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Abstract. We study the problem of designing the hyperlink structure
between the web pages of a web site in order to maximize the revenue
generated from the traffic on the web site. We show this problem is equiv-
alent to the well-studied setting of infinite horizon discounted Markov
Decision Processes (MDPs). Thus existing results from that literature
imply the existence of polynomial-time algorithms for finding the op-
timal hyperlink structure, as well as a linear program to describe the
optimal structure. We use a similar linear program to address our prob-
lem (and, by extension all infinite horizon discounted MDPs) from the
perspective of cooperative game theory: if each web page is controlled
by an autonomous agent, is it possible to give the individuals and coali-
tions incentive to cooperate and build the optimal hyperlink design?
We study this question in the settings of transferrable utility (TU) and
non-transferrable utility (NTU) games. In the TU setting, we use linear
programming duality to show that the core of the game is non-empty and
that the optimal structure is in the core. For the NTU setting, we show
that if we allow “mixed” strategies, the core of the game is non-empty,
but there are examples that show that the core can be highly inefficient.

1 Introduction

As electronic commerce begins to dominate the business model of many compa-
nies, the design of an efficient and revenue-maximizing web site is of increasing
importance. A major component of web site design is the selection of the hy-
perlink structure among the web pages. A web designer can be likened to a city
planner, building hyperlink structure so as to steer traffic in a globally optimal
manner. One consideration, which is of particular importance for web sites whose
objective is to provide information for the users, is to facilitate the navigation
through the contents of the web site. The other consideration, in particular for
designing e-commerce web sites, is to present links on each page in order to
direct a surfer through a path of high revenue. The latter objective is the focus
of this paper.1

We provide a graph-theoretic model for this problem. Web pages generate
varying amounts of revenue, perhaps through advertisements or product sales.
1 As we will see in Section 5, our framework can be generalized to accommodate

content-related constraints as well.



Additionally, web pages display hyperlinks to some other pages on the web site.
Each possible hyperlink has a transition probability representing the probability
that a surfer clicks on the hyperlink conditional on the other links on the page.
The web designer now must select a subgraph which maximizes the expected
revenue of a random walk. As we will show, the stated problem is in fact equiva-
lent to infinite horizon discounted Markov Decision Processes (MDPs) (see [7]).
Thus, the value iteration algorithm for MDPs [7] can be used to compute the
optimal hyperlink structure efficiently.

In this paper, we use a linear-programming formulation for MPDs to give
us insight into some game-theoretic aspects of the web design question (and of
MDPs in general). Often, in large companies like Amazon or MSN, web pages
are controlled by distinct (and sometimes even competing) profit centers, each
responsible for their own profit and loss (P&L) account. It is not reasonable to
assume that a particular profit center, or group of profit centers, will comply
with the optimal web design at its own expense. Rather, it is necessary to divide
the total revenue of the web site among the profit centers to ensure stability.
We formulate our concern as a transferrable utility game and use insights from
cooperative game theory and the LP formulation of the problem to compute
an allocation scheme in the core of the game. This implies that there is always
a way to divide revenue among profit centers such that the optimal web site
design is stable, i.e. each group of profit centers receives a total revenue at least
as large as the revenue they would be able to extract if they deviate as a coali-
tion. We further study the non-transferrable utility game which is more suitable
for situations where monetary transfer between agents managing different web
pages is not possible, i.e., when each web page receives precisely the revenue it
generates. We prove that in this case, if “mixed” strategies are allowed, the core
is non-empty, i.e. there is a web site design where no profit center (or group
of profit centers) can deviate and increase its revenue. However, the efficient
web site design need not be in the core of the game, and furthermore, we show
that there are examples where the revenue of the core is worse than the optimal
solution by an arbitrary factor.

Our work bears some similarity to the long-standing tradition of network
formation games in the economics literature (see [5] for a survey). This literature
takes the standpoint that social networks play a key role in many economic
settings, including labor markets [4], international free trade agreements [3], and
peering and transit relations on the Internet [1]. As such, much effort has been
invested in understanding economic incentives facing agents forming links in
these social networks. A variety of value functions have been proposed to describe
the effect of particular network structures on individuals, and our framework
can be adopted to study these settings as well. However, for many of them, the
computational questions remain open.

