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Abstract—This paper presents a hierarchical approach for 
building fuzzy classifiers directly from data following a multi-
level grid-like partition of the input domain. The fuzzy 
classifier is actually the union of several fuzzy systems built on 
input domain regions increasingly smaller. In order to 
guarantee high interpretability and to avoid the explosion of 
the number of rules, only the necessary partitions are built as 
the hierarchical level increases. Finally, a genetic algorithm is 
employed to optimize some free parameters of the proposed 
methodology. The method has been validated on 10 well-
known benchmark datasets, by showing how the achieved 
results compare favorably with those obtained by other fuzzy 
classifiers in the literature. In addition, we apply our method to 
three case studies related to energy systems. In the first case 
study we linguistically describe how the solar irradiation and 
the temperature of the photovoltaic (PV) panel relate to the 
quantity of energy produced by a PV installation. The second 
and third case studies refer to the estimation of energy 
consumption in buildings. More precisely, we describe how the 
solar irradiation affects the use of electric lighting, and how the 
outdoor temperature impacts on hot water boiler usage. 

Keywords-energy consumption; fuzzy rule-based classifier; 
genetic algorithm; hierarchical approach; pattern classification; 
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I.  INTRODUCTION 
Fuzzy rule-based systems have been widely applied to 

pattern classification problems thanks to their capability to 
achieve good trade-offs between accuracy and 
interpretability [1, 2]. In particular, interpretability of a fuzzy 
rule-based system is typically measured in terms of 
complexity of the rule base, and depends on such factors as 
comprehensibility of fuzzy partitions of the domains of the 
involved linguistic variables, number of input variables, 
number of conditions in the antecedent of each rule, and 
number of fuzzy rules. In its simplest form, a fuzzy rule-
based classifier (FRBC) is a system consisting of fuzzy if-
then rules having a class label as consequent. 

When designing an FRBC two main problems must be 
considered: fuzzy classifier identification and fuzzy 
parameter optimization. Further, regarding the former, major 
issues are i) how to choose the membership functions of 
linguistic variables, ii) how to generate the fuzzy rules, and 
iii) how to determine the output class.  

A large number of methods for extracting fuzzy rules 
directly from numerical data have been proposed, thus 

making prior knowledge about the data unnecessary. These 
methods include heuristic procedures [3, 4], neuro-fuzzy 
techniques [5, 6], clustering methods [7, 8], genetic 
algorithms [9-11], fuzzy decision trees [12, 13], and data 
mining techniques [14, 15]. 

The antecedent part of fuzzy rules may contain single-
dimensional fuzzy sets obtained by partitioning each input 
dimension. Antecedent fuzzy sets may, e.g., have pre-
specified linguistic values with fixed membership functions 
obtained by homogeneously partitioning each axis of the 
pattern space [16] or may be purposely defined by domain 
experts. Alternatively, multi-dimensional antecedent fuzzy 
sets may be generated by applying a clustering algorithm to 
sample input-output data [17]. Sometimes, these multi-
dimensional antecedent fuzzy sets are projected onto each 
axis of the input space to improve the interpretability of the 
clusters produced [18]. In all cases, the output class 
associated with each fuzzy subset (either grid cell, identified 
by the partitions on the input dimensions, or cluster) of the 
pattern space is derived from the training samples belonging 
to that subset. 

Of course, the performance of an FRBC depends on the 
grain size of the fuzzy partition of the pattern space: a too 
coarse fuzzy partition may cause many misclassifications 
while a too fine fuzzy partition may miss to generate fuzzy 
if-then rules due to lack of training samples in the 
corresponding areas of the input space. A possible solution is 
to simultaneously use different partitions with different 
resolutions at the expense of a high number of fuzzy rules, 
especially in high-dimensional spaces [19]. Other 
alternatives are possible. In [20], a hierarchical fuzzy 
partition is generated independently over each dimension in 
an ascending way by aggregating fuzzy sets. In [21], a 
hierarchical fuzzy rule-based classification system is 
proposed for imbalanced datasets. Basically a finer 
granularity of the fuzzy partitions is applied in the boundary 
areas between the classes. 

Regarding fuzzy parameter optimization, several 
techniques have been applied to set the fuzzy system 
parameters based on the training samples. These include the 
type and shape of fuzzy membership functions, and the 
number and structure of fuzzy rules. E.g., Wang and Lee 
[22] apply the Mapping-Constrained Agglomerative 
clustering method to identify the cluster configuration of a 
given dataset for the construction of an initial classifier 
structure. The linear and nonlinear parameters of the 



 

 

classifier are then optimized, respectively, by a recursive 
least squares algorithm and a modified Levenberg-Marquardt 
algorithm.  

