
Predicting Future High-Cost Patients:                                                                    

A Real-World Risk Modeling Application 
 

 

Sai T. Moturu*#, William G. Johnson#+, Huan Liu*  
*
Department of Computer Science and Engineering 
#
Center for Health Information & Research (CHiR) 

+
Department of Biomedical Informatics 

School of Computing and Informatics, Arizona State University 

Tempe, AZ 85287-8809, USA 

smoturu@asu.edu, william.g.johnson@asu.edu, hliu@asu.edu 

 

 

Abstract 
 

Health care data from patients in the Arizona 

Health Care Cost Containment System, Arizona’s 

Medicaid program, provides a unique opportunity to 

exploit state-of-the-art data processing and analysis 

algorithms to mine the data and provide actionable 

results that can aid cost containment. This work 

addresses specific challenges in this real-life health 

care application to build predictive risk models for 

forecasting future high-cost users. Such predictive risk 

modeling has received attention in recent years with 

statistical techniques being the backbone of proposed 

methods. We survey the literature and propose a novel 

data mining approach customized for this potent 

application. Our empirical study indicates that this 

approach is useful and can benefit further research on 

cost containment in the health care industry.  

 

 

1. Introduction 
 

The Center for Health Information and Research 

(CHiR) at Arizona State University houses a 

community health data system called Arizona 

HealthQuery (AZHQ). AZHQ contains comprehensive 

health records of patients from the state of Arizona 

linked across systems and time. The data, which 

include more than six million persons, offer the 

opportunity for research that can impact on the health 

of the community by delivering actionable results for 

health care researchers and policy makers. 

The different players that shape the health care 

market include employers, insurers, care providers, 

patients and suppliers. While containing costs is of 

high priority to insurers and purchasers, health care 

providers and suppliers would prefer to resist such cost 

containment. Since a large percentage of the patients 

depend on employers for health insurance, employers 

and insurers are primarily responsible for the incurred 

costs. Apart from health care costs, employers also 

incur other health-related expenditures due to the time 

taken by the patient to return to work and the resulting 

loss of productivity. These “indirect costs” provide 

further incentive for employers to care for the health of 

their employees and the quality of health care provided. 

The probable reasons for the consistent growth in 

health care expenditures range from the lack of a free 

market and the development of innovative technologies 

to external factors like economy and population growth 

[1]. However, most of these factors are often difficult 

to alter and a relatively easier goal is to devise effective 

cost containment measures. It is well known that a high 

proportion of health care costs are associated with a 

small proportion of patients. This phenomenon has 

been observed for health related indirect costs in 

employed populations.  One efficient approach to 

contain costs is to focus on high-cost patients 

responsible for these expenditures and undertake 

measures to reduce costs. Predictive risk modeling is a 

relatively recent attempt at identifying high-cost 

patients to contain costs. We embark on the 

challenging task of building (learning) predictive risk 

models using real-life data from the Arizona Health 

Care Cost Containment System (AHCCCS), Arizona’s 

Medicaid program, available in AZHQ. 

The AHCCCS data was selected because it contains 

a large number of patients that can be tracked over 

multiple years and it contains the features required for 

this study. Apart from the challenge for data analysis 



due to the voluminous amount of patient records and 

the considerable amount of variation among similar 

patients, such cost data provides a bigger challenge due 

to the skewed cost distribution. It has been observed 

that the top ten percent of the population accounts for 

more than two-thirds of the health expenditures and this 

has remained consistent over the years [2].  

Since a tiny percentage of patients create a large 

portion of the impact, identifying them beforehand 

would allow for the design of better cost containment 

measures. Note that historical data provides better 

information about a patient than predictive models but 

neither is used for discriminatory purposes. Early 

identification using predictive models can help design 

targeted interventions and more effective disease and 

case management programs for high-risk patients that 

can help defer or even avoid adverse outcomes. From 

the perspective of the employers, better return on 

investment could be achieved due to the reduction in 

indirect costs while insurers are helped by the reduction 

in risk. Such predictions could also help establish 

capitation reimbursements. However, the data 

imbalance provides a challenge for such prediction. 

