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Abstract—This paper proposes to use a frequency based cache
admission policy in order to boost the effectiveness of caches
subject to skewed access distributions. Rather than deciding on
which object to evict, TinyLFU decides, based on the recent
access history, whether it is worth admitting an accessed object
into the cache at the expense of the eviction candidate.

Realizing this concept is enabled through a novel approx-
imate LFU structure called TinyLFU, which maintains an
approximate representation of the access frequency of recently
accessed objects. TinyLFU is extremely compact and light-
weight as it builds upon Bloom filter theory.

The paper shows an analysis of the properties of TinyLFU
including simulations of both synthetic workloads as well as
YouTube and Wikipedia traces.

I. INTRODUCTION

Caching is one of the most basic and effective methods
in computer science for boosting system’s performance in
a multitude of domains. It is obtained by keeping a small
percent of the data items in a memory that is faster and/or
closer to the application in settings where the entire data
domain does not fit into this fast nearby memory. The intu-
itive reason why caching works is that data accesses in many
domains of computer science exhibit a considerable degree
of “locality”. A more formal way to capture this “locality” is
to characterize the access frequency of all possible data items
through a probability distribution and noting that in many
interesting domains of computer science, the probability
distribution is highly skewed, meaning that a small number
of objects are much more likely to be accessed than other
objects. Further, in many workloads, the access pattern,
and consequently the corresponding probability distribution,
change over time. This is also known as “time locality”.

When a data item is accessed, if it already appears in the
cache, we say that there is a cache hit; otherwise, it is a
cache miss. The ratio between the number of cache hits and
the total number of data accesses is known as the cache hit-
rate. Hence, if the items kept in the cache correspond to the
most frequently accessed items, then the cache is likely to
yield a higher hit-rate [1].

Given that cache sizes are often limited, cache designers
face the dilemma of how to choose the items that are stored
in the cache. In particular, when the memory reserved for the
cache becomes full, which items should be evicted from the
cache. Obviously, this should be done in an efficient manner,
in order to avoid a situation in which the computation

and storage overheads required to answer these questions
surpasses the benefit of using the cache. The storage used
by the caching mechanism in order to decide which items
should be inserted into the cache and which items should be
evicted is called the meta-data of the cache. In many caching
schemes, the time complexity of manipulating the meta-data
as well as the size of the meta-data are proportional to the
number of items stored in the cache.

When the probability distribution of the data access
pattern is constant over time, it is easy to show that the
Least Frequently Used (LFU) policy yields the highest cache
hit ratio [2, 3]. According to LFU, in a cache of size n
items, at each moment the n most frequently used items
thus far are kept in the cache. Yet, LFU has two significant
limitations. First, known implementations of LFU require
maintaining large and complex meta-data. Second, in most
practical workloads, the access frequency changes radically
over time. For example, consider a video caching service; a
video clip that is extremely popular on a given day might
not be accessed at all a few days later. Hence, there is no
point in keeping that item in cache once its popularity has
faded just because it was once very popular.

Consequently, various alternatives to LFU have been
developed. Many of these include aging mechanisms and/or
focus on a limited size window of last W accesses both
in order to limit the size of the meta-data and in order
to adapt the caching and eviction decisions to the more
recent popularity of items. A prominent example of such
a scheme is called Window LFU (WLFU) [4], as elaborated
below. Another alternative that relies on the “time locality”
property is known as the Least Recently Used (LRU) [1]
scheme, by which the last item accessed is always inserted
into the cache and the least recently accessed item is evicted
(when the cache is full). LRU can be implemented much
more efficiently than LFU1 and automatically adapts to
temporal changes in the data access patterns. Yet, under
many workloads, LRU requires much larger caches than
LFU in order to obtain the same hit-rate.

In this paper, we make two main contributions. First, we
present a novel highly efficient probabilistic data structure,
nicknamed TinyLFU, that enables approximating the tempo-

1Yet, LRU is still considered too slow for hardware caches and operating
systems page caching, and therefore in these highly demanding situations,
we find approximations of LRU rather than exact LRU implementations.



ral probability distribution of skewed access patterns, such
as Zipf-like distributions, which were shown to represent
Web accesses and Internet based video accesses [2, 3, 5].
Using TinyLFU, we generate an approximated version of
WLFU called TLFU. We show that TLFU achieves sim-
ilar performance to WLFU with significantly lower meta-
data costs. Moreover, the meta-data required to implement
TinyLFU, even for a domain of millions of items, can fit in a
single memory page and thus can remain pinned in physical
memory, allowing for extremely fast manipulation.