The rest of this paper is organized as follows. In Section 2, we define the model
and its relationship to MDPs. In Section 3, we present a linear-programming
formulation for describing the optimum (revenue-maximizing) web site design.
In Section 4, we use the LP presented in Section 3 to discuss game-theoretic



problems and prove that the cores of both the transferrable utility and non-
transferrable utility games are non-empty. We conclude with the discussion of a
multitude of interesting generalizations and open questions in Section 5.

2 Model

We model a web site as a directed graph G = (N, E). Each node i ∈ N is a
web page. We denote the number of nodes by n = |N |. An edge ij exists from
node i to node j if page i links to page j. We assume that this graph contains
no self-loop, i.e., a web page does not link to itself.

A web surfer is represented by a random walk on this graph. For each page
j, there is a probability pj that the surfer starts surfing from page j. For each
page i, set S ⊂ N \ {i} of other pages, and page j ∈ S, there is a probability
pij,S that a surfer on page i follows a hyperlink to page j, assuming that the
set of pages linked from page i is S. We assume that for all i and S ⊂ N \ {i},∑

j∈S pij,S ≤ 1− δ for some positive constant δ > 0, i.e., in each step there is a
non-zero probability that the surfer exits the web site.

We define a revenue for a random walk on the web site. The simplest way to
do this is to assign a revenue rj to each page j (this would correspond to the
expected revenue that a surfer visiting page j would generate for the web site
owner, perhaps from the advertisement on the page or by buying a product on
the page), and define the expected revenue of a random walk as the sum, over
all j, of rj times the expected number of times that the random walk visits j. In
this paper, we consider a more general model where the revenues are assigned to
edges instead of vertices: for each hyperlink ij, there a value rij,S representing
the expected revenue generated for page j by a web surfer who has followed link
ij when the links on page i were S. The total revenue is defined as the sum,
over all edges ij in the graph, of rij,S times the expected number of times the
random walk traverses the edge ij. Notice that this is a strictly stronger model,
since setting rij,S = rj for all i and S would be equivalent to assigning revenues
to vertices (of course, we also need to add the value

∑
j pjrj for the revenue of

the first page the surfer visits). Assigning revenues to edges enables us to model
situations where the conversion rate of a user depends on the web page she
is coming from, and will be useful in modelling content-related constraints (as
discussed in Section 5). Note that we defined the total revenue by multiplying
rij,S ’s by the expected number of times the random walk takes the corresponding
edge, as opposed to the probability that the random walk takes this edge. This
means that if the random walk visits a vertex twice, it will benefit the web site
owner twice. This is a realistic assumption in many situations, e.g., where the
revenue is generated from “per-impression” advertisements. For a discussion of
alternative models, see Section 5.

2.1 The Case of No Externalities

The above model is strong enough to model situations where the probability
that a surfer clicks on a link to page j placed on page i depends not only on i



and j, but also on the set of other links on the page i. In economic terminology,
this means that we can model externalities among the links placed on a page
i. An interesting and important special case is the case of no externalities. In
this case, each page has limited real-estate in which it can display links, and so
each node i can have out-degree at most ki (a parameter). For each i, j ∈ N ,
there is a probability pij that a surfer on page i follows a hyperlink to page j,
if such a link exists. We assume that for all i, and for any set S of ki pages,
the sum

∑
j∈S pij ≤ 1− δ, so these probabilities define a random walk with exit

probability at least δ in each step.2 See Section 5 for a discussion of other models
where instead of (or in addition to) the limit ki on the number of links, there is
a cost associated with placing each link.

2.2 Equivalence to Markov Decision Processes

A Markov Decision Process (MDP) is a common construct used to describe
scenarios with sequential decision-making processes. An MDP consists of a set
of states S, a set of actions A(s) for each state s ∈ S, and a revenue ra,s for each
action/state pair.

