
weaknesses [2]-[9], the US National Institute for Standards
and Technology (NIST) has opened a public competition to
develop a new cryptographic hash function. Currently, the Collision ResistanceWe review the definition of collision
final candidates to replace SHA-2 has been announced, whi€histancen the information-theoretic modeGiven a function
are BLAKE, Grgstl, JH, Keccak and Skein. In this paped/ = H[P] and an information-theoretic adversa# both

we analyze collision resistance for the JH hash function With oracle access to an ideal primitive, the collision

the ideal primitive model. ThelH compression functiofis resistance off/ against.A is estimated by the following
illustrated in Fig. 1, wherer is a certain permutation. The €xperiment.

JH hash functionis obtained by feeding the compression
function to the Merkle-Damayd transform [10]. The only

known result for the security of the JH hash function is A updatesQ by making oracle queries t®

its indifferentiability from a random oracle guaranteed up to if 3 M # M’ andu s.t.u = Hgo(M) = Ho(M') then

I. INTRODUCTION

return [l + 1]

Experiment Exp%

2n/6 query complexity [1]. This translates into the collision output1
resistance of the JH hash function uRtg® query complexity, else
which is far from optimal. output0

Even if 7 is a truly random function, one can find a collisionrpig experiment records every query-response pair that
for the JH compression function only with two backwar@ptains by oracle queries into guery historyQ. We write
queries to the basing primitive. In this paper, however, we _ Ho(M) if Q contains all the query-response pairs
show that the security is significantly enhanced in iteratiope.quired to compute = H(M). At the end of the experiment,
For ¢ < n/2, we prove that the JH hash function using4 would like to find two distinct evaluations yielding a

an ideal n-bit permutation and producing-bit outputs by cojjision. Thecollision-finding advantagef A is defined to

truncation is collision resistant up t0(2¢/2) queries. This pe
bou_nq |mpI|<_es that the JH hash function prqwdes the optimal Adv‘ﬁ'(A) — Pr [Expfj{' _ 1} '
collision resistance in the random permutation model.

1. PRELIMINARIES The probability is taken over the random choice Bfand
A’s coins (if any). Forg > 0, we defineAdv$? (q) as the
maximum of Adv$y (A) over all adversariesd making at

General Notation:For two bitstringse andy, z||y denotes :
mostgq queries.

the concatenation of and y. Given z € {0,1}" for an
even integem, z; and xr denote 3-bit strings such that
r=2xzrl|rg. [1l. DESCRIPTION OF THEJH HASH FUNCTION
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follows. birthday bound. The next step is to show that the probability
of collision is small without the occurrence Btol,,. We begin

F {01} x {0,132 — {0,1}" with the following proposition.
(0,2) — v, Proposition 1: Without the occurrence dtcol;, |U;| < i+1
fori=0,...,q.
where Proof: Note thatU, = {IV'}. If |U;| > i+ 1 for some
v=m(ud(2)|0)) ® (0]|2). i=1,...,q, then a certain query, say theth query, would

produce two distinct orderly reachable nodes, gsagnd w’'.

The pictorial representation is given in Fig. 1. In this case, we have two paths

Forc < n/2, let chop, : {0,1}" — {0,1}° be the function
that chops off theén — c) leftmost bits of its input string, i.e., PLoIV 1] 2 S s~ 1) Bw
chop,.(z) = x5 if x = x1||zs for somez; € {0,1}" ¢ and
23 € {0,1}¢. Then thec-bit JH hash functioris defined by and , . ,
JH, = chop, o M D[F]. In the original submissiom = 1024 Po: IV 2ol B S ot — 1] 2 o
and'c < {224’256’.384.’5.12.}' . o . ._where the labels are strictly increasing and

Since the padding is injective, we can simplify our collision
analysis by assuming that the domain of the JH hash function Js=Ji =17 <.
is U;2,{0,1}™/2 (and ignore the padding scheme). In theince w #w' andj, = jl = j < i, u[s — 1] andv[t — 1] are
following section, we will prove collision resistance for the Js = Je=J =0

JH hash functi L ideal rand tati distinct orderly reachable nodes iy such thatchop,. (u[s —
ash fnction asstiming1s an ideal random permuta |on.1D = chop,(v[t—1]). This contradicts the condition efRcol,.