In addition, genetic algorithms (GAs) are often used 
together with other computational intelligence techniques, to 
produce intelligent hybrid systems. A GA is an optimization 
process which starts with a randomly generated initial 
population of chromosomes, representing candidate solutions 
to the problem at hand, and evolves toward populations 
having a better fitness. E.g., in [2], interval-valued fuzzy sets 
with a post-processing genetic tuning step of their parameters 
are used to model the linguistic labels. Li and Wang [1] 
propose a hybrid co-evolutionary GA for learning 
approximate fuzzy rules, by using a q-nearest neighbor 
replacement method to coevolve a population of rules, and a 
local search method. A classifier is built by extracting rules 
with minimal redundancy from the final population. Setnes 
and Roubos [9] apply fuzzy clustering to produce an initial 
TSK fuzzy rule set, then they use a real-coded GA to 
simultaneously optimize the rule antecedents and the 
consequents. Ishibuchi et al. [23] propose the combination of 
two fuzzy genetic learning approaches into a single hybrid 
algorithm for designing FRBCs. Abonyi et al. [24] use a 
decision tree-based initialization of the FRBC for feature 
selection and initial partitioning of the input domains. The 
initial fuzzy classifier is optimized by a similarity-driven rule 
reduction and a multi-objective GA. 

In this paper we introduce an easy-to-use approach for 
efficiently extracting fuzzy rules from available data [25, 26] 
and we propose its application to three real-world datasets 
related to energy systems applications. The fuzzy system is 
obtained exploiting a hierarchical scheme, as a combination 
of fuzzy models built (employing the fuzzy rule-based 
classifier frbc [27]) on input domain regions increasingly 
smaller, according to a multi-level grid-like partition. Only 
the necessary partitions are built, in order to avoid the 
explosion of the number of rules with the increase of the 
hierarchical level. The training technique available in frbc 
for the generation of the rule base is the Wang and Mendel 
method extended to classification problems, an adaptation of 
the well-known namesake method for regression problems 
[28]. The fuzzy reasoning method (FRM) employed in frbc 
is a general model of fuzzy reasoning for combining 
information provided by different rules and determining the 
output class. It is an extension, presented in [29], of the fuzzy 
classifier defined by Kuncheva [30]. 

Finally, a GA is used to optimize some free parameters of 
the hierarchically built model, by obtaining a genetic-fuzzy 
system, called from now on “HFRBC-GA”. The validity of 
the proposed approach has been confirmed by applying it on 
10 well-known benchmark datasets. The achieved results 
compare favorably with those obtained by other authors 
using different techniques. 

To illustrate the proposed approach, we employ three 
case studies related to energy systems applications. More in 
detail, we refer to the assessment of the energy produced by 
a solar photovoltaic (PV) installation and to the evaluation of 
two different kinds of building’s energy consumptions. In 
fact, recently, thanks also to the growing evolution of 

technologies, the energy sector has drawn the attention of the 
research community in proposing useful tools to deal with 
issues of energy efficiency in buildings and with solar energy 
production management. In addition, the European 
Commission has adopted a plan to reduce energy 
consumption of 20% by 2020 [31, 32], by promoting energy 
efficiency, and the use of renewable energy sources. 

The first case study refers to the estimation of PV energy. 
A PV installation consists of a series of solar panels which 
using sunlight energy generate directly usable electricity due 
to the PV effect. A PV panel (see Fig. 1) is composed in its 
turn of individual PV cells. Usually several panels are 
connected together to form a system called PV array, to 
which an inverter is connected that measures the production 
power of that array and converts the DC power into AC 
power, as requested by the electrical network. PV 
installations are typically used as energy sources for the 
electric grid. In fact, PV energy is considered a free, clean 
and inexhaustible energy source. Major issues in electric grid 
management are efficiency and reliability, which require, 
among other things, fast and easy understanding by the grid 
operator of both the electricity demand and the electricity 
supply (energy production). The manager of a PV plant can 
gain enough information from the system so as to perform 
appropriate functional operations for the installation, even if 
the exact energy production value is not known [33].  
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Figure 1.   Photovoltaic elements: PV cell, PV panel, and PV array. 

The second and third case studies refer to the estimation 
of energy consumption in buildings due to electric lighting 
and hot water boiler use. Energy consumption in buildings is 
one of the fastest growing sectors. It is estimated that the 
amount of the energy currently consumed in the European 
buildings is about 40–45% of the total European energy 
consumption. The potential benefits of estimating energy 
consumption can be useful for several purposes, ranging 
from cost reduction, improved energy control, and smarter 
load scheduling in the electric grid. The paper has the 
following structure. Section II and III, present, respectively, 
the proposed hierarchical approach to fuzzy classifiers 
construction, and the application of the proposed approach to 
three real-world case studies regarding the energy field. 
Section IV is devoted to validate our classifier, by comparing 
it with other fuzzy classifiers present in the literature on 10 
well-known benchmark classification problems. Lastly, 
concluding remarks are provided in Section V. 