The second contribution stems from an observation that
most caching schemes focus on eviction policies, i.e., decid-
ing which item should be evicted, rather than on admission
policies, which determine what items should be inserted to
the cache. In this paper we show that at least for skewed
probability distributions, the admission policy can be even
more important than the eviction policy. Specifically, since
TinyLFU enables us to approximate the temporal access
distribution of all objects ever encountered in a fairly
accurate yet compact manner, TinyLFU can be added to
caches of arbitrary eviction policies, and augment them
with a frequency based admission policy. That is, we take
an arbitrary eviction policy and ask it to find an eviction
candidate. We then compare the approximate popularity of
the newly accessed item, as recorded by TinyLFU, with the
popularity of the eviction candidate. If the newly accessed
item is more popular, then the candidate is indeed evicted.
Otherwise, it remains in the cache. Surprisingly, we have
found that for skewed access distributions, (i) adding the
TinyLFU admission policy dramatically increases the hit-
rate obtained by the system, and (ii) once the TinyLFU
admission policy is in place, the difference between different
eviction policies becomes marginal.

Notice that due to the prohibitively high cost of maintain-
ing a frequency histogram for all objects ever encountered,
published works that implement the LFU scheme only
maintain the frequency histogram w.r.t. items that are in
the cache [6]. Hence, we distinguish between them by
referring to the former as Perfect LFU (PLFU) and the latter
as In-Memory LFU. Since WLFU outperforms In-Memory
LFU [2] (at the cost of larger meta-data), we compare our
work only against WLFU and PLFU.

For deductive reasons, we first present the TinyLFU
admission policy architecture and only then explain and
explore its storage optimizations and accuracy. The rest
of this paper is organized as follows: Related work is
discussed in Section II. We present TinyLFU in Section III.
The performance results are shown in Section IV and we
conclude with a discussion in Section V.

II. RELATED WORK

A. Cache Replacement

As indicated in the Introduction, while PLFU is an optimal
policy when the access distribution is static, the cost of

maintaining a complete frequency histogram for all data
items ever accessed is prohibitively high, and PLFU does
not adapt to dynamic changes in the distribution [4, 7, 8].
Consequently, several alternatives have been suggested.

In-Memory LFU only maintains the access frequency of
data items already in the cache, and always inserts the most
recently accessed item into the cache, evicting, if needed,
the least frequently accessed item among those that are
in the cache [6]. In-Memory LFU is usually maintained
using a heap. The time complexity of managing LFU heaps
was thought to be O(log(N)) until recently, when an O(1)
construction was shown in [9]. Yet, even with this improve-
ment, In-Memory LFU still suffers from slow reaction to
changes in the frequency distribution, and its performance
lags considerably compared to PLFU in static distributions,
since it does not maintain any frequency statistic for items
that are no longer in the cache [6].

Aging was introduced in [7] to improve the ability of In-
Memory LFU to react to changes. It is obtained by limiting
the maximum frequency count of cache items as well as
occasionally dividing the frequency count of cached items
by a given factor. Determining when to divide the counters
and by how much is tricky and requires fine tuning [8].

As mentioned above, WLFU only maintains the access
frequency for a window of the last W requests [4]. In order
to maintain the window, the mechanism needs to keep track
of the order of the requests, which adds an overhead. Yet,
WLFU adapts much better to dynamic changes in the access
distribution than PLFU does.

ARC [10] combines recency and frequency by maintain-
ing meta data in two LRU lists. The first contains data
on items that were only accessed once, while the second
contains data on items that were accessed at least twice in
the recent history. ARC adjusts itself to the characteristics
of the workload by balancing its cache content source from
both lists according to their hit-rate. If the first buffer incurs
a higher hit-rate, ARC is closer to LRU, while if the second
one yields a higher hit-rate, ARC behaves closer to LFU.