As a part of this study, we propose a predictive risk 

modeling approach to identify high-risk patients and 

use the results as a basis for developing predictions of 

the probability that an individual would become a high-

cost patient. We borrow from the field of data mining 

and machine learning to design such an approach as it 

has been successfully applied in many applications 

including financial applications [3].  However, it has 

not been regularly used in the field of health care data 

analysis. We study the possibility of applying some of 

these data mining techniques to aid in predictive risk 

modeling, where we aim to predict the outcome of a 

patient for the next year based on data from the current 

year. We propose an approach for the same using a 

combination of sampling and classification techniques. 

 

2. Related Work 
 

2.1 Learning from imbalanced data 
 

The primary problem while analyzing health care 

data with respect to expenditures is the highly skewed 

nature of the data. The problems of dealing with 

imbalanced data for classification have been widely 

studied by the data mining and machine learning 

community [4].  Most classification algorithms assume 

that the class distribution in the data is uniform. 

Particularly, the metric of classification accuracy is 

based on this assumption and algorithms often try to 

improve this faulty metric while learning from 

imbalanced data. It is essential to pay attention to this 

fact while dealing with health care expenditure data. 

The two most common solutions to this problem 

include non-random sampling (under-sampling or 

down-sampling, over-sampling or up-sampling and a 

combination of both) and cost-sensitive learning. Both 

solutions have a few drawbacks (most importantly, 

under-sampling might neglect some key instances while 

over-sampling might result in overfitting) but they are 

equally successful over conventional techniques [5, 6].   

Different studies have compared the usefulness of 

over-sampling, under-sampling and cost-sensitive 

learning in the past. While some suggest that there is 

little difference in their outcomes, others indicate that 

one of them is better. These contrasting results have 

made it difficult to pick one of these as a better option. 

In addition, the combination of under-sampling and 

over-sampling is also found to be useful [6, 7, 8, 9, 10]. 

Despite the success of these techniques in other 

domains, none of them have been applied to health care 

expenditure data in the past. In this study, we explore 

the possibility of using non-random sampling as a key 

element while learning predictive risk models. 

 

2.2 Current techniques  
 

Health care data sets have been used in the past for 

the prediction of future health care utilization where the 

goal varied from predicting individual expenditures to 

estimating total health care expenditures. Typically, 

various regression techniques have been employed for 

this task with varying success. Ordinary least squares 

regression is used in many studies but its assumptions 

are not satisfied by the skewed distribution of the costs. 

These techniques generally tend to predict the average 

cost for a group of patients satisfactorily but on an 

individual basis, the predictions are not very accurate. 

Other approaches include transforming the distribution 

to match the assumptions of the analysis technique and 

using the Cox proportional hazards model [11].  

Risk-adjustment models that can forecast individual 

annual health care expenses are also available. These 

can predict high-cost patients using a cost threshold. 

The utility of these models arises from the predictors 

employed. They use utilization data and disease-related 

features or morbidity indicators based on diagnoses 

codes and other claims-based data [12]. Though current 

techniques for the analysis of health care cost data are 

predominantly statistical, data mining could prove just 

as useful and we explore this possibility. 

 

2.3 Predictors of high-cost 
 



Health care data sets from different sources have 

been used to predict future utilization. Self-reported 

health status data gathered from surveys has been used 

to predict expenditures [13] and group patients into 

cost categories [14]. Instead, administrative claims data 

is employed in this study. Demographic variables like 

age and sex are known to work well as predictors for 

expenditure. Apart from such predictors, disease-

related information from various utilization classes 

such as inpatient, outpatient and pharmacy has been 

used earlier, either separately or together to predict cost 

outcomes. It has been suggested that using multiple 

utilization classes provides better predictions [15]. 

Comorbidity indices that quantify the diseases or 

conditions possessed by the patient have also been used 

as predictors. However, recent studies suggest that the 

use of multiple utilization classes and the use of simple 

count measures like number of claims or prescriptions 

were found to be better predictors of health care costs 

[16, 17]. Though the performance of such indices may 

vary, disease information is still a key predictor. 