II. THE PROPOSED APPROACH 
In this section we introduce the proposed hierarchical 



 

 

approach to fuzzy classifier construction. 
The methodology consists of a first step, a second 

iterative step and a final third step. Let us make some general 
considerations before describing each step in greater detail. 
Both in the first step and at each iteration of the second step 
we build a grid, respectively, on the whole input space and 
on a portion of the input space. Whatever the case, our aim is 
to find univocal mapping areas, i.e., input areas mostly 
containing patterns associated with the same class label. For 
each such area, an appropriate number of training samples 
are randomly extracted and used to generate fuzzy rules that 
model that area. Since we are interested in collecting training 
samples according to the real distribution of the available 
input patterns in relation with each output class, whenever 
we need to construct a grid in the input portion under 
consideration we should adopt an ad hoc non-uniform 
partition, e.g., based on the distribution of the input samples 
in the feature space. On the other hand, the frbc method 
expects a uniform partition of the input space. Thus, for a 
good compromise between efficiency and computational 
cost, we chose to perform a non-uniform grid partitioning of 
the original input space only in the first step, while we 
decided to adopt uniform grid partitioning of the relevant 
input area in all iterations of the subsequent second step. Of 
course, appropriate scaling will let the non-uniform grid 
partition correspond to an equivalent uniform partition used 
by the frbc system. 

In practice, our objective is to split the input domain into 
univocal mapping areas with possibly different grain size, 
and to build a separate set of fuzzy rules to model each such 
area. Let us now describe more thoroughly the three steps of 
the methodology. 

The methodology can be applied to different kinds of 
classification problem. More in detail, any number of output 
classes greater than or equal to two is allowed. Similarly, any 
number of input features greater than or equal to one is 
allowed. 

A. First Step: First-level Grid Partitioning 
In the first step, applied to the original input space, we 

carry out the following actions. 
i) We apply the k-means clustering algorithm [34] 

separately to each input dimension, with k being the 
number of clusters appropriately chosen. 

ii) We use the separation thresholds between the 
clusters for: 
ii.1) building a non-uniform grid in the whole input 

space, and 
ii.2) constructing a non-uniform fuzzy partition on 

each input dimension consisting of k 
membership functions, so as to model each 
input with linguistic variables. 

Since we use the Wang and Mendel method implemented 
in frbc, which builds a uniform fuzzy partition of each 
input feature space, two more operations must be performed 
within action ii), namely: 

ii.3) for each input feature we build a uniform 
fuzzy partition, consisting of k fuzzy sets, 

using the Wang and Mendel method 
implemented in frbc; 

ii.4) for each input feature, we use non-uniform 
scaling to transform the previous uniform 
partition into the corresponding non-uniform 
partition (built at stage ii.2): all the feature 
values are scaled from their original interval to 
the new interval, maintaining the 
proportionality. 

iii) We analyze separately each area of the grid 
previously built in order to discriminate among 
insignificant, univocal mapping and to-subgrid 
areas. More precisely: 
iii.1) an insignificant area is any grid area A 

containing a total number NA of input samples 
below a predefined first-step relevance 
threshold RT1 (the value of RT1 depends on the 
specific problem under consideration) and 
corresponds, e.g., to incompatible or unusual 
input conditions;  

iii.2) a univocal mapping area A is any non-
insignificant area in which there exists a 
dominant majority class, i.e, the class 
associated with the majority of the samples 
falling in that area, such that the number AN+  
of majority class samples is greater than, or 
equal to, a given percentage, say first-step 
dominance percentage (DP1), of the 
numerousness NA of samples falling in A; 

iii.3) each non-univocal and non-insignificant grid 
area is called to-subgrid area: each such area 
will undergo the second iterative step. 

iv) For each univocal mapping area A, a random 
extraction of min( , )AK perc N S+= ⋅  majority class 
samples is performed, with perc, appropriately 
chosen, representing a percentage of AN+ , and S, 
appropriately chosen, being a problem-dependent 
upper bound of samples of the same class that can be 
extracted from the same area. The extracted training 
samples will be used to generate, through frbc, the 
pertinent fuzzy classification rules that model the 
considered area. 

v) We build the first-level fuzzy model by training 
frbc with all the samples extracted from all the 
univocal mapping areas previously found. 

B. Second (Iterative) Step: Deeper-level Grid Partitioning 
The second step is applied to each to-subgrid area, which 

has been found either in the first step or at any iteration of 
the second step itself. For a given to-subrid area A we 
perform the following actions: 

i) we build a uniform hard partition (consisting of k 
intervals) on each input dimension of A, so as to 
construct a deeper-level uniform grid of the area 
itself; 

ii) we identify the insignificant, univocal mapping and 
to-subgrid areas inside the new grid. Similarly to 



 

