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Abstract—Structure learning is a key problem in using
Bayesian networks for data mining tasks but its computation
complexity increases dramatically with the number of features
in the dataset. Thus, it is computationally intractable to extend
structure learning to large networks without using a scalable
parallel approach. This work explores computation primitives
to parallelize the first phase of Cheng et al.’s (Artificial
Intelligence, 137(1-2):43-90, 2002) Bayesian network structure
learning algorithm. The proposed primitives are highly suitable
for multithreading architectures. Firstly, we propose a wait-
free table construction primitive for building potential tables
from the training data in parallel. Notably, this primitive
allows multiple cores to update a potential table simultaneously
without appealing to any lock operation, allowing all cores
to be fully utilized. Secondly, the marginalization primitive is
proposed to enable efficient statistics tests to be performed on
all pairs of variables in the learning algorithm. These primitives
are quantitatively evaluated on a 32-core platform and the
experiment results show 23.5× speedup compared to a single
thread implementation.

I. INTRODUCTION

Bayesian Networks are a class of probabilistic graphical
models, which encodes the relationship among interacting
random variables in a domain as a directed acyclic graph
(DAG) [19]. Bayesian Networks have been applied ex-
tensively to model causal relationships under uncertainty
in various fields such as bioinformatics, finance, medical
diagnosis and signal processing.

One of the key problems in Bayesian networks is structure
learning: given training data where each record consists of
a set of observations of the random variables, the objective
is to learn a DAG which best describes the probability
distribution underlying the training data. The computation
complexity of structure learning algorithms increase dramat-
ically with the number of variables in the dataset and thus
parallel implementations of such algorithms are valuable.
This work explores the concept of parallel algorithm prim-
itives for Bayesian network structure learning and presents
a detailed design for two such primitives and which can be
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used as components in a scalable parallel structure learning
implementation.

The first primitive, wait-free table construction, is used for
converting the training data into a potential table in parallel.
We have developed a table representation based on a set
of distributed hash tables. We show that this representation
both improves space efficiency and also facilitates parallel
marginalization of the potential table. We have developed
a novel lock-free and wait-free data structure to enable
multiple processor cores to access and modify this table
representation. Note that in a naïve implementation, where
each processor core is in charge of a disjoint subset of the
training data, conflicts can be incurred while updating the
potential table and can lead to a race condition. Though
locks can be employed to prevent such conditions, lock-
based solutions introduce waiting among processor cores and
leave some cores idle, which reduces the speedup achievable
from multi-core processor implementations. Our wait-free
primitive addresses this challenge by a two-stage procedure,
where all cores can update the potential table simultaneously
in both stages, and only one synchronization step is needed
between the two stages.

The second primitive implements marginalization of the
potential table in parallel. This primitive uses data paral-
lelism; each core accesses only a disjoint subset of the po-
tential table during runtime. This approach helps in avoiding
cache misses in a multi-core implementation.

These primitives are used to implement the first phase
of Cheng et al.’s constraint satisfaction-based approach to
Bayesian network structure learning [4]. This algorithm is
one of the most commonly used approaches for structure
learning. While the efficiency of their algorithm was shown
for networks with a relatively small number of nodes, it is in-
tractable to extend this algorithm to networks with hundreds
of nodes without a scalable parallel implementation. To the
best of our knowledge, our work is the first which leverages
multi-core processors to parallelize constraint satisfaction-
based approaches to Bayesian network structure learning.

We quantitatively evaluate these primitives using simu-
lated training data on a 32-core AMD system. The evaluation
results indicate that the proposed primitives are scalable



on such a system. We also compare our approach with
a hashtable-based implementation using Intel’s Threading
Building Blocks (Intel TBB) [2]. Our approach presents
consistent improvement over the Intel TBB method with
different sizes of input data. The wait-free operation of the
table construction primitive ensures that the speedup from
using multiple cores is linear with the number of used cores.

In summary, we make the following contributions in this
paper:

• We propose a wait-free table construction primitive to
build potential tables from training data. This primi-
tive divides table construction into two stages and all
cores can update the potential table simultaneously. The
computational complexity of this primitive is O

(
m×n
P

)
,

where m is the number of samples, n is the number of
random variables, and P is the number of cores.

• We propose the parallel marginalization primitive to
facilitate statistics tests on all pairs of variables. Using
data parallelism, each core accesses only a disjoint
subset of the potential. The computational complexity
of this primitive is also O

(
m×n
P

)
.