2Q [11] is a page replacement policy for operating sys-
tems. This policy uses two queues, A1 and A2. At first, a
page is entered into A1 that is ordered as a FIFO queue.
New pages replace pages in A1. Yet, when a page in A1 is
referenced it moves to A2 and treated as a hot page. Hence,
A2 is populated with the most frequently used pages.

LRU-K [12] also combines ideas from LRU and LFU.
In this policy, the last K occurrences of each element are
remembered. Using this data, LRU-K statistically estimates
the momentary frequency of items in order to keep the most
frequent pages in memory.

Web caching schemes often take into account also the size
of objects. For example, SIZE [13] offers to simply remove
the largest item first, while same size items are ordered by
LRU. LRU-SP [14] weighs both the size and the frequency
of an item when picking a cache victim.



GDSF [15] is a hybrid Web caching policy that combines
in its decisions the recency of last accesses, the cost of bring-
ing the object to the cache, the object size, and its frequency.
It is an improvement of the Greedy Dual algorithm [16]
that only factors size and cost in its decisions. In [17], the
latency is also taken into account in workloads when the
data is hierarchical, i.e., in order to fetch a child item one
must first fetch its predecessor item.

A related approach to ours is introduced in [18], which
suggests to augment known caching algorithms using a Hot
List. This list indicates what the most popular items are
using some decay mechanism. Items in the hot-list are given
priority over other items in the eviction policy. However,
the decision whether to evict an item in the cache does
not depend on the relative frequency of this item vs. the
frequency of the currently accessed item and an explicit list
of n items need to be maintained. This method was shown
in [18] to somewhat improve the hit-rate of various caching
suggestions at the cost of significant meta-data overhead.

In summary, TinyLFU relates to the above suggestions
by being a mechanism that can be used to augment other
caching policies by enhancing them with approximated
statistics on a large history while providing both quick access
time and low storage overhead.

B. Approximated Counting Architectures

Approximated counting techniques are widely employed
in many networking applications. Approximate counting
was originally developed in order to maintain a per stream
network statistics. These constructions can be appealing to
caching as well since they are required to offer very fast
updates and have a compact size.

Sampling methods [19, 20, 21] offer a small memory
footprint but require explicit representation of keys. Also,
they usually encounter relatively large error bounds. We
therefore chose not to use them, as the size of the keys
in our context is a significant part of the overall costs.

Other methods such as Counter Braids [22] reduce the
meta data size but require a long decode operation and are
therefore not applicable to caching. Another approach is to
compress the counter representation itself [23, 24, 25]. In
TinyLFU we manage to represent the histogram using short
counters, and thus these methods do not help us.

Multi hash sketches such as Spectral Bloom Filters
(SBF) [26] and the Count Min Sketch (CM-Sketch) [27] are
appealing in our context. Since they implicitly associate keys
and counters there is no need to store keys in the frequency
histogram. Yet, they are not optimal for our case. In par-
ticular, SBF includes a complex implementation suggestion
aimed to achieve variable sized counters. Such a complex
implementation is not needed in our case, since we only
require small counters. The CM-Sketch on the other hand,
offers a simple implementation, but is relatively inaccurate
and will therefore take more storage to implement.

For TinyLFU, we chose to implement an SBF using a
simple Counting Bloom Filter [28]. We used an alternative
add operation that is referred to as Minimal Increment or
Conservative Update. This method was shown to increase
the accuracy of the filter in cases where all the increments
are always positive [26, 29].

C. Interesting caching applications

Application of data caching includes using it as cloud ser-
vices [30, 31].MemcacheD [32] allows in memory caching
of database queries and the items associated with them and
is widely deployed by many real life services including
Facebook and Wikipedia.

Caching is also employed at the network level of data
centers inside the routers themselves using a technique called
in network caching [33, 34]. This technique allows content
to be named explicitly, and routers in the data center to cache
data in order to increase the network capacity.

TinyLFU can be integrated in all the examples above.
For in network caching, TinyLFU is appealing since it
requires very small memory overhead and can efficiently
be implemented in hardware. As for MemcacheD and cloud
cache services, the eviction policy of [31, 32] is a variant of
LRU with no admission policy. As we show in this paper,
adding a TinyLFU based admission filter to an LRU eviction
policy greatly boosts its performance.

