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Low-Complexity MDL Method for Accurate
Source Enumeration
Lei Huang and Shunjun Wu, Member, IEEE

Abstract—A low-complexity method for source enumeration is
proposed in this letter. Given the training data of a desired signal,
an array data matrix is partitioned into orthogonal signal and noise
components. The noise components are then used to calculate the
total description length required to encode the array data. The
model with the minimum description length (MDL) is chosen as
the best model. Unlike the traditional MDL methods, the proposed
method linearly partitions the array data into the cleaner signal
and noise components and thereby is more accurate and compu-
tationally efficient. Its performance is demonstrated via numerical
results.

Index Terms—Array signal processing, direction of arrival
(DOA), eigenvalue decomposition (EVD), minimum description
length (MDL), multistage Wiener filter (MSWF), Wiener filter.

I. INTRODUCTION

SENSOR array signal processing can be applied to many
areas, such as radar, sonar, remote sensing, and wireless

communications. In most applications, one important objec-
tive might be to detect the number of signal sources. In the
community of array signal processing, this problem has been
widely investigated in [1]–[5]. In [1], Wax and Kailath origi-
nally introduced the information-theoretic criteria, such as the
Akaike information criterion (AIC) and minimum description
length (MDL), into source enumeration. To date, the methods
for source enumeration have been widely studied in [2]–[5].
However, while these methods are efficient in detection perfor-
mance, they essentially involve the estimation of a covariance
matrix and its eigenvalue decomposition [1]–[5] or multidi-
mensional nonlinear minimization problems [2], [3] and are
thereby generally rather computationally intensive.

To reduce the computational complexity and attain accurate
detection performance, a low-complexity MDL method is de-
veloped in this letter. This method first employs the training data
of the desired signal to quickly partition the array data into two
orthogonal components in signal and noise subspaces. Similar
to the method proposed in [2], the components in the noise sub-
space are then used to calculate the total code length required
to encode the array data. Finally, the model with the shortest
code length is selected as the best model. Since the method
only involves the forward recursions of the multistage Wiener
filter (MSWF) [6] to find the signal and noise components and
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does not calculate the covariance matrix or its eigenvalues, it
is computationally efficient. Meanwhile, the proposed method
exploits the training data of the desired signal to partition the
array data into the cleaner signal and noise components, thus ob-
taining a significant enhancement in performance, particularly
for the case of small sample size and/or low signal-to-noise ratio
(SNR).

II. PRELIMINARIES

A. Data Model

Consider an array consisting of isotropic sensors with ar-
bitrary locations. This array received a desired signal with
a known training data from an unknown direction, say, , and

jammer signals from
unknown distinct directions that are different
from . The narrowband signal sources, centered around a
known frequency , are placed in the far field, and thereby,
the wavefronts can be approximated as planar. For simplicity,
we also assume that the sources and the sensors are in the same
plane. Thus, employing complex envelope representation, the

measurements of the output of the array corrupted by
additive noise can be expressed as

(1)

where , and are the vectors of the received signals,
the additive noise, and the signal waveforms, respectively, and

(2)

is the array response matrix with
, where

is the propagation delay between the first
sensor (the reference point) and the th sensor to a
wavefront impinging from direction , and denotes
transpose.

Throughout this letter, we assume that the array response
matrix is unambiguous. Meanwhile, the additive noise is
a stationary, temporally, and spatially white Gaussian random
process with zero mean and variance . Furthermore, all sig-
nals are jointly stationary, temporally white, zero-mean com-
plex Gaussian random processes, which are uncorrelated with
the background noise . Under these assumptions, the output
of the array is complex Gaussian with zero mean and the fol-
lowing covariance matrix:

(3)

where , denotes the identity
matrix, and is Hermitian transpose. In actual applications,
however, we do not have access to the ideal covariance matrix.
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Instead, we in general only obtain its sample covariance matrix
, where is finite.

B. Common MDL Criterion for Source Enumeration

According to the MDL principal, for a given data set and a
family of probabilistic models, one should select the model that
yields the shortest description length of the data. The description
length of the data can be evaluated quantitatively. In general,
given an observation data set and a probabilistic
model , where denotes an unknown parameter vector,
the shortest code length required to encode the data using the
model can be asymptotically written as [2]

(4)

where is the maximum likelihood estimate of , and de-
notes the number of free parameters in the vector . To imple-
ment the MDL principal, Wax and Ziskind partitioned the ob-
servation data into two orthogonal components in the signal and
noise subspaces, separately calculated the code lengths for the
two orthogonal components, and finally added them up to attain
the total code length for the data. The total code length of the
signal and noise components for unknown direction parame-
ters derived by Wax and Ziskind [2] can be expressed as