• The primitives are quantitatively evaluated on a 32-
core processor platform, and the results demonstrate
23.5× speedup. Notably, compared to a hashtable-
based implementation using Intel TBB, our wait-free
table construction primitive shows consistent improve-
ment and higher scalability with the number of used
cores.

The rest of this paper is organized as follows: In Sec-
tion II, a brief introduction to Bayesian networks structure
learning is presented. In Section III, the related work is
discussed. In Section IV, the proposed approach and analysis
are shown. Experiment results are presented in Section V.
In Section VI, we conclude this paper.

II. BACKGROUND

A. Overview of Bayesian Network

A probability distribution function over a set of random
variables offers a quantitative measure for the likelihood
of event occurrences and represents the (in)dependence
between the random variables. Given the underlying prob-
ability distribution f , the conditional (in)dependence rela-
tionship can be encoded compactly in a Bayesian network.
Formally, the Bayesian network is a directed acyclic graph
G where the nodes represent random variables and the
edges represent the (in)dependence relationships. To be more
specific, the relationships are interpreted with the language
of active paths and d-separation. Let X, Y and Z be three
sets of nodes in the Bayesian network. When the influence
can flow between X and Y via Z, the path X ⇔ Z ⇔ Y
is active1. If there is no active path between X ∈ X and

1Due to the limited space, the criteria for paths to be active are not
present in this paper. Interested readers are directed to [13].
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Figure 1: In order to encode the independence assertion
where, given X2, X1 and X3 are independent, the infor-
mation flow between X1 and X3 should be separated by
X2. The graphs G1, G2 and G3 all encode the same set of
assertions and probability distribution.

Y ∈ Y given Z, X and Y are independent given Z.
Before we formally define the relationship between the

Bayesian network G and underlying probability distribution
f , we present an example to illustrate the concept. Assume
that a distribution function f (x1, x2, x3) is factorized as
f (x1, x2, x3) = f (x1) f (x2|x1) f (x3|x2) which implies
that X1 and X3 are independent given X2. Following the
procedure in [13], we can encode the independence assertion
into Bayesian networks, as shown in Figure 1. Note that the
set of independence assertions can be encoded by different
Bayesian network representations; the graphs G1, G2 and
G3 in Figure 1 state the identical independent assertion,
forming an I-equivalence class [13]. The relationship be-
tween the Bayesian network G and underlying probability
distribution f is formally defined below [19], [13].

Definition 1. A Bayesian network G is a dependence map
(D-map) of a distribution f if every dependence relationship
derived from G holds for f . On the other hand, G is
an independence map (I-map) of f if every independence
relationship derived from G is true in f . Furthermore, if G
is both a D-map and I-map of f , G is termed as a perfect
map (P-map) of f .

However, the underlying probability distribution is not al-
ways accessible in advance. Thus, it is not feasible to derive
(in)dependence assertions from probability distributions and
impose them on a Bayesian network. In the next subsection,
we introduce Bayesian network structure learning, which
constructs graphs directly from training data (instead of from
an explicit probability distribution).

B. Overview of Bayesian Network Structure Learning

The training data for structure learning is a set of observa-
tions of the random variables. A Bayesian network structure
learning algorithm computes a DAG given a training data set



that best fits the training data. The data set is represented as
an m×n matrix D, where m denotes the number of samples,
n denotes the number of random variables, and Di denotes
the i-th row of D (i.e., the i-th observation), i = 1, 2, ...,m.
Since Di = {si1, si2, ..., sin} is an enumeration of the states
of the random variables in this observation, it is also called
a state string. For a random variable Xj , the value rj refers
to the number of states it can take (j ∈ {1, 2, ..., n}). For a
concise notation, we assume in this paper that all the random
variables have the same number of states, i.e., the number of
states for all random variables can be denoted by r. However,
the techniques developed in this paper can be applied to
varying number of states.