 

3. Predictive Risk Modeling  
 

3.1 Data and features 
 

The size of AZHQ necessitates the selection of a 

specific subset for analysis. The primary requirement is 

for a multi-year administrative claims-based data set 

containing disease-related information from various 

utilization classes. It is also essential that there is 

demographic variation among patients. Based on these 

requirements, AHCCCS data that provides a large 

sample size of 139039 patients was selected. A total of 

437 demographic and disease-related features were 

extracted from the original AHCCCS data for three 

consecutive years (2002 to 2004). All the features in 

the data set were either categorical or binary. The 

patients were categorized into the high-cost and lower 

cost classes based on the paid amount. Since the goal is 

to predict future costs, features from one year and class 

from the following year have been used together. 

Training data was constructed with features from 2002 

and class from 2003 while test data was constructed 

with features from 2003 and class from 2004. 

Demographic variables including age category (ages 

in groups of five), gender, county, race and marital 

status have been used. Age and gender have been 

included based on previous success. Race, location and 

marital status have been included due to their possible 

impact on both health and financial aspects. Disease-

related data from various utilization classes including 

inpatient, outpatient, emergency department and 

pharmacy is used. For inpatient, outpatient and 

emergency department data, procedure codes from the 

International Classification of Diseases (ICD) have 

been grouped into twenty major diagnostic categories 

(MDC). For the pharmacy data, the classification has 

been derived from the National Drug Code (NDC) 

classification with 136 categories. For each of these 

196 features, information is available as a count of the 

number of visits or as a binary value to indicate if there 

have been any visits within the category. We refer to 

these as visit counts and binary indicators respectively. 

Since our interest is in predicting high-cost patients, 

it is necessary to separate patients into classes. The 

practice of discounting billed charges in the health care 

industry requires that the amounts paid for services are 

used rather than the amounts charged. Hence, payments 

are used in this study. To differentiate cost classes, we 

use thresholds of $50000 (0.69% or 954 high-cost 

patients) and $25000 (2.18% or 3028 high-cost 

patients) that ensure highly skewed data.  

 

3.2 Challenges for predictive modeling 
 

There are three major challenges for building 

predictive models. The first is from data imbalance that 

invariably results in poor performance with 

conventional analysis techniques. The selection of 

appropriate classification techniques provides the 

second challenge. The unbalanced nature of the data 

also brings about the final challenge - the selection of 

suitable evaluation metrics to gauge the performance of 

the models created by these algorithms. 

To address the challenge provided by data 

imbalance, non-random sampling has been employed to 

create a balanced training sample. A combination of 

over-sampling the minority class (high-cost patients) 

and under-sampling the majority class (lower costing 

patients) is employed to create a balanced sample with 

an equal number of patients from both classes. This 

approach is reasonable as it has proven successful in 

the past. The large data size is also tackled by 

sampling. Training data is thus sampled from the data 

with features from 2002 and class from 2003.  

The next challenge is model learning. We have 

tested a variety of popular classification algorithms to 

focus on the challenge of learning from the training 

data. Out of these algorithms, five worked considerably 

better. These include the Support Vector Machine 

(SVM) classifier, Logistic Regression, Logistic Model 

Trees, AdaBoost and LogitBoost (the last two used a 

Decision Stump classifier and 250 iterations). 

The models learned from training data using these 

algorithms are used to predict on the test data with 

features from 2003 and class from 2004. The 

performance evaluation of these models provides the 



final challenge. Traditional measures of success like 

accuracy are not useful as the data is highly skewed. 

We propose to use the following evaluation metrics: 

1. Sensitivity: Sensitivity corresponds to the 

proportion of correctly predicted instances of the 

minority class with respect to all instances of that 

class. It is equal to the number of true positives 

over the sum of true positives and false negatives. 
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2. Specificity: Specificity corresponds to the 

proportion of correctly predicted instances of the 

majority class with respect to all instances of that 

class. It is equal to the number of true negatives 

over the sum of true negative and false positives. 
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3. F-measure: F-measure is typically used as a single 

performance measure that combines precision and 

recall and is defined as the harmonic mean of the 

two. In this study we use a single performance 

measure that combines sensitivity and specificity 

and refer to it as F-measure.  
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To evaluate the performance of these models, the 

relevance of their predictions needs to be understood. 