v

[ ]
L TR Proposition 2: Suppose that an adversatd makes ¢
queries to a random permutatienand its inverser—!. For
uw, —AD v N =2"/? andg < N,
/A
q(g+1)
“r T2 D ' Pr{Reol,] < 2N —1)
Proof: Since
Fig. 1. JH compression function. 9
Pr [Reoly] < Z Pr [Reol; A =Rcol;_1]
=1
q
IV. COLLISION RESISTANCE OF THEJH HASH FUNCTION < ZPr [Reol;|~Reol; 1] L
Suppose that an information-theoretic adversaryadap- i
tively makesg forward or backward queries to an ideal randorn,vhere Reoly = (), we will focus on the estimation of
permutat|on7r,' and records a query histog = {(=",y") € Pr[Rcol;|-Rcol;_1] fori =1,...,q. Note thatl/;_, contains
{0,1}" 1 1 <i < ¢j. Heren(a") =y and A's i-th query is 5 most; nodes without the occurrence of evetol;_; by
either (%) or 7= 1(y?) for 1 <i < q. Proposition 1.

We define a direct g.rapﬁ on {0,1}™ where a direct edge Suppose thatd makes a forward queryr(z}||z%) =
from u to v labeledi is added tog when thei-th query- (, 1,.). Since there are at most one orderly reachable node
response paifz*, y*) determines an evaluatiofi[z](u, 2) = v, ¢ {7, such thatup = %, the ith query determines at
for somez € {0,1}"/2. We will denote such an edge by most one orderly reachable node= (y.||(ur & 2% & ygr)).
v. We note that each querny(zr||lzr) = (yr|lyr) generates The probability thatu;, & 2% @ yr = wg for somew € U;_,
27/2 edges from((z1, & 2)|lzr) to (y.||(yr © 2)) wherez € s at mostiN/(N? — ¢). When A makes a backward query

{0,132, 71y |lys) = (zLl|zr), the probability thatrp = wp for
Definition 1: w € {0,1}" is called anorderly reachable somew € U;_; is also at mosiN/(N? — ¢). Therefore we
nodeif there exists a direct path conclude that
i i (. it N
IV a1 2 St — 1] 5, Pr [Reol;|-Reol;_1] < N; ,
—4q

such thati; <ip < ... <i;—1 <1i;. By convention,/V is an gnq by (1),
orderly reachable node. . '

Fori=1,...,q, letU; be the set of orderly reachable nodes Pr[Reol,] < iN q(g+1) _
determined by the first queries, and leRcol; be the event “=
that U; contains a collision in the right-half bits. That is,

Reol; : there existu, v € U; such thatu # v andugr = vg. Let Coll denote the event thad makes a collision ofiH...

) ) i This event guarantees existence of two paths
Now our security proof consists of two steps. The first step

is to prove that the probability oRcol, is small up to the P1: IV (= u[0]) 4, u[1] Byt uls — 1] s



and c) EventCs A —Rcol,: The probability that
Py IV(=o[0]) 2 o[1] B - 75!yt — 1] L5 up T B yr = ol

such thatchop,(w) = chop.(w’). We can assume that thisfor some;j < i* is at most(i* — 1)N/(N? — q).
collision is anearliest-possibleone such thai, # j;.

If both w andw’ are orderly reachable nodes (with the aboveo summarize, we have
paths) and* = i, > j; (without loss of generality), then we

3 q .
would have th? following configuration. Pr (\/ Ck) A ﬁRqu] < N;\i Z (22]27 +14(i— 1)>
1) Ci:u % w whereu € U;_; and chop,(w) = k=1 173

chop_.(w') for somew’ € U;_;. (N > N q(g+1)
If one of w andw’ is not an orderly reachable node, assuming N (QC + N2 —gq 2
w is not an orderly reachable node without loss of generality, N q(g+1)
let i* = i, be the first index in pat®; such thati, > iq 1. = N—1  92¢
Then,u = u[a — 1] is an orderly reachable node @;-_;. -

Starting from this node, we have one of the following tw%y Propositions 2 and 3, and inequality (2), we have the
local configurations. following theorem.

2) Ciu K, Z—> u”, whereu € Ui« _1. Theorem 1:For thec-bit JH hash function/H.,

3) C3:u ' Lo’ whereu € Uiy andj < i*. ol qlg+1)
To summarize, we have Adviy () < Qc—1

AdvSy) (A) = Pr[Coll] < Pr

3
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a) EventC; A =Rcol,: The probability that

chop, (y.||(u}, & 1, @ yr)) = chop,(w')
for a fixedw’ € U;«_; is at most2"—¢/(N? — q). Since
|U;-_1| < i*, the probability that thé*-th query complete§,
without the occurrence of eveRtol, is at most*2"~¢/(N2—
b) EventC; A —Rcol,: The probability that
up ® T SYr = Tg

is at mostV/(N? — gq).