In each iteration of an MDP, the system is in a state s, and an action a ∈ A(s)
must be chosen. Actions induce a probability distribution over future states, and
revenue ra,s′ is interpreted as the revenue of taking action a given that the result-
ing state is s′. The goal is to chose an action for each state which maximizes the
total (expected) revenue of the system over time. In infinite horizon discounted
MDPs, the total revenue is calculated with respect to a discounting factor (λ),
i.e. the (expected) revenue r in the t’th iteration contributes λtr to the total
(expected) revenue.

That the model introduced above is equivalent to infinite horizon discounted
MPDs can be seen by equating the set of states S with the web pages N . The
actions A(i) for a web page i ∈ N are subsets S of other pages. By adding
a “terminal” web page and links from each page to the terminal page with
appropriate probabilities, we can ensure that the sum of the probabilities of the
links leaving each page is precisely 1 − δ. Given this assumption, the induced
probability distribution for taking the action S at state i of the MDP can be
defined as pij,S/(1−δ). For action S ∈ A(i), a revenue of rij,S is generated given
that the action resulted in future state j. The discounting factor λ is equal to
1− δ.

Due to the above equivalence, one can easily adapt known algorithms for
MDPs, such as the value iteration algorithm, to compute the optimal hyperlink
design efficiently. Furthermore, it can be easily seen that all of the results of this
paper can be applied to general infinite horizon discounted MDPs.

2 Strictly speaking, in this model there is still externality among the links, since placing
each link further limits the number of other links that can be placed on the page.
However, this is the only form of externality allowed in this case.



3 Linear Programming Formulation

In this section, we present a linear program which describes the revenue-maximizing
hyperlink structure. For simplicity of presentation, we describe the program in
the case of no externalities.

The optimization question facing a web designer in our setting is to find a
subgraph of the complete graph in which each node has degree at most ki and the
total revenue is maximized. This can be formulated as a mathematical program
as follows. Let xi be a variable representing the expected number of times a web
surfer encounters node i and yij be an indicator variable for the existence of
hyperlink ij. Thus, the expected number of times a web surfer traverses link ij
is simply xipijyij . Relaxing the integrality constraint on yij , the problem then
becomes

max
∑

i,j∈N

rij · (xipijyij) (1)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N

xipijyij (2)

∀ i ∈ N :
∑

j∈N

yij ≤ ki (3)

∀ i, j ∈ N : 0 ≤ yij ≤ 1
∀ i ∈ N : xi ≥ 0.

Constraint 2 encodes the “conservation of flow”: the expected number of times
xj a surfer visits node j can not be more than the expected number of times
pj he starts surfing from j plus the expected number of times

∑
i∈N xipijyij

that he enters j from a neighboring node. Constraint 3 encodes the out-degree
constraint on a node i.

This mathematical program can be transformed to a linear program by per-
forming the change of variables zij = xiyij . This gives us the program

max
∑

i,j∈N

rijpijzij (4)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N

pijzij

∀ i ∈ N :
∑

j∈N

zij ≤ kixi

∀ i, j ∈ N : zij ≤ xi

∀ i ∈ N : xi ≥ 0
∀ i, j ∈ N : zij ≥ 0

which is linear in the variables xi and zij . In the next section, we show how
to round an optimal fractional solution (xi, zij) to LP 4 to a solution in which
zij/xi ∈ {0, 1} for all i, j ∈ N . This shows that the above LP formulation exactly
captures the hyperlink design problem, a fact that will be used in the next section
to derive the game-theoretic results.



3.1 Rounding Technique

Consider an optimal fractional solution to LP 4. For all i ∈ N such that xi > 0
and all j ∈ N , define yij = zij/xi. Notice if yij ∈ {0, 1} for all i, j ∈ N , then we
can use these yij to define a feasible hyperlink structure with optimal revenue.