III. TINYLFU ARCHITECTURE

A. TinyLFU Overview

In the literature, the term LFU refers to two different
things: LFU cache eviction policy is a policy that picks the
victim of the cache according to LFU and the Frequency
based cache admission policy is a policy that admits items
to the cache only if they are more frequent than the cache
victim. TinyLFU architecture is ilustrated in figure 1, in our
architecture, the cache eviction policy picks a cache victim,
while TinyLFU decides if replacing the cache victim with
the new item is expected to increase the hit-rate.

To do so, TinyLFU maintains statistics of items frequency
over the recent history. Storing these statistics is consid-
ered prohibitively expensive for practical implementation
and therefore TinyLFU approximates this statistics in a
highly efficient manner. In the following, we describe the
techniques we employ for TinyLFU, some of which are
adaptations of known sketching techniques for approximate
counting whereas others are novel ideas created especially
for the context of caching.

Let us emphasize that we face two main challenges. The
first is to maintain a freshness mechanism in order to keep
the history recent and remove old events. The second is
the memory consumption overhead that should significantly
be improved in order to be considered a practical cache
management technique.



Figure 1. A general cache augmented with TinyLFU

B. Approximate Counting Overview

As indicated in Section II above, SBF and Minimal
Increment CM-Sketch are roughly equivalent very popular
approximate counting schemes. Thus, for simplicity, we
limit our discussion to SBF. A counting Bloom filter is a
Bloom filter in which each entry in the vector is a counter
rather than a single bit. Hence, rather than setting bits at the
indexes corresponding to the filter’s hash functions, these
entries are incremented on an insert/add operation.

An SBF is an augmented counting Bloom filter that sup-
ports two methods: Add and Estimate. The Estimate
method is performed by calculating k different hash values
for the key. Each hash value is treated as an index, and
the counter at that index is read. The minimal value of
these counters is the returned value. The Add method also
calculates k different hash values for the key. However,
it reads all k counters and only increments the minimal
counters. For example, if we use 3 hash functions, upon item
arrival, 3 counters are read. Assuming we read {2, 2, 5}, the
Add operation increments only the two left counters from 2
to 3 while the third counter remains untouched.

Intuitively, the Add operation prevents unnecessary in-
crements to large counters and yields a better estimation for
high frequency items, as their counters are less likely to be
incremented by the majority of low frequency items.

C. Freshness Mechanism

To the best of our knowledge, keeping approximation
sketches fresh has only been studied in [35], where a sliding
window is obtained by maintaining an ordered list of m
different sketches. New items are inserted to the first sketch,
and after a constant amount of insertions the last sketch is
cleared and is moved to the head of the list. This way, old
events are forgotten.

The method of [35] is not very appealing as a frequency
histogram for two reasons: First, in order to evaluate the
frequency of an item, m distinct approximation sketches
are read, resulting in many memory accesses and hash
calculations. Second, this method increases the memory
consumption, since we need to store the same items in m
different sketches and each item is allocated more counters.

Instead, we have invented a novel method for keeping
the sketch fresh, the Reset method described below. The

Reset operation is simple. Every time we add an item to
the approximation sketch, we increment a counter. Once
this counter reaches the window size (W ), we divide this
counter and all other counters in the approximation sketch
by 2. This has two interesting merits. First, it does not
require much extra space as its only added memory cost
is a single counter of Log(W ) bits. Second, this method
increases the accuracy of high frequency items as we show
both analytically and experimentally. Since the accuracy of
an approximation sketch can always be increased by using
more memory, we show that the Reset method in fact reduces
the total memory cost since we get a significantly more
accurate sketch for the same memory cost.

The downside of this operation is an expensive infrequent
operation that goes over all the counters in the approximation
scheme and divides them by 2. Yet, division by 2 can be
implemented efficiently in hardware using shift registers.
Further, its amortized complexity is constant making it
feasible for many applications. In the following subsections,
we prove the correctness of the Reset operation and evaluate
the truncation error it adds to the sketch. This error is caused
since we use an integer division and therefor a counter that
shows 3 will be reset to 1 and not to 1.5.

1) Reset Correctness:

Definition Denote W the window size, fi the frequency of
item i, and hi the height of i in the histogram.

Lemma 3.1: Under constant distribution, at the end of
each window (immediately before each Reset operation), the
expected hight of i in the histogram is E(hi) = fi ∗W .