C. An Information-theoretic Approach

Cheng et al.’s [4] algorithm for Bayesian network struc-
ture learning is divided into three phases, drafting, thickening
and thinning. In the first phase, drafting, an approximate
network is derived by computing a statistics test of influence
of all pairs of random variables. Essentially, this phase
serves as a pre-processing step to yield a set of candidate
edges. The first phase of the algorithm requires that the
training data be mapped into a potential table representing
the joint probability distribution. Statistics tests on all pairs
of variables are computed after probability marginalization
on this potential table. The algorithm uses mutual informa-
tion as the statistics test to evaluate the influence between
variables and determine the existence of edges. Mutual
information is evaluated on a pair of random variables and
if the value is greater than a pre-defined threshold, the two
random variables are considered to be dependent and an
edge could possibly exist between them. In the second phase,
edges are added to the network (thickening) by inspecting
the conditional mutual information. In the third phase, the
intermediate network is trimmed by removing redundant
edges (thinning) to produce the final Bayesian network. This
algorithm requires O(n4) statistics tests to learn an n-feature
Bayesian network.

The mutual dependence of two random variables (i.e.,
two nodes in the Bayesian network) is evaluated with
mutual information. This quantity can be considered as the
reduction in the uncertainty of one random variable with the
knowledge of the other [8].

Definition 2. The mutual information of random variables
X and Y is

I(X;Y ) =
∑

(X,Y )

[
P (x, y) log

P (x, y)

P (x)P (y)

]
(1)

However, there might be a set of evidence random vari-
ables which can change the relationship between two random
variables. Thus, the conditional mutual information with
respect to the set of evidence random variables is defined
as below.

Definition 3. The conditional mutual information of random
variables X and Y , given a set of random variables Z, is

I (X;Y |Z) =
∑

(X,Y,Z)

[
P (x, y, z) log

P (x, y|z)
P (x|z)P (y|z)

]
(2)

Note that Z is a set, and if it is empty, the conditional mutual
information reduces to Equation 1.

In Bayesian network structure learning, mutual informa-
tion serves as the criterion for the existence of an edge
between two nodes. Thus, mutual information of various
combinations of random variables would be evaluated re-
peatedly throughout the learning process. Thus, an algorithm
for efficient evaluation of mutual information is necessary
for large-scale Bayesian network structure learning.

III. RELATED WORK

There are two main paradigms for Bayesian network
structure learning. The first one formulates structure learning
as an optimization problem. To be more specific, a statis-
tically motivated score is given to each possible network
structure to indicate the fitness of this structure to the input
training data. Proposed scores include likelihood [6], ratio
of posterior joint probabilities [7] and Bayesian metric with
Dirichlet priors [12]. Ott et al. [18] apply dynamic program-
ming to develop an O

(
n22n

)
algorithm to compute the exact

scores. Although methods to parallelize Ott et al.’s algorithm
have been proposed [23], [17], it is intrinsically difficult to
scale to large networks due to the computational complexity
of computing a global score. Henceforth, heuristics are
applied to scale to networks with large number of random
variables [9], [14], [24]. For instance, Friedman et al. [9]
restrict the search space by examining only a small number
of candidate parents for each random variable via mutual
information and lead to significant reduction in the learning
time.

The second paradigm for Bayesian network structure
learning formulates structure learning as a constraint satis-
faction problem. In particular, statistical tests are conducted
to verify conditional independence between the random
variables in the training data [20], [22], [4]. Commonly
used statistical tests include χ2-test and mutual information.
Due to the computational efficiency of this approach, it is
preferred when the number of random variables is large (e.g.,
in bioinformatics applications) [25], [3], [29]. Notably, the
three-phase algorithm proposed by Cheng et al. [4] demon-
strated computational efficiency for Bayesian networks with
a relatively small number of nodes.

Note that regardless of which paradigm is followed, it is
infeasible to exhaustively search the entire space since the
search space is exponential (the problem has been proved
to be in NP-hard [5]). Therefore, all approaches prune the
search space to a tractably small space with various statistics
tests computed on the data set. Following are two pruning



methods, corresponding to each paradigm, to illustrate the
concept. Friedman et al. [9] compute the mutual information
between a node with all other nodes and find a set of random
variables to be the candidate parents of the considered
node in their optimization-based method. For the constraint
satisfaction paradigm, Cheng et al. [4] compute mutual
information between all pairs of random variables to yield a
set of candidate edges in the first phase as a pre-processing
step. Hence, mutual information is intensively evaluated
throughout the learning procedure for both paradigms. In
view of this, the primitives developed in this paper not only
parallelize the first phase of Cheng et al.’s [4] algorithm but
also yield a parallel and efficient tool to help reduce the
search space of other structure learning algorithms.