 

what done before, first we eliminate from further 
consideration any insignificant area of the new grid, 
by using the second-step relevance threshold 2

iRT , 
with i, 1i ≥ , representing the iteration number of the 
second step; then we identify the univocal mapping 
areas based on the second-step dominance 
percentage 2

iDP  with i, 1i ≥ , having the same 
meaning as before; finally, each to-subgrid area of 
the new grid will undergo the second iterative step, 
thus giving origin to one more iteration. Of course, 
second-step relevance thresholds 2

iRT , 1i ≥ , will 
typically decrease with the increase of the iteration 
number i, while second-step dominance 
percentages 2

iDP , 1i ≥ , may vary according to the 
iteration number i; 

iii) we identify the minimum (hyper)rectangle (see Fig. 
2) containing all the samples falling inside the 
univocal mapping areas included in A; we construct 
a uniform fuzzy partition, consisting of k 
membership functions, on each dimension of the 
(hyper)rectangle; then we generate a deeper-level 
fuzzy model for the (hyper)rectangle by training 
frbc with an appropriate number 

min( , )aK perc N S+= ⋅  of majority class samples 
extracted from each univocal mapping area a related 
to the hyper(rectangle). 
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Figure 2.  A to-subgrid area containing five univocal mapping areas 
(colored areas), and the minimum (hyper)rectangle (dashed line) 

considered for building the deeper-level fuzzy model. 

C. Third Step: Final Fuzzy Model Generation 
In the third step, we generate the final fuzzy model, 

called merged fuzzy model, as the union of the first-level 
fuzzy model and all the deeper-level fuzzy models built during 
the hierarchical process, as Fig. 3 exemplifies. Fuzzy models 
are built on input domain regions increasingly smaller, as the 
result of the construction of appropriate grids on the 
pertinent areas of the input domain. The fuzzy sets for each 
input variable of the merged fuzzy model are the union of the 
fuzzy sets (for that input) of all the models built. We observe 
that there may be input domain regions modeled by more 
fuzzy sets (e.g., the larger one built in the first step of 

analysis and the narrower, and therefore more specific ones, 
built in the second step of analysis), as shown in Fig. 4. The 
aim is to exploit the input domain space in an effective way, 
avoiding unnecessary analysis and thus the generation of too 
many, irrelevant rules.  

1.  First-level grid 
partitioning

repeat until a 
to-subgrid area is 

found

2.  Deeper-level grid 
partitioning

3.  Combination of the first-
level fuzzy model and the 
deeper-level fuzzy models

deeper-level 
fuzzy models

first-level fuzzy 
model

merged fuzzy 
model

 
Figure 3.  Steps of the proposed methodology and resulting objects. 

D. GA-based Parameter Optimization 
We apply a GA to optimize the following parameters (i 

refers to the iteration number of the second step): the 
relevance thresholds 1RT  and 2

iRT , with 1i ≥ , the 
dominance percentages 1DP  and 2

iDP , with 1i ≥ , the 
maximum number S of samples extracted from a given grid 
area (valid for the first step and all iterations of the second 
step), the minimum rule weight w (valid for the first step and 
all iterations of the second step), and the rule weight 
modifiers 1wΔ  and 2

iwΔ , with 1i ≥ . In particular, the last 
two parameters aim, respectively, to control the complexity 
of the whole rule base, and to enhance/inhibit the influence 
of the rules of a given step/iteration. The maximum number 
of iterations is fixed heuristically. 

We adopt real-coded chromosomes. The range of 
possible values of each gene is chosen in heuristic way based 
on the specific dataset under consideration. When 
appropriate, integer approximations of real numbers are 
adopted. The fitness function is the correct classification rate 
of the fuzzy classifier. 

III. APPLICATION OF THE METHODOLOGY TO 
REAL-WORLD CASE STUDIES 

To illustrate the proposed approach we refer to three real-
world datasets related to energy systems applications. More 
in detail, we refer to three experimental case studies seen as 
three classification problems of i) energy production from a 
PV installation, ii) electric lighting energy use in office 
buildings, iii) hot water boiler energy use in office buildings. 

To use each of the datasets with the fuzzy classifier we 
transformed the output numerical values into class labels. 
For the sake of simplicity, we operated a uniform partition 
on the output domain by identifying three intervals 
corresponding to three output classes (Low, Medium, High). 



 

 

Then, we associated each output value with the energy label 
corresponding to its interval. 

Regarding the free parameters in the methodology for the 
three case studies examined, in the first step of analysis we 
adopted, k=3 in the k-means algorithm to obtain the non-
uniform partitions of the inputs, and we chose two-sided 
Gaussian membership functions for the partitions. Indeed 
they are known to be very accurate, provide complete 
coverage of the modeled space, and allow easy scaling from 
the uniform partition to the non-uniform one.  

In the second (iterative) step, we used Gaussian 
membership functions for the fuzzy partitions. Further, we 
considered the percentage perc of majority class samples to 
extract from each univocal mapping area equal to 70%, both 
in this first step and in the second step of the methodology. 

Regarding the number of hierarchical levels of the 
methodology, based on heuristic considerations, we 
considered four possible hierarchical levels, i.e., three 
iterations of the second step of the methodology. Obviously, 
the hierarchical levels following the first one are activated 
only if necessary. At each level, the decomposition of a grid 
area may actually not generate any fuzzy system, e.g., due to 
the lack of significant sub-areas found with the 
decomposition. 