Consider the following example of two models created 

using non-random and random sampling. Table 1 

depicts the predictions from these models. In the first 

scenario, the model developed using a non-random 

sample correctly identifies 675 high-cost patients 

(70.8% sensitivity) while incorrectly predicting 21812 

patients as high-cost (84.2% specificity). In the second 

scenario, the model developed using a random sample 

correctly identifies 32 high-cost patients (3.4% 

sensitivity) while incorrectly predicting 82 patients as 

high-cost (99.9% specificity). Using these models, 

employers would reallocate their resources such that 

the high-risk patients are carefully looked after with 

specially designed case management and intervention 

programs. In the second scenario, 32 patients might 

benefit but the remaining 96.6% high-cost patients are 

unidentified. Hence, a large portion of the health and 

cost benefits are unattainable. In contrast, there is a 

strong possibility that many more patients are benefited 

in the first scenario. This example depicts the need for 

an acceptable tradeoff between specificity and 

sensitivity as can be evaluated by the F-measure, with a 

specific need for high sensitivity.  

To summarize, we outline our three-pronged 

approach to predictive risk modeling for clarity. The 

first preprocessing step includes the use of non-random 

sampling to create balanced training data. In the second 

model building step selected classification algorithms 

are used to learn models from the training data. The 

final test step involves model testing that is evaluated 

by the three selected measures. This sets the stage for 

an empirical study on predictive risk modeling. In the 

following section, we first describe our experimental 

design and then discuss experimental results. 

 

 
 

4. Empirical Study 
 

4.1 Experimental design 
 

Employing the AHCCCS data, an extensive range of 

experiments are conducted using subsets of the data to 

provide a comprehensive comparative outlook. All 

experiments have been performed using the Weka 

software [18]. The data set with a threshold of $50,000 

for class separation containing all available binary-

valued disease features was used for the default set of 

experiments. Non-random sampling was used to create 

training data as a default. For each experiment, all 

selected classification algorithms have been used to 

create predictive models to identify the best one. The 

following dimensions were used for comparison. 

 

4.1.1 Sampling techniques. Experiments were 

designed to depict a clear difference in performance of 

the sampling techniques. One set of experiments were 

performed using random sampling where 50% of the 

data was randomly selected for learning. Another set of 

experiments were performed using non-random 

sampling where 20 random samples were obtained for 

both classes, with every sample containing 1000 data 

points. The resulting data contained 40000 data points. 

 

4.1.2 Combinations of information from different 

utilization classes. To assess the best combination of 

information from various utilization classes, four sets 

of experiments were performed. These experiments 

contained a varying amount of data including 

experiments using demographic information only, 

demographic and inpatient information, demographic 

and pharmacy information, and the default set with all 

the pieces of available information. 

 

Table 1: Confusion Matrix Table 1: Confusion Matrix Table 1: Confusion Matrix Table 1: Confusion Matrix –––– Random  Random  Random  Random vs.vs.vs.vs.    
NonNonNonNon----randomrandomrandomrandom Sampling Sampling Sampling Sampling    



4.1.3 Visit counts and binary indicators. Separate 

data sets with either the visit counts or binary indicators 

for each disease-related feature were used for these 

experiments to gauge the difference between the two. 

Results are provided for the default experiment. 

 

4.1.4 Thresholds for class differentiation. Two 

different thresholds ($50000 and $25000) were used to 

differentiate cost classes to assess whether the 

technique is robust to variations along this boundary. 

Results are provided for the default experiment. 