A complementary problem to Bayesian network structure
learning is Bayesian network inference. In inference, the
underlying network is given and the problem is to evaluate
marginal or conditional distributions efficiently to facilitate
prediction of an interesting phenomenon. This is also an NP-
hard problem and methods to parallelize Bayesian network
inference have been proposed [26], [10], [11], [28]. For
instance, [26] propose an approach to decompose a junction
tree into chains to perform exact inference in parallel.

IV. PARALLEL PRIMITIVES

The parallel architecture that we consider in this work
is modeled as a parallel random access machine (PRAM)
[21]. In this model, a shared global memory that multiple
processors are able to access simultaneously is assumed.
Throughout, we use P to denote the number of processor
cores. Given the training data set D, we first convert it into
a potential table.

We first describe the abstract representation of the poten-
tial table and then present the data structure to enable for
wait-free construction of the table.

A. Representation of Probability Distribution

The probability distribution is to be extracted from the
training data. A potential table representation records the
number of occurrences for each state string2. A straight-
forward representation is to store the state string along
with each entry [15]. However, this representation not only
occupies a large amount of memory O(n × rn) but also
needs to perform state string comparisons at every access
which is a computationally expensive operation. Thus, we
encode each state string which appears in D as a key [27].
The advantages of this approach are: 1) since state strings
are no longer stored, the memory requirement is reduced to
O (
∏n

k=1 rk), 2) direct access to the targeted entry is possi-
ble with the 1-to-1 mapping between state strings and keys,

2It is not necessary to divide the counts by the total number of samples
to obtain probabilities at this point. The normalization can be performed
later when marginalization is needed. In fact, this approach helps reduce
memory usage.
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Figure 2: The two stages of the wait-free table construction
primitive. (a) Keys are classified in parallel by each core in
the first stage, and only the keys, falling into the range which
that core is in charge of, are used to update the hashtable.
(b) Each core fetches the keys assigned to it by the other
cores and stored in their queues and uses them to update its
hashtable in parallel. Note that this figure only shows the
operation of core 0.

and 3) marginal probability distributions can be computed
without comparing each character in the state string. We
illustrate the conversion between state strings and keys next.
For the i-th observation Di, the state string (s1, s2, ..., sn),
where sj ∈ {0, 1, ..., (r − 1)} and j ∈ {1, 2, ...,m}, is
mapped into an integer key as

key = fenc (s1, s2, ..., sn) =

n∑
j=1

sj × r(j−1) (3)

where fenc denotes the encoding function from the state
string to the corresponding key. Inversely, key is decoded to
sj with

sj = fdec (key, j) =

⌊
key

r(j−1)

⌋
% rj (4)

where fdec denotes the decoding function. (% is the modulo
operation.) Note that the complexities of encoding and



decoding are both O (n). Since there is a unique key for
each state string, the pair (key, value) can be used to store
the count of the occurrences of key. Hence, the probability
distribution can be represented as a table, called the proba-
bility table, where each row consists of a (key, value) pair.

In most real-world cases, the number of state strings will
be sparse in D since the size of D is exponential with respect
to the number of variables. In such situations, a hashtable is
used to store and lookup keys. Otherwise, an array can be
used with its index corresponding to the key of each state
string. In this paper, we focus on sparse state strings and
use hashtables to represent the distribution table.

Since the training data is typically very large, it is par-
titioned and divided between the available cores for con-
version to the potential table representation. Nevertheless, a
shared data structure for the potential table is not a viable
solution since multiple processor cores can update the counts
of the same keys, resulting in a race condition [16]. We next
propose a wait-free primitive that addresses this challenge
by a two-stage procedure. The primitive avoids using locks
and enables all processor cores to update the potential
table simultaneously with only a single synchronization step
between the two stages.

B. Wait-free Table Construction Primitive

The integer representation of state strings enables this
primitive to be defined using integer primitives. Given the
number of random variables and the state sizes, we can
bound the key range (from 0 to (rn − 1)). This range
is divided into P disjoint partitions and each processor
core is in charge of a distinct part of the key space. A
separate hashtable, whose keys are in one subspace, is
assigned to each processor core. In addition, each processor
core is equipped with (P − 1) queues. Each such queue is
indexed with a number to associate it with one of the other
processors.