Proof: By induction on the number of Reset operations
performed r.

Base: For r=0 the condition holds trivially. We sample
W items one after another under constant distribution. By
definition, item i has a frequency of fi. Therefore, the
expected height of the histogram is E(hi) = fi ∗W .

Step: Assume correctness for r < j and prove it for r = j.
From the induction hypothesis, until the j−1 Reset operation
occurs, E(hi) = fi ∗W . Therefore, immediately after the
j − 1 Reset operation, E(hi) = fi∗w

2 . There are exactly
W/2 samples until the next Reset operation and therefore
E(hi) is expected to be incremented fi∗W

2 times. Since the
expectation is additive we conclude that right before the j′th
Reset operation: E(hi) = fi ∗W .

2) Reset Truncation Error: Each time we perform a
Reset, we execute an integer division. This caps the size of
the histogram by eliminating entries that reach zero. Yet, this
also introduces a truncation error on each division by two.
Therefore, we may forget a single occupance of the counter.
When we read a counter after a single Reset operation, the
value we read can be as much as 0.5 lower than the value of
a floating point counter. If we have to reset again, after the
Reset the truncation error of the previous Reset operation is
divided to 0.25, but we accumulated a new truncation error



of 0.5 resulting in a total error of 0.75. It is easy to see
that the truncation error worst case converges to at most one
point lower than the accurate rate of the item. Therefore, the
truncation error affects the recorded occurrence rate of an
item by as much as 2/W right after a Reset operation, since
a Reset operation is performed once per W/2 operations.

D. Storage Size Reduction

Our storage cost reduction is obtained over two separate
axes: First, we reduce the size of each of the counters in the
approximation sketch. Second, we reduce the total amount
of counters allocated by the sketch. These storage saving
optimizations are detailed below.

1) Using Small Counters: Naively implementing an ap-
proximation sketch requires using long counters. If a sketch
holds W unique requests, it is required to allow counters
to count until W (since in principle an item could be
accessed W times in such a window), resulting in Log(W )
bits per counter, which can be prohibitively costly. Luckily,
the combination of the Reset operation and the following
observation significantly reduces the size of the counters.

Specifically, a frequency histogram only needs to know
whether a potential cache replacement victim that is already
in the cache is more popular than the item currently being
accessed. However, the frequency histogram need not de-
termine the exact ordering between all items in the cache.
Moreover, for a cache of size C, all items whose access
frequency is above 1/C belong in the cache (under the
reasonable assumption that the total number of items being
accessed is larger than C). Hence, for a given window W ,
we can safely cap the counters by W/C.

Notice that this optimization is possible since our “aging”
mechanism is based on the Reset operation rather than a
sliding window. With a sliding window, in an access pattern
in which some item i alternates between W/C consecutive
accesses followed by W/C + 1 accesses to other items, it
could happen that i would be evicted as soon as the sliding
shifts beyond the least recent W/C accesses to i even though
i is the most frequently accessed item in the cache.

To get a feel for counter sizes, when W/C = 8, the
counters require only 3 bits each, as the window is 8 times
larger than the cache itself. For comparison, if we consider
a small 2K items cache with a history window of 16K items
and we do not employ the small counters optimization, then
the required counter size is 14 bits.

2) Doorkeeper: In many workloads, and especially in
heavy tailed workloads, unpopular items account for a
considerable portion of all accesses. This implies that if
we count how many times each unique item in the window
appeared, the majority of the counters are assigned to items
that are not likely to appear more than once in the sliding
window. Hence, to further reduce the size of our counters,
we have developed the Doorkeeper mechanism that enables
us to avoid allocating counters to most tail objects.

Figure 2. TinyLFU structure

The Doorkeeper is a regular Bloom filter placed in front of
the approximate counting scheme. First timers are inserted
only to the Doorkeeper and are cleared upon Reset. Only
items that are already contained in the Doorkeeper are
inserted to the approximate counting scheme. Although the
Doorkeeper adds its own memory space to store its Bloom
filter, it obviates allocating counters to tail items. Hence, in
many cacheable workloads, this optimization significantly
reduces the memory consumption of TinyLFU.

