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Abstract

The use of multiple features for tracking has been proved
as an effective approach because limitation of each feature
could be compensated. Since different types of variation-
s such as illumination, occlusion and pose may happen in
a video sequence, especially long sequence videos, how to
dynamically select the appropriate features is one of the key
problems in this approach. To address this issue in multi-
cue visual tracking, this paper proposes a new joint sparse
representation model for robust feature-level fusion. The
proposed method dynamically removes unreliable features
to be fused for tracking by using the advantages of sparse
representation. As a result, robust tracking performance is
obtained. Experimental results on publicly available videos
show that the proposed method outperforms both existing
sparse representation based and fusion-based trackers.

1. Introduction

Effective modeling of the object’s appearance is one
of the key issues for the success of a visual tracker [14]
and many visual features have been proposed for han-
dling illumination, pose, occlusion and scaling variation-
s [10, 11, 24, 27]. However, because the appearance of
target and the environment are dynamically changed, es-
pecially in long term videos, a single feature is difficult to
deal with all such variations. As such, the use of multi-
ple cues/features to model object appearance has been pro-
posed and proved as a more robust approach for better per-
formance [21, 8, 3, 20, 15]. Many algorithms based on
multi-cue appearance model have been proposed for track-
ing in the past years. Generally, existing multi-cue track-
ing algorithms can be roughly divided into two categories:
score level and feature level. Score-level approach com-
bines classification score corresponding to different visu-
al cues to perform the foreground and background classi-

fication. Methods such as online boosting [8, 9], multi-
ple kernel boosting [21] and online multiple instance learn-
ing [3]have been proposed. However, the Data Processing
Inequality (DPI) [5] indicates that the feature level contains
more information than that in the classifier level. Therefore,
feature level fusion should be performed to take advantage
of the more informative cues for tracking. A typical ap-
proach is to concatenate different feature vectors to form a
single vector [20]. But such method may result in a high
dimensional feature vector which may degrade the tracking
efficiency. Moreover, combining all features may not be
necessary to improve the tracking performance because not
all cues/features are reliable. As such, dynamically selec-
tion/combination of visual cues/features is required.

Recently, multi-task joint sparse representation (MTJS-
R) [19, 22] has been proposed for feature-level fusion in
visual classification and promising results have been report-
ed. In MTJSR, the class-level joint sparsity patterns among
multiple features are discovered by using a joint sparsity-
inducing norm. Therefore, the relationship between differ-
ent visual cues can be discovered by the joint sparsity con-
straint. Moreover, high-dimensional features are represent-
ed by low-dimensional reconstruction weights for efficient
fusion. However, directly applying the MTJSR for objec-
t tracking may not achieve convincing performance, since
MTJSR was derived based on the assumption that all repre-
sentation tasks are closely related and share the same spar-
sity pattern, which may not be valid in tracking application
due to unreliable features.

In order to overcome the above-mentioned problem, this
paper proposes to remove the negative effect from the unre-
liable visual cues (outlier) that do not share the same sparsi-
ty pattern. Based on joint sparse representation, we propose
and develop a new robust feature-level fusion method for
visual tracking. It is important to point out that the existing
joint sparse representation based tracking algorithms can-
not make use of multiple features. For example, Zhang et
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al. [26] applied joint sparsity to model relationship between
particles to enhance the robustness to significant variations.
To the best of our knowledge, this is the first joint sparse
representation based multiple feature-level fusion method
for visual tracking.

The contributions of this paper are as follows:

• This paper develops a new visual tracking algorithm
based on feature-level fusion using joint sparse repre-
sentation. The proposed method possess all the advan-
tages of joint sparse representation and is able to fuse
multiple features for object tracking.

• We propose to detect the unreliable visual cues for
the robustness in the feature-level fusion process. By
removing the unreliable (outlier) features which in-
troduce negative effect in fusion, the tracking perfor-
mance can be improved.

2. Related Work
In this section, we give an overview on existing sparse

representation based trackers and multi-task joint sparse
representation methods related to our proposed method.

Sparse Representation based Tracker Based on the in-
tuition that the appearance of a tracked object can be sparse-
ly represented by its appearance in previous frames, sparse
representation based tracker was introduced in [16], which
is robust to occlusion and noise corruption. Beyond [16],
lots of algorithms have been proposed to improve the track-
ing accuracy and reduce the computational complexity [25].
Li et al. [13] exploit compressive sensing theory to reduce
the template dimension to improve the computational effi-
ciency. Zhang et al. [26] proposed a multi-task joint sparse
learning method to exploit the relationship between parti-
cles such that the accuracy of L1 tracker can be improved.
Xu et al. [12] developed a local sparse appearance model to
enhance the robustness to occlusion. All these sparse rep-
resentation based trackers utilized a single cue for appear-
ance modeling. To fuse multiple features, Wu et al. [20]
concatenated multiple features into a high-dimensional fea-
ture vector to construct a template set for sparse representa-
tion. However, the high dimensionality of the combined
feature vector increases the computational complexity of
this method. And, fusion via concatenation may not im-
prove the performance when some source data are corrupt-
ed.