(5)

where is the component in the signal sub-
space, is the component in the noise
subspace, is the
assumed number of signals,
denote the nonzero eigenvalues of the matrix

, and is the projection ma-
trix on the noise subspace. To obtain the two orthogonal
components in the signal and noise subspaces, Wax and
Ziskind had to solve a multidimensional nonlinear mini-
mization problem to find the directions , using them to
formulate the projection matrices on the signal and noise sub-
spaces: ,

. By projecting the array data onto
the signal and noise subspaces, one may obtain the signal and
noise components. However, this procedure is rather computa-
tionally complex, particularly for solving the multidimensional
nonlinear minimization problem. While using the alternating
projection (AP) algorithm may reduce the computational cost,
the MDL method essentially involves the estimated covariance
matrix and its eigendecomposition, which are still computa-
tionally expensive.

In this letter, we propose an alternative method to find the
two orthogonal components in the signal and noise subspaces.
This method is much more computationally efficient than the
traditional MDL methods due to avoidance of the eigendecom-
position of the covariance matrix and the multidimensional non-
linear minimization problem. In the mean time, the method can
be used in the case of small sample size and/or low SNR since it
uses the training data of the desired signal to partition the array
data into the cleaner signal and noise components that result in
the improved performance.

III. LOW-COMPLEXITY MDL CRITERION

FOR SOURCE ENUMERATION

A. Subspace Decomposition

Given a reference signal, the MSWF [6] partitions the ob-
servation data into two directions: the desired signal

and its orthogonal component at
the th stage. The desired signal is obtained by pre-filtering
the observation data with the matched filter but anni-
hilated by the blocking matrix . The observation
data are partitioned stage by stage in the same manner. As a re-
sult, we obtain the pre-filtering matrix:
and the desired signals of the MSWF: .
The MSWF based on the data-level lattice structure is given by
the following set of recursions.

• Initialization: and .
• Forward Recursion: For

• Backward Recursion: For with

In the algorithm above, the reference signal is the training
data of the desired signal, which is added to the message for
training purposes [7]. The observation here is that the multi-
stage decomposition gives a computationally simple method for
estimating the signal and noise subspaces. As noted in [8], for

uncorrelated narrowband signals impinging upon the array,
the signal and noise subspaces can be spanned by the or-
thonormal matched filters of the MSWF, namely,

span (6)

span (7)

where and represent the signal subspace of rank
and the noise subspace of rank , respectively, and

are the orthonormal matched filters of the
MSWF.

B. Novel MDL Criterion Function for Source Enumeration

From (6) and (7), it follows that and
span the signal and noise sub-

spaces, respectively. Here, is the assumed number of signals.
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In the sequel, the component in the noise subspace can be cal-
culated as

(8)

Accordingly, the covariance matrix of the noise component can
be written as

(9)

By substituting the estimate of (9) into (5) and noticing that the
direction parameters are not included in the parameter

vector, we can obtain a new MDL criterion for source enumer-
ation

(10)

where , which is indepen-
dent of the direction estimates .

Nevertheless, the calculation of indicates that the es-

timation of the covariance matrix and the additional com-
putational cost of flops are required, besides cal-
culating the signal and noise subspaces. Actually, the desired
signals of the MSWF after the th stage

are uncorrelated with each other, namely,
for . The

proof may be found in [9]. As a result, is a diagonal matrix:

(11)

where . Thus,
substituting the estimate of into (10), we eventually obtain
the new MDL estimator for the number of sources

(12)

where

(13)

with , and is the th desired
signal of the MSWF. That is to say, the estimated variances of
the desired signals can be directly calculated by the forward
recursions of the MSWF while attaining the signal and noise
subspaces.

Remarks: The traditional methods for source enumeration
generally involve the estimated covariance matrix and its eigen-
value decomposition, therefore requiring
flops. Note that for each forward recursion of the MSWF, the
dominant computational cost is the calculation of the matched
filter, which requires complex multiplications and
additions for each snapshots, equivalently approximately
flops, and thereby around flops for each matched filter.

Since desired signals are used in the new MDL criterion,
the proposed MDL method only requires a computational com-
plexity of , which is equivalent to that of calculating
the sample covariance matrix, saving the computational com-
plexity of . Meanwhile, the proposed method employs
the training data of the desired signal to partition the array data
into the cleaner signal and noise components and can thereby be
used in the case of small sample size and/or low SNR where the
traditional methods may fail. Thus, the proposed MDL method
outperforms the traditional MDL methods in computational
complexity for a large array and in detection performance for
the case of small sample size and/or low SNR.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed MDL method
is evaluated by computer simulation. For comparison purpose,
the results of the traditional MDL method developed by Wax
and Ziskind [2] and the method proposed by Ishikawa et al. [5]
are also given. In the method of Ishikawa et al., the beamformer
threshold and the test function threshold are dB and , re-
spectively. The dimension of the pre-estimated signal subspace
is selected based on the eigenvalues of the pre-estimated co-
variance matrix. For simplicity, the array herein is assumed to
be a ULA with eight isotropic sensors whose spacings equal
half-wavelength. Suppose that there are three uncorrelated sig-
nals with equal power impinging upon the ULA. The true DOAs
are . The background noise is assumed to be a sta-
tionary Gaussian white random process that is uncorrelated with
the signals.