TinyLFU and the Doorkeeper are illustrated in Figure 2.
We note that a similar technique was previously suggested
by [36] in the context of network security.

E. Test Case: TinyLFU vs. a Strawman

To motivate the design of TinyLFU, we compare it to
a Strawman. The Strawman is equivalent to building a
frequency histogram using only existing approximate count-
ing suggestions. In order for the Strawman to keep items
fresh, it uses the sliding window approximation proposed
in [35]. That is, the Strawman uses 10 different approximate
counting sketches in order to mimic a sliding window.
Moreover, the Strawman does not have a Doorkeeper or a
cap on its counters and is therefore required to allow its
counters to grow even to the maximal window size.

Our test case is a 1K items cache augmented by a 9K
items frequency histogram. For this workload, TinyLFU
requires its counters to count up to 9. This is obtained
using 3 bits full counters that can count up to 8, in addition
to the Doorkeeper that can count up to 1. The Strawman
uses 10 approximate counting sketches of 900 items each,
and its counters are of size 10 bits. In this example, we
consider a Zipf 0.9 distribution, which is characteristics of
many interesting real-world workloads.

We summarize the storage requirements of both frequency
histograms in Figure 3. As can be observed in this workload,
TinyLFU is required to store approximately 10% less unique
values due to the fact that it uses a single big sketch instead
of 10 small sketches. Moreover, for this experiment the vast
majority of items consumed only a small counter of 1 bit.
The frequent items that appeared more than once in this
window were allocated an additional 3 bits counters due to
the small counters optimization. In total, for this workload,
we notice that TinyLFU reduces the memory consumption
of the Strawman by ≈89%.



#Unique Items #2nd Timers Full Sz Small Sz Average Sz (bits)
TinyLFU 7239 416 3 1 1.22
Strawman 8020 - 10 - 10

Figure 3. TinyLFU vs unoptimized approximate frequency histogram

IV. EXPERIMENTAL RESULTS

A. Methodology

In order to test the feasibility of our approach, we have
implemented a Java based prototype in which we connected
TinyLFU to the following cache eviction schemes: LRU,
Random and LFU. This implementation can be instantiated
with a given cache size (in terms of number of items it
can store), a file that contains a trace of accesses, and one
of the above cache management schemes. The prototype
then consumes the file, returning for each access whether
according to the chosen management scheme and cache size
it would have been a hit or a miss as well as overall statistics.

We compared the hit-rate using both constant distributions
of Zipf 0.7 and Zipf 0.92, a workload trace generated from
YouTube [37], and a Wikipedia workload [38].

The YouTube trace includes a weekly summary of the
number of accesses to each video rather than a continuous
time-line of requests. Hence, for each reported week, we
have calculated the corresponding approximate access dis-
tribution, and have generated synthetic accesses that follow
this distribution on a week by week basis.

The Wikipedia workload contains 10% of the traffic to
Wikipedia during two months starting in September 2007.
Due to the enormous size of this trace, we sampled different
starting points from which we played 100 million consecu-
tive requests and measured the obtained hit-rate.

In the synthetic workloads, items are picked according
to the corresponding distribution from a set of 1 million
objects. Further, caches are given a long warm-up time (20
windows) and we present them at their highest hit rate. In the
Wikipedia and YouTube workloads, caches are not warmed
up since as the distribution gradually changes over time, no
warmup is necessary.

We have also used the YouTube workload to measure the
impact of the distribution change rate on the performance.
To do so, instead of playing the entire amount of views in
that week, we only played a few windows from that week.
We believe these tests simulate the behavior of the caches
when the workload is very dynamic.

In our figures, LRU and Random refer to eviction
policies, while LRU&LFU and Random&LFU refers to
LRU/Random caches augmented by TinyLFU. For LFU
cache eviction we tested two options, WLFU that uses both
LFU eviction policy and LFU admission policy implemented
using an accurate sliding window. TLFU is the name we
gave an LFU cache augmented with TinyLFU.