The remaining free parameters were set by means of a 
GA. We used stochastic uniform selection, scattered 
crossover with probability 0.8, and uniform mutation with 
probability 0.01. The population consisted of 30 individuals 
and the maximum number of generations was 300. Thus, a 
chromosome contains the following real genes: i) the 
relevance thresholds 1RT  and 2

iRT , i=1, 2, 3, ii) the 
dominance percentages 1DP  and 2

iDP , i=1, 2, 3, iii) the 
maximum number of samples extracted S, iv) the minimum 
rule weight w, and v) the weight modifiers 1wΔ  and 2

iwΔ , 
i=1, 2, 3. In addition, for the sake of simplicity, we set 

3 2 1
2 2 2RT RT RT= = and 3 2 1

2 2 2DP DP DP= = . 
Finally, for each classification problem, we used the 

following process to calculate the test set accuracy: for each 
chromosome, we used the values of the genes of that 
chromosome to perform 30 experiments on 30 different 
training and test sets randomly generated from the available 
data, and we computed the fitness as the mean correct 
classification value on the 30 test sets. 

In the following sub-sections we report the results 
obtained on the examined case studies. 

A. PV Energy Production 
The data related to the first real-world case study were 

collected from March to July 2009 and consist of 
temperature of the surface of the solar panel, solar 
irradiation, and energy production from the PV installation 
(output parameter). 

We used both the environmental variables, i.e., 
temperature and irradiation, to estimate the quantity of 
energy produced by the PV installation. 

Fig. 4 shows the first-level and second-level grid 
partitions on the two-dimensional input domain. As we can 
see from Fig. 4, areas 3 and 7 are found to be insignificant 

and so they are discarded. Areas 1, 4, 6 and 8 are univocal 
mapping areas. In particular, areas 1 and 4, refer to low 
energy class samples, area 8 refers to medium energy class 
samples, and area 6 refers to high energy class samples. 
Finally, to-subgrid areas 2, 5 and 9 are marked for further 
analysis, thus they are additionally gridded in the first 
iteration of the second step. The analysis process is repeated 
iteratively until no area needs to be further divided. For each 
to-subgrid area found at a given analysis level, a partition is 
built in the following analysis level. 

The final fuzzy model is obtained by merging the 23 
fuzzy models previously generated in four hierarchical levels 
of analysis. The final fuzzy model consists of 83 rules and 51 
and 38 fuzzy sets, respectively, for the irradiation input 
variable and the temperature input variable. Fig. 4 shows (on 
the top and to the left) a part of the fuzzy sets used to model 
the linguistic variables.  

The best chromosome, resulting from the GA 
optimization, corresponds to a model which achieved a mean 
classification performance of 97.38%, with a maximum 
classification performance of 97.91%. The values of the 
parameters of the best chromosome are shown in Table I. 

B. Electric Lighting Energy Use 
The second real-world case study deals with energy 

consumption in office buildings due to electric lighting 
energy use. The data, collected from April to June 2010, 
consist of solar irradiation, and electric lighting energy 
consumption (output parameter) expressed in terms of active 
power. The aim is to derive the class associated with the 
energy consumption due to electric lighting, knowing 
basically the external daylight in terms of solar irradiation, 
and without having to know any information about the 
building’s position and orientation, or the lighting system. 

The final fuzzy model is obtained by merging 8 fuzzy 
models previously generated in four hierarchical levels of 
analysis. The best model obtained after the GA optimization 
achieved mean and maximum classification performances of 
86.84% and 87%, respectively, and consists of 10 rules and 
15 fuzzy sets. The values of the parameters of the best 
chromosome are shown in Table I. 

C. Hot Water Boiler Use 
The third real-world case study deals with energy 

consumption in office buildings due to hot water boiler use, 
typically for hands washing. The data, collected from April 
to June 2010, consist of outdoor temperature, and hot water 
boiler energy consumption (output parameter) expressed in 
terms of active power. The aim is to derive the class 
associated with the energy consumption due to the boiler use, 
starting from the values of outdoor temperature. Similarly as 
said before, the system uses only information about external 
weather conditions and does not need any information about 
the boiler system. 

The final fuzzy model is obtained by merging 7 fuzzy 
models previously generated in four hierarchical levels of 
analysis. The best model obtained after the GA optimization 
achieved mean and maximum classification performances of 
88.19% and 88.32%, respectively, and has 4 rules and 15 



 

 

fuzzy sets. The values of the parameters of the best chromosome are shown in Table I. 

 
Figure 4.  Grid partition of the input space obtained after the application of the first step and the first iteration of the second step of the methodology, and a 

subgroup of the fuzzy sets employed. 
 