Otherwise, let G = (N, E) be the graph where edge ij exists if yij > 0 and
has transitional probability pijyij . Consider an arbitrary node i0 ∈ N with at
least one fractional out-going edge, i.e. for at least one j, 0 < yi0j < 1. We “fix”
this node without sacrificing any of the total revenue.

Lemma 1. There is a graph G′ with total expected revenue equal to G in which
i0 has exactly ki0 integral out-links.

Proof. In order to prove this claim, we will write the fractional out-links of i0
in G as a convex combination of feasible integral out-links and show that one of
these corresponding graphs has revenue at least that of G.

As G is an optimal fractional graph, we may assume that
∑

j yi0j = ki0 .
Thus, the {yi0j} lie in the integral polytope described by

∑
j yi0j = ki0 and

0 ≤ yi0j ≤ 1. Let Fl ∈ {0, 1}|N | be the vertices of this polytope, and note that
each Fl has exactly ki0 non-zero coordinates. We represent the {yi0j} as a convex
combination of these vertices

∑
l λlFl where

∑
l λl = 1 and λ ≥ 0.

Consider the graph Gl = (N, El) where i0 only has links in Fl. In other
words, El = E −{yi0j}+ {i0j : Fl(j) = 1}. Let R′l be the expected revenue that
a random walk in Gl starting at i0 collects before returning to i0. Furthermore,
let pl be the probability that a random walk in Gl starting at i0 returns to
i0. Note pl < 1 as there is an exit probability at each node. Thus, the total
expected revenue Rl of a random walk starting from i0 in Gl can be written as
Rl = R′l + plRl, and so

Rl =
R′l

1− pl
.

We would like to prove that for some l, the revenue Rl of Gl starting at i0
is at least the revenue of G starting at i0 . We can write the revenue R of G
starting at i0 in terms of R′l as follows: by linearity of expectation, the expected
revenue that a random walk in G starting at i0 collects before returning to i0
is simply

∑
l λlR

′
l. Also, the probability of returning to i0 is

∑
l λlpl. Therefore,

R =
∑

l λlR
′
l +

∑
l λlplR, and so

R =
∑

l λlR
′
l

1−∑
l λlpl

.

Using the fact that
∑

l λl = 1, we can rewrite R as

R =
∑

l λlR
′
l∑

l λl(1− pl)

where we restrict the summation to the vertices Fl such that λl > 0. Using the
fact that (

∑
l al)/(

∑
l bl) ≤ maxl(al/bl) for any two sequences of positive reals



{al} and {bl}, we see for some l, the revenue of Gl starting at i0 is at least the
revenue of G starting at i0. Note that the revenue of a random walk starting
from a node j 6= i0 is the same in G and Gl until it reaches i0 as we only changed
the out-going links of i0. Therefore, we can conclude that the total revenue of
Gl is at least that of G.

We can now proceed to “fix” iteratively all nodes i with fractional out-links
to get an integral graph G with optimal revenue.

3.2 General Externalities between Links

We remark that all the results of this section can be extended to the general
case by using the following mathematical programming formulation. Let yi,S be
an indicator variable for the event that page i chooses to link to pages in S.
As before, xi represents the expected number of times a surfer visits page i. By
convention, we define pij,S = 0 for j 6∈ S.

max
∑

i,j∈N,S⊆N

rij,S · (xipij,Syi,S) (5)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N,S⊆N

xipij,Syi,S

∀ i ∈ N :
∑

j∈N,S⊆N

yi,S ≤ 1

∀ i, j ∈ N : 0 ≤ yi,S ≤ 1
∀ i ∈ N : xi ≥ 0.

4 The Cooperative Hyperlink Design Game

Cooperative game theory, defined by von Neumann and Mergenstern in 1944 [10],
studies games in which the primitives are actions taken by coalitions of players
(see [6] for background on cooperative game theory). The setting defined in
Section 2 can be interpreted as a cooperative game where the nodes of the graph
(i.e., the web pages) are the players. Thus, each web page is owned by a individual
self-motivated agent such as a profit center within a company. This individual
seeks hyperlinks that maximize his own revenue, but may cooperate with other
web page owners in doing so and thereby capitalize on the induced externalities
between web pages. For simplicity of presentation, we again describe our results
in the case of no externalities between links, although all our results extend
easily to the general case using program 5.