The wait-free primitive consists of two stages and one
synchronization step between them, as schematically shown
in Figure 2. In the first stage, the training data D is divided
into P partitions and delegated to P cores to convert state
strings to keys. At each core, if a key falls into its key range,
this core simply updates its hashtable. Otherwise, this key
is assigned to the queue whose index corresponds to the
processor core in charge of this key. The complexity of this
stage is O

(
m×n
P

)
. In the second stage, each processor core

accesses the queues on other processors that correspond to
its index. Since the first stage ensures that all the keys are
already assigned to the appropriate queues, each processor
core only pops the keys and updates its hash map. Assuming
the training data is uniformly divided between the cores,
the complexity of this step is O

(
m
P

)
. Conceptually, the

primitive assigns keys in the first stage to avoid updating the
“foreign keys” in the second stage. This method of dividing
the key space not only makes updating straightforward but

Algorithm 1 Wait-free Primitive – Stage 1

1: Input: Dataset D, number of processor cores P
2: Output: Hashtables and queues H, Q
3: Initialize P hashtables H = (H0, ...,HP−1)
4: Initialize P × (P − 1) queues and represent them

as follows: Q = (Q0, ...,Qp, ...,QP−1), where
Qp = (Qp,0, ...,Qp,p−1,Qp,p+1, ...,Qp,P−1) , p =
0, ..., (P − 1), where each Qi,j is a queue

5: for p = 0 to (P − 1) in parallel do
6: for i = 1 + (p− 1)× m

P to p× m
P do

7: (s1, s2, ..., sn)←− Di

8: key ←− fen (s1, s2, ..., sn)
9: index←− key%P

10: if index == p then
11: Update Hp (key)
12: else
13: Add key onto Qp,index

14: end if
15: end for
16: end for
17: Return (H,Q)

also divides the memory accessed by multiple cores into
P disjoint parts. Thus, there is no conflict between the
processor cores throughout table construction. The total
computational complexity of the wait-free table construction
primitive is O

(
m×n
P

)
. The two stages of the algorithm are

formally presented in Algorithm 1 and 2 respectively.

C. Marginalization Primitive

Marginalization is the process of computing the prob-
ability distribution of a set of variables from a larger
probability table by summing over the state space of all
random variables not in the set of interest [13]. For instance,
given the probability distribution over random variables
X1, X2, ..., Xn, the marginal distribution of Xi is repre-
sented as

P (xi) =
∑

(X1,X2,...,Xi−1,Xi+1,...,Xn)

P (x1, x2, ..., xn) (5)

A straightforward approach based on this equation decodes
each key stored in the data structure, filters and sums over
those values which correspond to the right hand side of
Equation (5). This implementation results in computationally
expensive decoding operations, the complexity of which is
O (n) for each key. Thus, the complexity of this approach is
O (n× rn). The complexity is dominated by an exponential
term which makes this approach unscalable with respect
to the size of the networks (i.e., the number of random
variables).

As described earlier, state strings tend to become sparse
as the number of random variables increase. For instance,
the number of state strings of a network with 40 random



Algorithm 2 Wait-free Primitive – Stage 2

1: Input: Hashtables and queues H, Q, number of proces-
sor cores P

2: Output: Hashtables H
3: for p = 0 to (P − 1) in parallel do
4: for i = 0, ..., (p− 1) , (p+ 1) , ..., (P − 1) do
5: while Qi,p.size () ! = 0 do
6: key ←− Qi,p.pop ()
7: Update Hp (key)
8: end while
9: end for

10: end for
11: Return H

variables, each with 2 states, is 240. Such a large number
of samples is not observed in real-world datasets3. Thus, as
the number of random variables grow, most of the potential
state strings would not be observed and it is not necessary
to sum over these strings in the operand of summation in
Equation 5). In our proposed marginalization primitive, this
observation is exploited to avoid the exponential complexity
of the straightforward approach.

After the wait-free table construction primitive, the poten-
tial table is represented in P hashtables. For each marginal-
ization, each processor iterates through all the keys of its
hashtable. With the decoding function (Equation 4), the
count of each key is matched to the corresponding entry
of the marginal table. Note that it only needs the values of
the random variables which appear in the marginal table to
determine the entry. We do not need to recover the entire
state string from each key. First, each processor performs this
procedure on its own hashtable to obtain a partial marginal
table. Second, a merging step is performed to output the
final marginal table. The algorithm is formally shown in
Algorithm 3.