TABLE I.  VALUES OF THE GA-OPTIMIZED PARAMETERS 

Parameter 
Case study 

PV energy Hot water 
boiler 

Electric 
lighting 

1RT  15 4 4 

2
iRT  

(i = 1, 2, 3) 
2 2 3 

1DP  80% 80% 80% 

2
iDP  

(i = 1, 2, 3) 
50% 50% 50% 

S 145 26 26 
w 0.95 0.91 0.93 

iwΔ  

(i = 1, 2, 3, 4) 
{0.45, -0.55, 

-0.15, 0} 
{0.18, -0.06, 

0.41, 0} 
{0.42, -0.11, 

-0.05, 0} 

IV. EXPERIMENTAL RESULTS ON WELL-KNOWN 
BENCHMARK DATASETS 

This sub-section aims to validate the proposed 
methodology for building fuzzy classifiers. We applied the 
fuzzy system built following our approach (HFRBC-GA) to 

10 well-known benchmark datasets, whose characteristics 
are summarized in Table II. All the datasets are available at 
the UCI machine learning repository [35]. 

The achieved results are shown in Table III. For each 
dataset we compared the mean performances of our 
methodology (HFRBC-GA), achieved with 30 executions of 
the methodology, with those obtained by other fuzzy 
classifiers, by choosing the best performing classifier found 
in the literature. For each model in Table III we report the 
mean number of rules generated, the number of features 
actually used (in fact, sometimes we adopted the forward 
feature selection to decrease the input space dimensionality), 
the total number of fuzzy sets employed for all features, and 
the mean test set accuracy. Occasionally, where appropriate, 
we show also the maximum test set accuracy (in square 
brackets). Please note that in the table we used the symbol ‘-’ 
when no information is available, and we introduce a new 
acronym in quotation marks when the name of the model is 
not available. 

Regarding the datasets Balance, Bupa, Haberman, 
Ionosphere, Iris, Pima, Sonar, and Wine, our model 
outperformed the other considered models, most often with 
fewer features. Regarding the Wisconsin and New Thyroid 
datasets, our mean results are comparable with those found 
in the literature (with a difference of 0.08 and 0.52 



 

 

percentage points, respectively); however, we adopted a 
lower number of features. 

TABLE II.  DESCRIPTION OF THE EMPLOYED DATASETS 

Dataset # Samples # Features # Classes 
Balance 625 4 3 

Bupa 345 6 2 
Haberman 306 3 2 
Ionosphere 351 34 2 

Iris  150 4 3 
New Thyroid 215 5 3 

Pima  768 8 2 
Sonar  208 60 2 

Wisconsin  683 9 2 
Wine 178 13 3 

 
For the sake of completeness, we compared our fuzzy 

classifier HFRBC-GA with some online classifiers employed 
by Angelov et al. [36], taking into account a selection of 
datasets from the 10 datasets considered above. More in 
detail, the datasets considered are: Sonar, Ionosphere, Pima, 
and Wine. The online classifiers taken into account are the 
self-evolving FRBC eClass1, the incremental C4.5 decision 
tree-based classifier, and the incremental kNN (k-Nearest 
Neighbor) classifier, with k=3. Table IV shows the 

classification rates of the best online classifier in [36] for 
each of the 4 datasets, and the difference with the results 
obtained by HFRBC-GA, which outperforms the online 
classifiers on all the 4 datasets. 

V. CONCLUSIONS 
In this paper we have described a hierarchical, 

genetically optimized, methodology to build a fuzzy 
classifier by merging fuzzy systems built on input domain 
regions increasingly smaller, as the result of the creation of 
appropriate grids on the input domain. The analysis of the 
input domain space avoids the generation of too many, 
unnecessary rules and drives to an optimal fuzzy rule base.  

To describe the proposed methodology, three 
experimental case studies related to energy systems 
applications were carried out. The performance of the 
proposed approach has also been successfully validated on 
10 well-known benchmark classification datasets. The 
achieved results outperform those obtained by other methods 
found in the literature.  
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TABLE III.  CLASSIFICATION RESULTS ON SOME BENCHMARK DATASETS AND COMPARISON WITH OTHER FUZZY CLASSIFIERS IN THE LITEARTURE 

Dataset Model Mean [maximum] test 
set accuracy (%) Mean # rules # Features 

used Total # fuzzy sets 

Balance 
HFRBC-GA 100  9 2 6 

FH-GBML [2] 81.12 - 4 - 

Bupa 
HFRBC-GA 75.92 [76.72] 83 3 9 

FH-GBML [2] 66.67 - 6 - 

Haberman 
HFRBC-GA 87.87 [88.78] 41.7 3 9 

FH-GBML [2] 72.23 - 3 - 

Ionosphere 
HFRBC-GA 93.26 [94.67] 17.6 3 9 

“Fuzzy DT” [8] 86.47 3.4 34 - 

Iris 
HFRBC-GA 100 7.1 2 6 

“TSK-GA” [9] 99.4 3 4 12 

New Thyroid 
HFRBC-GA 95.29 [95.83] 9.6 2 6 

FH-GBML [2] 95.81 - 5 - 

Pima 
HFRBC-GA 78.31 [80.30] 63.6 3 9 

FH-GBML [2] 75.91 - 8 - 

Sonar 
HFRBC-GA 82.67 [85.27] 41.3 2 6 

HGBML [23] 76.30 10 60 - 

Wine 
HFRBC-GA 99.41 [100] 10.2 3 9 

SANFIS [22] 99.4 3 13 34 

Wisconsin 
HFRBC-GA 98.32 [98.44] 14.7 3 9 

HFP [20] 98.4 7.8 5 - 
 
 