We consider both a transferrable and non-transferrable utility setting. In a
transferrable utility setting, the value generated by a coalition may be distributed
in an arbitrary manner among the members of the coalition whereas in our
non-transferrable setting, each node in a coalition receives only the revenue it
generates3.
3 The formal definition of non-transferrable games allows for more general payoff vec-

tors.



4.1 Cooperative Game with Transferrable Utility

In a transferrable utility game, the underlying assumption is that the revenue
generated by a coalition may be shared among its members in any manner. A
transferrable utility (TU) game is defined by a value function v which assigns
to every possible coalition of players the value they can achieve. In our setting,
the value v(S) of a subset S of nodes is the value of the corresponding linear
program 4 with variables restricted to the set S (i.e., the LP applied to the
subgraph induced by the nodes in S). A solution of the game is a set of payoffs
ξi, one for each player, such that

∑
i∈N ξi = v(N).

We would like to define a notion which describes the stable solutions of the
game. A standard such notion is that of the core, defined by Gillies, Shapley, and
Shubik in a series of papers in the 1950s and 1960s. A solution is in the core of a
coalitional game with transferrable utility if for all coalitions S,

∑
i∈S ξi ≥ v(S).

Thus, the core is described by a set of linear inequalities.

Definition 1. A set of payoffs ξi is in the core if
∑

i∈N ξi = v(N) and for all
S ⊂ N ,

∑
i∈S ξi ≥ v(S).

We prove that our game has a non-empty core. This claim can be proved
using a famous theorem of Bondareva [2] and Shapley [9] which characterizes
the games with non-empty cores. However, we provide a proof based on LP-
duality to establish our algorithmic result for computing a solution in the core.

In order to write the dual of linear program 4, we assign variables αj , βi,
and γij corresponding to the first, second, and third inequality, respectively. The
dual is then

min
∑

i∈N

αipi (6)

s.t. ∀ j ∈ N : αj − kjβj −
∑

i∈N

γij ≥ 0

∀ i, j ∈ N : − αjpij + βi + γij ≥ rijpij

∀ j ∈ N : αj ≥ 0
∀ i ∈ N : βi ≥ 0
∀ i, j ∈ N : γij ≥ 0.

We claim the payoffs ξi = αipi are in the core. Clearly
∑

i∈N ξi =
∑

i∈N αipi =
v(N) by LP-duality. Also by LP-duality, to prove for all S ⊂ N ,

∑
i∈S ξi ≥ v(S),

we only need to show that the optimal solution (αj , βi, γij) to LP 6 is a feasible
solution to LP 6 restricted to players in S. This follows easily as the inequalities
of LP 6 restricted to the players in S are a subset of those in LP 6.

We have thus proved that our game has a non-empty core, and we can find
a solution in this core in polynomial time.

4.2 Cooperative Game with Non-transferrable Utility

Transferrable utility games assume that the players are able to distribute the to-
tal utility in any manner. In many settings, such an assumption is unreasonable.



For example, in our setting, the performance of a profit center is often measured
in terms of the amount of revenue it generates for the company, and there is no
mechanism through which profit centers may share revenue prior to review. A
non-transferrable utility game generalizes transferable utility games by studying
situations such as these in which not all payoff vectors are feasible for a coalition.