 

4.2. Results and discussion 
 

4.2.1. The importance of non-random sampling.  

Both random and non-random samples are drawn from 

the same data to form training data in order to build 

predictive models. The purpose of this experiment is to 

verify the usefulness of non-random sampling. Table 2 

provides the results from this comparison. It is apparent 

that random sampling provides very poor sensitivity 

with less than 10% of the high-cost patients being 

identified correctly. Additionally, we consider a 

baseline model where patients are predicted to be in the 

same class as they were in the previous year. Such a 

model provides a sensitivity of 0.276 and a specificity 

of 0.993 for this data (an F-measure of 0.432). Low 

sensitivity indicates that not many high-cost patients 

remain in that category for the next year making 

predictive modeling more difficult. The sensitivity for 

the baseline model is much better than that achieved 

from random sampling but poorer than that from non-

random sampling. Non-random sampling helps in 

achieving sensitivity as high as 0.7 but as one would 

expect, this comes with a loss in specificity. However, 

the F-measure is much higher (over 0.7 for all five 

algorithms) indicating that the tradeoff between 

sensitivity and specificity is the best among the three 

options. These results clearly depict the effectiveness 

of non-random sampling for predictive modeling. 

 

4.2.2 Selected classification algorithms perform 

well. Five classification algorithms were used to learn 

predictive models for all the experiments with the 

purpose of identifying the best among them. Recall that 

these algorithms were selected over many others from 

our preliminary analysis. Tables 2, 3, 4 and 5 depict 

that these five techniques perform consistently well 

across all dimensions. Though the F-measure indicates 

that results from the LogitBoost algorithm seem 

marginally better, one can only conclude that any of 

these five could be used to learn a suitable predictive 

model from non-randomly sampled training data. 

 

 

 

 
 

4.2.3. Using different combinations of disease-

related information. Multiple combinations of 

disease-related information from different utilization 

classes are compared in Table 3. The purpose of this 

experiment is threefold: (1) to gauge the utility of 

demographic information (2) to identify whether 

inpatient or pharmacy information is more useful (3) to 

identify the combination with the best performance. 

From among these combinations, the use of only 

demographic information is the least useful as depicted 

by the F-measure (0.726 while using the LogitBoost 

algorithm for the default experiment). This provides a 

high sensitivity (0.831) accompanied by a significantly 

lower specificity (0.645). Nevertheless, this result is 

striking because it manages such high numbers despite 

the use of little information and has much better 

sensitivity than the baseline model and random 

Table 2: Random Table 2: Random Table 2: Random Table 2: Random vs.vs.vs.vs. Non Non Non Non----random Samplingrandom Samplingrandom Samplingrandom Sampling    

Table 3Table 3Table 3Table 3: Using different combinations of disease: Using different combinations of disease: Using different combinations of disease: Using different combinations of disease----
related featuresrelated featuresrelated featuresrelated features    



sampling using all information. This is particularly 

promising because it provides a way to categorize 

patients when prior information is unavailable. Adding 

pharmacy data results in a comparable F-measure 

(0.74). However, this time the sensitivity (0.668) is 

lowered while the specificity is higher (0.829). Using 

inpatient data instead of pharmacy data causes a drop 

in specificity (0.747) and a significant improvement in 

sensitivity (0.816). Surprisingly, the F-measure (0.78) 

in this case is the best among the four comparisons.  

The use of all disease-related and demographic 

information results in a slightly lower F-measure 

(0.769) while achieving greater specificity (0.842) and 

lower sensitivity (0.708). Despite the varying tradeoffs, 

these combinations provide promising results 

indicating the flexibility of our approach, implying that 

predictive models can be created from varied data sets 

with differing disease-related information. 

 

4.2.4 Binary-valued disease-related features are 

useful. Disease-related features using both binary 

indicators and visit counts were compared. Visit 

information is not always available and this comparison 

helps inspect the performance in such cases. It can be 

observed from Table 4 that using binary indicators 

provides a slightly lower specificity (0.842 to 0.894 in 

the case of the LogitBoost algorithm) and a higher 

sensitivity (0.708 to 0.646 for the same case) compared 

to the use of visit counts. Though one may expect that 

count measures should provide much better results, our 

experiments show that the F-measure is marginally 

higher while using binary indicators (0.769 to 0.750). 

This unexpected result is consistent across the five 

algorithms and could imply that visit counts are not as 

important as one would expect. Instead, binary 

indicators can result in good predictive models. 