If the sizes of all the hashtables are equal, the workload on
each core would be equal and the complexity is O

(
m×n
P

)
. If

the hashtables are unbalanced, entries can be moved between
hashtables to make them balanced. The requirement that
each hashtable has a range of keys is necessary only in the
wait-free table construction primitive; there is no such con-
straint for the marginalization primitive. Thus, rearranging
the hashtables to make them balanced does not affect the
correctness of the marginalization primitive.

With the Wait-free Table Construction and Marginal-
ization primitives, the first phase of Cheng et al.’s [4]
structure learning algorithm can be parallelized. First, the
Wait-free Table Construction primitive is provided with the
training data as input to generate the potential table. Second,
mutual information is computed for all pairs of random
variables according to Equation 1. Evaluating this equation

3Some common data sets for Bayesian networks can be found in [1].

Algorithm 3 Parallel Marginalization

1: Input: Hashtable H, a set of random variables V,
number of processor cores P

2: Output: Marginal distribution table M
3: Initialize a marginal distribution table M
4: for p = 1 to P in parallel do
5: it←− get iterator from Hp

6: Initialize a partial marginal distribution table Mp

7: while it ! = end do
8: // s refers to a marginal state string
9: // V refers to the RVs of interest which should

be decoded
10: s←− decode it.key for RVs ∈ V via (Eq. 4)
11: c←− Hp (it.key)
12: Mp (s)←−Mp (s) + c
13: it←− it+ 1
14: end while
15: end for
16: Merge partial marginal distribution tables Mp, where

p = 1, ..., P
17: Divide each entry of M by m
18: Return M

requires computing marginal probability distributions. There
are three marginal probability distributions in Eqution 1.
Note that instead of computing each of the three distributions
independently, we can first compute P (x, y) and obtain
P (x) and P (y) from P (x, y) (by summing over P (y)
and P (x) respectively). This approach eliminate two com-
putationally expensive operations of marginalization. Since
the complexity for computing the mutual information for
a pair of variables is O

(
m×n
P

)
, the complexity of all-pairs

mutual information is O
(

m×n3

P

)
. The algorithm is formally

presented in Algorithm 4. In the next section, the experiment
results demonstrate the scalability of our approach.

V. EXPERIMENTS

A. Experiment Platform

The experiments are conducted on an AMD Opteron 6278
platform which has 2 × 16 cores with 64 GB DDR3 main
memory. Each core runs at 2.4GHz with 2 MB L2 cache,
and the operating system is Linux OpenSUSE 12.2. The
proposed primitives are implemented using POSIX Threads
on C++. The number of variables, the number of observa-
tions and the number of cores are varied to demonstrate the
scalability of our approach. Variable instances (training data)
that are the input for Bayesian network structure learning are
synthesized from uniform and independent distributions for
each variable. Note that independently distributed training
data implies that each core would process approximately
the same number of instances during the table construction
phase. The specific distribution does not affect the running



Algorithm 4 Paralleling the First Phase of Cheng et al.’s
[4] Structure Learning Algorithm

1: Input: Dataset D, number of processor cores P
2: Output: Mutual information of all pairs of RVs I
3: Initialize an array I
4: // The first stage of the table construction primitive
5: (H,Q) = Alg1 (D, P )
6: // The second stage of the table construction primitive
7: H = Alg2 (H,Q, P )
8: // compute the mutual information for all pairs of RVs
9: for i = (n− 1) to 1 do

10: j ← (n− i− 1)
11: while p ≤ i do
12: I[j × n + (j + p)] ←−

Enta(Alg3 (H, {Xi, Xj}, P ))
13: p← p+ P
14: end while
15: p← p− i
16: end for
17: Return I

aEnt refers to the function which computes mutual information by
Equation 1 from a given marginal table.

time of Bayesian network structure learning after the poten-
tial table is constructed.

We compare the scalability of the wait-free table construc-
tion primitive with the concurrent hashtable implementation
in the Intel Threading Building Blocks (Intel TBB) [2] multi-
threaded C++ library which ensures thread safe operations
with the aid of a lock operation. In all the plots in this
section, the x-axis indicates the number of used cores on
a logarithmic scale to show the scalability of our approach
with the number of used cores.