A non-transferrable utility (NTU) game consists of a set N of players and
for each coalition S ⊆ N a set V(S) ⊂ <|S| of feasible payoff vectors for that
coalition. The sets V(S) are assumed to satisfy some mild assumptions, namely:
1. V(S) is closed; 2. if v ∈ V(S), then for all v′ ∈ <|S| with v′ ≤ v (coordinate-
wise), v′ ∈ V(S); and 3. the set of vectors in V(S) in which each player receives
at least the utility he can achieve individually is a nonempty, bounded set.
Intuitively, a solution to an NTU game with payoffs v ∈ V(N) is stable (in
the core) if no coalition S can withdraw and achieve a payoff vector v′ ∈ V(S)
such that each member of S improves his payoff. For notational convenience, we
will use v|S denote the vector in <|S| whose coordinates are the coordinates of v
restricted to the players in S. A vector v ∈ V(N) is in the core of the NTU game
if there is no coalition S and vector v′ ∈ V(S) such that v′ > v|S (coordinate-
wise). The following result of Scarf [8] states a condition under which an NTU
game has a non-empty core.4 Let λS be a fractional partition λS of players, i.e.,
a set of coefficients 0 ≤ λS ≤ 1 of subsets of N such that for all players i,∑

S:i∈S λS = 1. An NTU game is called balanced if, for every fractional partition
λS , a vector v ∈ <|N | must be in V(N) if v|S ∈ V(S) for all S with λS > 0.

Theorem 1. (Scarf) A cooperative game with non-transferrable utility has a
non-empty core if it is balanced.

In our setting, the set V(S) consists of the payoff vectors v where vi is (at
most) the revenue of i in some hyperlink structure on S. More formally, v ∈ V(S)
if and only if there is a (fractional) graph G on nodes S such that for each
player i ∈ S, vi is at most the expected revenue of i in G. Alternatively, we can
state this condition using program 1: v ∈ V(S) if and only if there is a feasible
solution (xi, yij) to program 1 such that for each player i ∈ S, vi is at most∑

j rji · (xjpjiyji) (the expected revenue of i). These sets V(S) clearly satisfy
the assumptions stated above, and so our game is an NTU game. Here, we use
Scarf’s theorem to prove the following statement.

Theorem 2. There is a fractional graph in the core of the web site game.

Proof. Consider any fractional partition λS and payoff vectors v(S) ∈ V(S). Let
v be the vector whose i’th coordinate is the minimum over all S containing i of
v(S)|i. We prove that there is a fraction graph G whose corresponding payoff
vector v′ satisfies v′ ≥ v (coordinate-wise) and thus the game is balanced. Our
theorem then follows from Scarf’s theorem.

Let (xi,S , zij,S) be a feasible solution to LP 4 on set S such that v(S) ≤∑
j∈S rjipjizji,S . Consider the solution (xi, zij) to LP 4 where xi =

∑
S:i∈S λSxi,S

4 This is a generalization of the result of Bondareva [2] and Shapley [9] which states
a condition under which a TU game has a non-empty core.



and zij =
∑

S:i,j∈S λSzij,S . As (xi, zij) is a convex combination of feasible so-
lutions, it is also feasible and thus the corresponding graph G is a feasible
fractional graph. Furthermore, the revenue v′|i of a node i in G is at least∑

j∈N rjipjizji =
∑

S:i∈S λS

∑
j∈S rjipjizji,S ≥ minS v(S)|i ≥ v|i.

Fractional graphs can be thought of as the result of mixed strategies in link
selection. In other words, if we allow a node i to have fractional out-links of
total weight at most ki (or probabilistically select ki links according to their
fractional weight), then the core is non-empty. See section 5 for a discussion
regarding computational issues and “pure” strategies.

We end with a comment regarding the efficiency of the graphs in the core.
Whereas the efficient (that is, revenue-maximizing) graph is in the TU core, this
may not be the case for the NTU core. In fact, the solutions in the NTU core
may be arbitrarily inefficient. As an example, consider the game on three nodes
a, b, and c. Suppose pa = 1 so a surfer always enters the site at node a. The
revenue of any link entering node a is 1, b is 1, and c is R for an arbitrarily large
R. Each node is allowed (fractionally) one out-link. The transition probabilities
are pab = 1/2, pba = 1/2, pac = 1/2, and all other transition probabilities are 0.
It is easy to check that the only solutions in the NTU core of this game include
integrally the set of links {ab, ba}. However, the revenue of any such graph is
constant while the efficient graph {ba, ac} has arbitrarily large revenue.