2We have experimented with several other skewed distributions and
obtained very similar qualitative results.
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Figure 4. Augmenting arbitrary caches with a TinyLFU admission policy

B. Results of Augmenting Caches with TinyLFU

Figure 4 shows the results of TinyLFU admission policy
on the performance of the above mentioned eviction policies
under constant skewed distributions. As can be seen, under
constant distributions, all caches that are augmented with
TinyLFU behave in a similar way. Surprisingly, LFU cache
eviction yields only a marginal benefit over the TinyLFU
augmented LRU and Random techniques. Let us note that
in such skewed distributions, the maximal cache hit-rate is
theoretically bounded regardless of its size. Intuitively, for a
distribution function fi, this bound can be roughly computed
by the integral over max(0, fi−1) (since the first occurrence
is always a miss) divided by the integral over fi.

We conclude that for constant skewed distributions,
TinyLFU cache admission policy is an attractive enhance-
ment. While augmenting In-memory LFU yields slightly
higher hit-rate, the overheads of In-memory LFU may justify
using a simpler cache eviction policy. Particularly, LRU and
even Random offer low overheads with comparable hit-rate.

The second experiment we did was testing the augmented
caches on a dynamic distribution. To do so, we used a dataset
that describes the popularity of 161K newly created YouTube
videos over 21 weeks starting at Apr. 16th, 2008 [37].
We evaluated the approximated frequencies of each of the
videos each week and created a distribution that represents
each week. Our experiments therefore swap between these
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distributions every given amount of requests.
We measured two metrics: The first is how fast can we

change the distributions, i.e, what is the effect of the number
of samples we perform from each week’s distribution on the
hit-rate of our TinyLFU augmented caches. The second is
the impact of the cache size on the achieved hit-rate when
the distribution change speed is taken form the trace.

The result of this experiment are shown in Figure 5.
As can be observed, TinyLFU is effective in augmenting
arbitrary caches even in dynamic workloads. Further, the
benefit is greater when the distribution changes more slowly,
as expected from all LFU caches. Yet, in this workload, the
difference between an augmented Random cache and an aug-
mented LRU cache to a true LFU cache is more significant.
Therefore, picking the correct cache victim seems to be more
important on dynamic workloads than in static workloads.

The third measurement we made was running the work-
loads on the Wikipedia access trace. We first studied the
required ratio between window size and cache size on
samples of 100 million consecutive requests from different
points in the trace. Second, we used the best ratio we found
and tested it on different cache sizes. These results are shown
in Figure 6. Unlike static workloads, real life workloads
gradually change over time, therefore using a very large
window can even reduce the obtain hit rate as it slows the
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Figure 6. Evaluation over the Wikipedia trace

paste by which the cache adjusts to the workload.
We note that although WLFU and TLFU achieved nearly

identical hit rate, the main difference between WLFU and
TLFU is in their meta-data costs. For example, in the
YouTube workload we used only 0.57 bytes per window
element. Since there are 9 window elements per cache entry,
the total meta-data cost of TinyLFU is 5.13 bytes per cache
entry. If we consider that each cache entry should contain a
video ID that requires 11 bytes, we conclude that TinyLFU
is able to approximately remember a history 9 times bigger
than the cache with less storage overhead than what is
required to store just the keys of all cached items.

For comparison, WLFU is required to remember an
explicit history 9 times bigger than the cache content.
Maintaining this history is expected to cost, even in the most
memory efficient implementation, 99 bytes per cache entry.
In addition, to operate quickly, it is required to maintain
an explicit summary of these items, since iterating over the
window and counting the frequency of cached items and
replacement candidates is very slow. Even if we neglect this
additional memory overheads, WLFU’s admission policy
still requires almost 20 times more memory than TinyLFU.

V. CONCLUSION

We have introduce TinyLFU, a frequency based cache
admission policy. We showed that TinyLFU can augment



caches of arbitrary eviction policy and significantly improve
their performance. We also optimized the memory consump-
tion of TinyLFU using adaptation of known approximate
counting techniques with novel techniques tailored specifi-
cally in order to achieve low memory footprint.

For many cache sizes and workloads, TinyLFU requires
up to 1 byte per window element in order to function with
negligible approximation error, rendering the total cost of the
admission policy practical. The performance of TinyLFU has
been explored and validated through simulations using both
synthetic traces as well as YouTube and Wikipedia traces.

We hope that our results will convince cache designers
to shift some of the focus from the replacement policies to
considering admission policies. Looking into the future we
would like to adopt TinyLFU to domain specific applications
such as cloud caching services and in network caching.
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