 

 

TABLE IV.  COMPARISON WITH ONLINE CLASSIFIERS 

Online classifier Dataset 
Sonar Ionosphere Pima Wine 

Best model [36] eClass1 Incr. C4.5 eClass1 Incr. kNN 
Classification 
rate 74.9% 83.88% 74.71% 95.59% 

Improvement by 
HFRBC-GA +7.77% +9.38% +3.6% +3.82% 

REFERENCES 
[1] M. Li and Z. Wang, “A hybrid coevolutionary algorithm for 

designing fuzzy classifiers”, Information Sciences, vol. 179, n. 12, 
2009, pp. 1970–1983. 

[2] J. Sanz, A. Fernández, H. Bustince and F. Herrera, “A genetic tuning 
to improve the performance of fuzzy rule-based classification systems 
with interval-valued fuzzy sets: degree of ignorance and lateral 
position”, Int. Journal of Approximate Reasoning, vol. 52, 2011, pp. 
751–766. 

[3] X.-Z. Wang, Y.-D. Wang, X.-F. Xu, W.-D. Ling and D.-S. Yeung, “A 
new approach to fuzzy rule generation: fuzzy extension matrix”, 
Fuzzy Sets and Systems, vol. 123, n. 3, 2001, pp. 291–306. 

[4] C. Huang and C. Moraga, “Extracting fuzzy if-then rules by using the 
information matrix technique”, Journal of Computer and System 
Sciences, vol. 70, n. 1, 2005, pp. 26–52. 

[5] E.-C.-C. Tsang, X.-Z. Wang and D.-S. Yeung, “Improving learning 
accuracy of fuzzy decision trees by hybrid neural networks”, IEEE 
Transactions on Fuzzy Systems, vol. 8, n. 5, 2000, pp. 601–614. 

[6] S. Mitra and Y. Hayashi, “Neuro-fuzzy rule generation: survey in soft 
computing framework”, IEEE Transactions on Neural Networks, vol. 
11, n. 3, 2000 , pp. 748–768. 

[7] S. Abe and R. Thawonmas, “A fuzzy classifier with ellipsoidal 
regions”, IEEE Transactions on Fuzzy Systems, vol. 5, n. 3, 1997, pp. 
358–368. 

[8] J.-A., Roubos, M. Setnes and J. Abonyi, “Learning fuzzy 
classification rules from labeled data”, Information Sciences, vol. 
150, 2003, pp. 77–93. 

[9] M. Setnes and H. Roubos, “GA-fuzzy modeling and classification: 
complexity and performance”, IEEE Trans. on Fuzzy Systems, vol. 8, 
n. 5, 2000, pp. 509–522. 

[10] E. Zhou and A. Khotanzad, “Fuzzy classifier design using genetic 
algorithms”, Pattern Recognition, vol. 40, 2007, pp. 3401–3414. 

[11] A.F. Gómez-Skarmeta, M. Valdés, F. Jiménez and J.G. Marín-
Blázquez, “Approximative fuzzy rules approaches for classification 
with hybrid-GA techniques”, Information Sciences, vol. 136, n. 1–4, 
2001, pp. 193–214. 

[12] Y. Chen, T. Wang, B. Wang and Z. Li, “A Survey of Fuzzy Decision 
Tree Classifier”, Fuzzy Information and Engineering, vol. 1, n. 2, 
2009, pp. 149–159. 

[13] X.-Z., Wang, E.-C.-C.,  Tsang and D.-S. Yeung, “A comparative 
study on heuristic algorithms for generating fuzzy decision trees”, 
IEEE Trans. on Systems, Man and Cybernetics– Part B: Cybernetics, 
vol. 31, n. 2, 2001, pp. 215–226. 

[14] M. De Cock, C. Cornelis and E.E. Kerre, “Elicitation of fuzzy 
association rules from positive and negative examples”, Fuzzy Sets 
and Systems, vol. 149, n. 1, 2005, pp. 73–85. 

[15] M.J. del Jesus, F. Hoffmann, L.J. Navascues and L. Sanchez, 
“Induction of fuzzy-rule-based classifiers with evolutionary boosting 
algorithms”, IEEE Transactions on Fuzzy Systems, vol. 12, n. 3, 
2004, pp. 296–308. 

[16] H. Ishibuchi, T. Nakashima and T. Murata, “Performance evaluation 
of fuzzy classifier systems for multidimensional pattern classification 
problems”, IEEE Transactions on Systems, Man, and Cybernetics – 
Part B: Cybernetics, vol. 29, n. 5, 1999, pp. 601–618. 