5 Discussion

Our model and results are quite general and can be accommodated to handle
a large number of scenarios. We discuss some of them here, and mention a few
open questions.

Content-related restrictions. In many web sites, the link structure might
be subject to certain content-related restrictions. For example, perhaps MSNBC
is required to link to MSN search regardless of the transition probability. Our
setting is general enough to handle a wide variety of such restrictions by ap-
propriately setting certain pij,S to zero. In the above example, if a link ij is
required to appear, we can set the probability pi′j′,S to zero for all i′, j′, and
S where j 6∈ S. Similarly, if a link ij is forbidden from appearing, we can force
our solution to obey this restriction by setting the probability pij,S of the link
to zero for all S.

Costly links. In our model, the optimal hyperlink structure of a web site
depends on the transition probabilities of a links which in turn depend on the
set of other links on the page. In addition, one could imagine a model in which
each link ij incurs an associated cost cij . This situation can easily be handled
in all our results by appropriately adjusting the maximization objective.

Location-dependent probabilities. We can model situations where page
i has ki “slots” for placing links to other pages, and the probability that a link
is clicked also depends on the slot in which the link is placed.

Accounting for revisits. Our model thus far ignored the history of a surfer
in defining the transition probabilities. However, in some settings it is reasonable



to assume that a surfer is less likely to return to a page he has already visited,
especially in the recent past. The limiting case, when a surfer never returns to a
page he has already visited, is NP-hard as can be seen easily by a reduction from
the longest-path problem. Approximating this instance remains open, as does
the computability of very interesting special cases of limited memory or simple
history-dependent probability structures. In another model, we could assume
that the transition probabilities remain the same regardless of the history, but
the revenue structure changes, i.e., a surfer does not incur any extra revenue the
second time he visits a page.

Handling different demographics. It is commonly acknowledged that
different demographics have different surfing and purchasing patterns. A 21 year-
old computer scientist from Seattle is more likely to navigate to the automotive
section of Amazon.com than a 10 year-old school-girl from Wichita and is more
likely to more spend money there than a 46 year-old farmer from Boise. One
way to optimize a web site given such information is to dynamically update the
link structure for each demographic, and indeed some of the larger web sites are
starting to take this approach with a subset of their links. If dynamic links are an
option for a web site, our results apply trivially by solving the problem separately
for each demographic. However, static link structures are still the most prevalent
style, and computing an optimal static link structure given demographic data
and associated probabilities and revenues remains an interesting open problem.

The NTU game. As the proof of Scarf’s theorem uses an exponential-time
algorithm (or, alternatively, fixed-point theorems), our result regarding existence
of the core in the NTU game is non-constructive and we do not know how to
find a fractional graph in the core in polynomial time. Furthermore, we do not
know how to find an integral graph in the core or even prove that one always
exists (although we have not been able to find a counter-example). It might be
possible to prove existence of (and perhaps even compute) an integral graph
in the core using potential proofs similar to those for proving existence of pure
Nash equilibria in non-cooperative games.

The PageRank objective. One of the most commonly used systems for
sorting web pages in search engine results is PageRank. As search engines are
the single most essential portal to the web for most surfers, “search engine op-
timization” (SEO, as the industry calls it) of a web site is crucial to its success,
so crucial that the commodity of PageRank sells for nearly $100 on eBay5. In-
formally, the PageRank of a web page is defined as the probability of that page
in the stationary distribution of a random walk on the web. Although the in-
ternal hyperlink structure of a web site does not affect it’s average (over all
pages) PageRank, it does affect the maximum: to maximize the PageRank over
all pages of a page in the web site, all pages should link to the page with high-
est entrance probability. This structure is trivial and unlikely to work given
the search engine industry’s spam detection efforts. However, one could try to

5 Merchants selling PageRank are purportedly themselves high-ranked pages and are
selling the placement of a text-link on their page with the sole intent of boosting the
linked-to page’s rank.



maximize this objective with certain restrictions on the hyperlink structure that
attempt to avoid detection like maximum in-degree. The NTU game also poses
an interesting question.
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