 

4.2.5 Robustness to changes in class threshold. Two 

different thresholds were used for class separation to 

indicate the robustness of this technique to changes in 

this threshold. This comparison is interesting because 

we observe from Table 5 that the results for the higher 

threshold consistently show better sensitivity and 

specificity (0.708 and 0.842 as opposed to 0.696 and 

0.819 while using the LogitBoost algorithm). One 

would expect that the lower threshold improves the 

balance between classes providing better results. This 

is true in the case of random sampling where the 

sensitivity (0.069 to 0.034) and F-measure (0.129 to 

0.065 while using the LogitBoost algorithm) show a 

marked improvement in the data set with the lower 

threshold. However, with non-random sampling, the 

training data is already balanced and hence, it does not 

affect the results. Since there are more patients closer 

to the lower threshold, it is likely that there is a higher 

chance of error. This could be the reason for the slight 

underperformance while using non-random sampling 

with a less skewed data set. This comparison indicates 

that the threshold can be adapted as required with 

varied data sets while still achieving similar results.  

 

 

 

 
 

 

 
 

5. Conclusions and Future Work 
 

This study provides a useful look at predictive risk 

modeling for future high-cost patients using a real-

world data set. Results indicate that non-random 

sampling helps balance the challenges resulting from 

the skewed nature of health care cost data. Since there 

are multiple studies in this domain with a variety of 

predictors, techniques and goals, it is difficult to 

compare results. However, studies with similar 

performance metrics indicate that these results show an 

improvement, primarily due to the use of non-random 

sampling [12, 14]. Further, we compared many 

classification algorithms for this task and found that a 

select few work equally well with our data. Though we 

find that it is hard to choose between these algorithms, 

results indicate to future users a handful of appropriate 

classification techniques for this task. Our proposed 

approach for predictive modeling creates a model by 

Table Table Table Table 5555: Performance of different thresholds: Performance of different thresholds: Performance of different thresholds: Performance of different thresholds    

Table 4Table 4Table 4Table 4: Disease: Disease: Disease: Disease----related features: Binary related features: Binary related features: Binary related features: Binary 
indicators indicators indicators indicators vs.vs.vs.vs. Visit counts Visit counts Visit counts Visit counts    



learning from the data and can therefore be adapted 

suitably to varied data sets. In addition, the threshold 

for high-cost patients is tunable and can be varied 

depending on the goals of a study. Comparisons using 

different combinations of disease-related information 

from various utilization classes throw up some 

surprises. Using disease-related information from all 

utilization classes is undoubtedly useful but inpatient 

information could prove just as useful. More 

importantly, demographic information alone provides a 

viable starting point for predictive modeling when prior 

data is unavailable. Additionally, we find that effective 

predictive models can be created without patient visit 

data. These results provide useful pointers regarding 

the selection of features appropriate for risk modeling. 

All these taken together signify the flexibility of our 

approach for predictive risk modeling and the benefits 

that can be obtained from such analyses. 

Though our approach to balance training data using 

non-random sampling is intuitive, it has been found 

that better results could be obtained when the minority 

class was over-represented in the training data [5]. 

Hence, tweaking the sampling method is one possible 

direction to improve performance. The parameters of 

the classification algorithms can also be tuned further 

to improve performance. In addition, the possibility of 

employing cost-sensitive learning algorithms and 

outlier detection techniques could also be evaluated.  

Predictive risk modeling is a useful technique with 

practical application and high impact. We provide a 

promising approach that is beneficial, resilient and 

proven to be successful on real-world data. 

Nevertheless, there is further scope to improve the 

interpretation of these results. It is commonly observed 

that a considerable percentage of high-cost patients do 

not remain that way every year. Also, two patients 

could share very similar profiles with only one of them 

being high-cost. Studying these seemingly anomalous 

patients could provide a better understanding of how a 

high-cost patient is different from other patients. 

Working with key partners and data owners, we 

endeavor to provide a reasonable and patient-specific 

answer to this question that will have a significant 

impact on cost containment in the health care industry. 
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