[17] S. Abe and M.-S. Lan, “A method for fuzzy rules extraction directly 
from numerical data and its application to pattern classification”, 
IEEE Transanctions on Fuzzy Systems, vol. 3, n. 1, 1995, pp. 18–28. 

[18] H. Roubos and M. Setnes, “Compact and transparent fuzzy models 
and classifiers through iterative complexity reduction”, IEEE 
Transactions on Fuzzy Systems, vol. 9, n. 4, 2001, pp. 516–524. 

[19] H. Ishibuchi, K. Nozaki and H. Tanaka, “Distributed representation of 
fuzzy rules and its application to pattern classification”, Fuzzy Sets 
and Systems, vol. 52, 1992, pp. 21–32. 

[20] S. Guillaume and B. Charnomordic, “Generating an interpretable 
family of fuzzy partitions from data”, IEEE Trans. on Fuzzy Systems, 
vol. 12, n. 3, 2004, pp. 324–335. 

[21] A. Fernández, M.J. del Jesus, and F. Herrera, “Hierarchical fuzzy rule 
based classification systems with genetic rule selection for 
imbalanced data-sets”, International Journal of Approximate 
Reasoning, vol. 50, n. 3, 2009, pp. 561–577. 

[22] J.-S. Wang and C.S.G Lee, “Self-adaptive neuro-fuzzy inference 
systems for classification applications, IEEE Trans. on Fuzzy 
Systems, vol. 10, n. 6, 2002, pp. 790–802. 

[23] H. Ishibuchi, T. Yamamoto and T. Nakashima, “Hybridization of 
fuzzy GBML approaches for pattern classification problems”, IEEE 
Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 
35, n. 2, 2005, pp. 359–365. 

[24] J. Abonyi, J.A. Roubos and F. Szeifert, “Data-driven generation of 
compact, accurate, and linguistically sound fuzzy classifiers based on 
a decision-tree initialization”, International Journal of Approximate 
Reasoning, vol. 32, n. 1, 2003, pp. 1–21. 

[25] E. D'Andrea and B. Lazzerini, “Computational intelligence 
techniques for solar photovoltaic system applications”, Proc. of 
Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, 
Italy, 2012, pp. 1–3. 

[26] E. D’Andrea and B. Lazzerini, “A hierarchical approach to multi-
class fuzzy classifiers”, Expert Systems with Applications, vol. 40, n. 
9, 2013, pp. 3828–3840. 

[27] M. Cococcioni, E. D'Andrea, and B. Lazzerini, “Providing PRTools 
with fuzzy rule-based classifiers”, Proc. of IEEE International 
Conference on Fuzzy Systems, Barcelona, Spain, 2010, pp. 1–8. 

[28] L.-X. Wang and J.M. Mendel, “Generating fuzzy rules by learning 
from examples”, IEEE Trans. on Systems, Man, and Cybernetics, vol. 
22, n. 6, 1992, pp. 1414–1427. 

[29] O. Cordón, M.J del Jesus and F. Herrera, “A proposal on reasoning 
methods in fuzzy rule-based classification systems” International 
Journal of Approximate Reasoning, vol. 20, n. 1, 1999, pp. 21–45. 

[30] L.I. Kuncheva, “On the equivalence between fuzzy and statistical 
classifiers” International Journal of Uncertainty Fuzziness and 
Knowledge-Based Systems, vol. 4, n. 3, 1996, pp. 245–253. 

[31] European Commission, “Energy 2020: A strategy for competitive, 
sustainable and secure energy”, COM(2010), Brussels, 2010. 

[32] EREC (European Renewable Energy Council), “Renewable Energy 
Technology Roadmap: 20% by 2020”, Brussels, 2010. 

[33] P.A. Gutiérrez, S. Salcedo-Sanz, C. Hervas-Martinez, L. Carro-Calvo, 
J. Sanchez-Monedero and L. Prieto, “Evaluating nominal and ordinal 
classifiers for wind speed prediction from synoptic pressure patterns”, 
Proc. of the 11-th International Conf. on Intelligent Systems Design 
and Applications (ISDA), Córdoba, Spain, 2011, pp. 1265–1270. 

[34] J.B. MacQueen, “Some methods for classification and analysis of 
multivariate pbservations”, Proc. of 5-th Berkeley Symposium on 
Mathematical Statistics and Probability, Berkeley, CA, 1967, pp. 
281–297. 

[35] A. Frank and A. Asuncion, UCI Machine Learning Repository 
(http://archive.ics.uci.edu/ml). Irvine, CA: University of California, 
School of Information and Computer Science, 2010. 

[36] P.P. Angelov and Xiaowei Zhou, “Evolving Fuzzy-Rule-Based 
Classifiers From Data Streams”, IEEE Trans. on Fuzzy Systems, 
vol.16, n. 6, 2008, pp.1462–1475. 

 