B. Table Construction

The performance of the wait-free table construction prim-
itive is evaluated by varying two parameters. First, we
investigate the scalability of the table construction primitive
with the number of samples in the training dataset. While
the number of random variables is set as 30, the numbers
of samples are varied from 0.1, 1, to 10 million samples.
As is shown in Figure 3, the running time of our approach
increases linearly with the number of samples (i.e., the equal
gaps between two neighboring curves). This observation
aligns with the analysis and presents a scalable primitive.
Moreover, with the number of used cores increasing, the
running time presents a consistent speedup, which holds
regardless of how many samples are input4. On the other
hand, the running time for Intel TBB is shown by the dash

4When 32 cores are used, the speedup appears to be less desirable. This
is because other system overheads can dominate when the input size is very
small.
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Figure 3: The scalability of the Wait-free Table Construction
primitive and the TBB concurrent hashtable with the size
of training data (m). (a) Running times. The y-axis is in
logarithmic scale. (b) Speedup.

lines in Fig. 3. For the same number of samples, there is a
gap between our wait-free primitive and the TBB concurrent
hashtable. Notably, the gap widens with the number of used
cores increasing. This implies that while one uses more cores
to update the hashtable, the speedup becomes less significant
or even worse. This observation is emphasized by Fig. 3b,
where the slopes of the dash lines decrease from the number
of cores equal to 4 and even become negative after the
number of cores equal to 16.

Secondly, the scalability with another input dimension, the



number of random variables, is investigated. As the number
of samples is fixed at 10 million, the numbers of random
variables is varied from 30 to 50 with 10 increments. As is
shown in Figure 4, the running time increases linearly with
the numbers of samples which agrees with the analysis in
Section IV. The speedup shown in Figure 4b presents the
scalability with the number of cores. For the same number
of used cores, there is a gap between our wait-free primitive
and the TBB concurrent hashtable. This gap widens with the
number of used cores. Thus, our primitive is more scalable
than the TBB concurrent hashtable with the number of used
cores.

C. All-pairs Mutual Information

In this experiment, we show the running time of com-
puting the mutual information between all pairs of random
variables. The potential table is constructed using the wait-
free table construction primitive from the training data. The
number of observations is 10 million, and the number of
random variables is varied from 30 to 50 with 10 increments.

As is shown in Figure 5a, the running times decrease
consistently with the numbers of used cores for three cases
n = 30, 40, 50. The theoretical running time of computing
the mutual information between all pairs of random variables
is O

(
m×n3

P

)
(Section IV) which agrees with the decrease

in the experimental running times. The speedup achievable
using our approach is shown in Figure 5b.

VI. CONCLUSION

We developed two primitives as the first step in paral-
lelizing constraint satisfaction-based approaches to Bayesian
network structure learning. The wait-free table construction
primitive is designed to build the potential table from the
training data in parallel. This primitive allows multiple pro-
cessors to update the potential table simultaneously without
using any lock operation, allowing all processors to be fully
utilized. The marginalization primitive is designed to enable
parallelization of statistics tests between random variables;
such tests are performed between all pairs of variables
in the structure learning algorithm that we consider. The
marginalization primitive uses data parallelism to ensure that
each processor needs to access only a disjoint subset.

In experiments with synthetic training data, the wait-free
table construction primitive is compared with a hashtable-
based implementation using Intel TBB. Our approach
demonstrated consistent improvement with different sizes of
input data. Due to its wait-free operation, the speedup is
linear with the number of used cores and thus demonstrates
a scalable primitive. The marginalization primitive is also
evaluated in the experiments and shows scalability with the
number of used cores. The parallel marginalization primitive
avoids cache misses by letting each core access only a subset
of the potential table that is disjoint from other cores.
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Figure 4: The scalability of the wait-free table construction
primitive (solid lines) compared with the Intel TBB library
primitives (dashed lines) with the number of random vari-
ables. (a) Running times. The running time of the wait-free
primitive increases linearly with the number of variables
(equal gaps between two neighboring curves). (b) Speedup.

For future work, we will develop primitives that encom-
pass all stages of a parallel implementation of Bayesian
structure learning algorithm. We will design task-parallel and
data-parallel optimization methods for these primitives and
compare their relative advantages.
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of random variables. The proposed marginalization primitive
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pair of variables. (a) running time (b) speedup

networks.html.
[2] Intel Threading Building Blocks (Intel TBB).

https://www.threadingbuildingblocks.org/.
[3] C. Auliac, V. Frouin, X. Gidrol, and F. d’Alche Buc. Evolu-

tionary approaches for the reverse-engineering of gene regu-
latory networks: A study on a biologically realistic dataset.
BMC Bioinformatics, 9(1):91, 2008.