One hundred independent trials have been made to compute
the probabilities of detection for the proposed MDL approach,
the traditional MDL method (W & Z), and the method proposed
by Ishikawa et al. The probability of detection versus SNR is
shown in Fig. 1, where . From Fig. 1, we can observe
that the MDL approach with the maximum likelihood (ML) es-
timates of the DOAs nearly fails to correctly detect the number
of signals when SNR is lower than 2 dB. Its probability of de-
tection is only around 0.65 for SNR dB and less than 0.1
for SNR dB. The proposed MDL method, however, is ca-
pable of yielding an accurate detection of the number of sig-
nals. Its probability of detection is about 1 for SNR dB
and around 0.75 for SNR dB, where the traditional MDL
method completely fails. It is interesting to observe that the re-
sult of the proposed MDL method is quite close to that of the
MDL algorithm (W & Z), where the true DOA information is
assumed to be exactly known. From Fig. 1, we can also observe
that the proposed method outperforms the method developed by
Ishikawa et al., which uses the bearing information to improve
the detection performance.

Fig. 2 displays the probability of detection versus the number
of snapshots, where SNR dB. From Fig. 2, we can
observe that the proposed MDL approach is able to obtain a
high probability for detecting the number of signals, even for a
quite small sample size. Its probability of detection essentially
reaches 1 for and is around 0.98 even for .
However, the MDL method (W & Z) with the ML estimates
of the DOAs only has the probability of detection of about 0.2
for and fails to correctly detect the number of signals
when . As becomes large, the probabilities of the
traditional and proposed MDL methods approach 1. Again,
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Fig. 1. Probability of detection versus SNR. The number of sensors is eight
and N = 80.

Fig. 2. Probability of detection versus number of snapshots. The number of
sensors is eight, and SNR equals �2 dB.

the proposed MDL algorithm is close to the traditional MDL
method (W & Z) with the true DOA information in detection
performance even for small samples, as is illustrated in Fig. 2.
We can also observe from Fig. 2 that the proposed method
surpasses the method of Ishikawa et al. in detection accuracy,
in particular as becomes small.

Since the training data of the desired signal are used
to calculate the matched filters , and the
matched filters are then employed to extract the desired signals
of the MSWF from the observation data,
the first three matched filters of the MSWF, namely, , and

, are capable of capturing the signal information while ex-
cluding a large portion of noise. On the contrary, their orthog-
onal complements are able to mitigate the signal subspace com-
ponents more efficiently from the noisy data and, therefore, form
a cleaner noise subspace. That is to say, the basis vectors of the
noise subspace have the ability to efficiently

eliminate the powers of signals while retaining the powers of
noises in calculating the desired signals of the MSWF after the
third stage. As a result, the variances of the first three desired
signals , namely, the powers of signals, are well
separated from the variances of the desired signals after the third
stage , namely, the powers of noises. Mean-
while, the variances of the desired signals after the third stage
are clustered sufficiently closely. Thus, the proposed method
is capable of significantly reducing the likelihood of overesti-
mating and underestimating the number of signals, eventually
leading to the enhanced detection performance.

V. CONCLUSIONS AND DISCUSSIONS

In this letter, we have addressed a low-complexity MDL
method for accurate source enumeration. This method employs
the training data of the desired signal to quickly partition the
array data into two orthogonal components in the signal and
noise subspaces, and then uses the noise components to cal-
culate the total code length. The model with the shortest code
length, namely, the minimum description length, is selected as
the best one. Since the estimation of the covariance matrix and
its eigendecomposition are not involved, the proposed method
is computationally efficient. Meanwhile, the proposed method
uses the training data of the desired signal to partition the array
data into the cleaner signal and noise components that lead to
the enhanced performance and is thereby suitable for the case
of low SNR and/or small sample size where the traditional
MDL methods fail.

The proposed MDL method cannot be directly applied to
completely correlated signals, namely, coherent signals, since
in this case, the signal and noise subspaces may not be cor-
rectly calculated. Applying the spatial smoothing technique to
the array data to decorrelate the coherency of the signals prior
to subspace decomposition may be a solution to the problem.
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