[4] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning
Bayesian networks from data: an information-theory based
approach. Artificial Intelligence, 137(1-2):43–90, May 2002.

[5] D. M. Chickering. A transformational characterization of

equivalent Bayesian network structures. In Conference on
Uncertainty in Artificial Intelligence (UAI), Aug. 1995.

[6] C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE Transactions on
Information Theory, 14(3):462–467, May 1968.

[7] G. F. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine
Learning, 9(4):309–347, Oct. 1992.

[8] T. Cover and J. Thomas. Elements of Information Theory.
Wiley, 2006.

[9] N. Friedman, I. Nachman, and D. Peér. Learning Bayesian
network structure from massive datasets: the “sparse candi-
date” algorithm. In Conference on Uncertainty in Artificial
Intelligence (UAI), Jul./Aug. 1999.

[10] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash
for optimally parallelizing belief propagation. In Artificial
Intelligence and Statistics (AISTATS), Apr. 2009.

[11] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron. Dis-
tributed parallel inference on large factor graphs. In Uncer-
tainty in Artificial Intelligence (UAI), Jun. 2009.

[12] D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and sta-
tistical data. Machine Learning, 20(3):197–243, Sep. 1995.

[13] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[14] A. Moore and W.-K. Wong. Optimal reinsertion: A new
search operator for accelerated and more accurate Bayesian
network structure learning. In International Conference on
Machine Learning (ICML), Aug. 2003.

[15] V. Namasivayam and V. Prasanna. Scalable parallel im-
plementation of exact inference in Bayesian networks. In
International Conference on Parallel and Distributed Systems
(ICPADS), Jul. 2006.

[16] R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizations. Transactions on Program-
ming Languages and Systems, 1(1):74–88, Mar. 1992.

[17] O. Nikolova, J. Zola, and S. Aluru. Parallel globally optimal
structure learning of Bayesian networks. Journal of Parallel
and Distributed Computing, 73(8):1039–1048, Aug. 2013.

[18] S. Ott, S. Imoto, and S. Miyano. Finding optimal models for
small gene networks. In Pacific Symposium on Biocomputing
(PSB), Jan. 2004.

[19] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann, 1988.

[20] J. Pearl and T. Verma. A theory of inferred causation, 1991.
[21] D. M. Pennock. Logarithmic time parallel Bayesian inference.

In Conference on Uncertainty in artificial intelligence (UAI),
Jul. 1998.

[22] P. Spirtes, C. Glymour, and R. Scheines. Causation, Pre-
diction, and Search. Adaptive Computation and Machine
Learning. MIT Press, 2000.

[23] Y. Tamada, S. Imoto, and S. Miyano. Parallel algorithm
for learning optimal Bayesian network structure. Journal of
Machine Learning Research, 12:2437–2459, Jul. 2011.

[24] M. Teyssier. Ordering-based search: A simple and effective
algorithm for learning Bayesian networks. In Conference on
Uncertainty in artificial intelligence (UAI), Jul. 2005.

[25] I. Tsamardinos, C. F. Aliferis, A. Statnikov, A. Statnikov,
and L. E. Brown. Scaling-up Bayesian network learning
to thousands of variables using local learning techniques.
Technical report, Department of Biomedical Informatics, Van-
derbilt University, 2003.

[26] Y. Xia and V. Prasanna. Junction tree decomposition for
parallel exact inference. In IEEE International Symposium



on Parallel and Distributed Processing (IPDPS), Apr. 2008.
[27] Y. Xia and V. K. Prasanna. Scalable node-level computation

kernels for parallel exact inference. IEEE Transactions on
Computers, 59(1):103–115, Jan. 2010.

[28] Y. Xia and V. K. Prasanna. Distributed evidence propagation
in junction trees on clusters. IEEE Transactions on Parallel
and Distributed Systems, 23(7):1169–1177, Jul. 2012.

[29] Z. Yang. Machine Learning Approaches to Bioinformatics.
Science, engineering, and biology informatics. World Scien-
tific Publishing Company, 2010.