Multi-task Joint Sparse Representation In transfer
learning, multi-task learning aims to improve the overal-
l performance of related tasks by exploiting the cross-task
relationships. Yuan et al. [22] formulated linear represen-
tation models from multiple visual features as a multi-task
joint sparse representation problem in which multiple fea-
tures are fused via class-level joint sparsity regularization.
Zhang et al. [23] proposed a novel joint dynamic sparsity

prior and applied for multi-observation visual recognition.
Shekhar et al. [19] proposed a novel multimodal multivari-
ate sparse representation method for multimodal biometrics
recognition.

3. Robust Feature-Level Fusion for Multi-Cue
Tracking

This section presents the details of the proposed tracking
algorithm using robust feature-level fusion based on join-
t sparse representation. The proposed method consists of
two major components: feature-level fusion based on join-
t sparse representation and detecting unreliable visual cues
for robust fusion.

3.1. Multi-Cue Tracking Using Joint Sparse Repre-
sentation

In the particle filter based multi-cue tracking framework,
we are given K types of visual cues, e.g. color, shape and
texture, to represent the tracking result in the current frame
and template images of the target object. Denote the k-th vi-
sual cues of the current tracking result and the n-th template
image as yk and xkn, respectively. Inspired by the sparse
representation based tracking algorithm [16], the tracking
result in the current frame can be sparsely represented by a
linear combination of the target templates added by an error
vector εk for each visual cue, i.e.

yk = Xkwk + εk, k = 1, · · · ,K (1)

where wk is a weight vector with dimension N to recon-
struct the current tracking result with visual cue yk based
on the template set Xk = [xk1 , ..., x

k
N ]T and N is the num-

ber of templates.
In Eq.(1), the weight vectorsw1, · · · , wK can be consid-

ered as an underlying representation of the tracking result
in the current frame with visual cues y1, · · · , yK . In other
words, the feature-level fusion is given by discovering the
relationship between visual cues y1, · · · , yK to determine
weight vectors w1, · · · , wK dynamically. To learn the op-
timal fused representation, we define the objective function
by minimizing the reconstruction error and a regularization
term, i.e.

min
W

1

2

K∑
k=1

‖yk −Xkwk‖22 + λΩ(W ) (2)

where ‖ · ‖2 represents L2 norm, λ is a non-negative pa-
rameter, W = (w1, ..., wK) ∈ RC×K is the matrix of the
weight vectors and Ω is the regularization function on W .

To derive the regularization function Ω, we assume that
the current tracking result can be sparsely represented by the
same set of chosen target templates with index n1, · · · , nc
for each visual cue, i.e.

yk = wk
n1
xkn1

+ · · ·+ wk
nc
xknc

+ εk, k = 1, · · · ,K (3)
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Under the joint sparsity assumption, the number of chosen
target templates c = ‖(‖w1‖2, · · · , ‖wN‖2)‖0 is a small
number. Therefore, we can minimize the sparsity measure-
ment as the regularization term in optimization problem (2).
Since the L0 norm can be relaxed by L1 norm to make the
optimization problem tractable, we define Ω as the follow-
ing equation similar to that in [22] measuring the class-level
sparsity for classification applications,

Ω(W ) = ‖(‖w1‖2, · · · , ‖wN‖2)‖1 =

N∑
n=1

‖wn‖2 (4)

where wn denotes the n-th row in matrix W correspond-
ing to the weights of visual cues for the n-th target tem-
plate. With this formulation, the joint sparsity across dif-
ferent visual cues can be discovered, i.e. wn becomes ze-
ro for a large number of target templates when minimizing
optimization problem (2). This ensures that all the select-
ed templates (with non-zero weights) play more important
roles in reconstructing the current tracking result for all the
visual cues.

3.2. Detecting Unreliable Visual Cues for Robust
Feature-Level Fusion

Since some visual cues may be sensitive to illumination
or viewpoint change, the assumption about shared sparsity
may not be valid for tracking. Such unreliable visual cues of
the target cannot be sparsely represented by the same set of
the selected target templates. That means, for the unreliable
visual cue yk

′
, all the target templates are likely to have

non-zero weighting for small reconstruction error, i.e.

yk
′

= wk′

1 x
k′

1 + · · ·+ wk′

Nx
k′

N + εk
′

(5)

where wk′

1 , ..., w
k′

N are non-zero weights. In this case, we
cannot obtain robust fusion result by minimizing optimiza-
tion problem (2) with the regularization function (4).

Although unreliable features cannot satisfy Eq.(3), re-
liable features can still be sparsely represented by Eq.(3)
and used to choose the most informative target templates
for reconstruction. With the selected templates of index
n1, · · · , nc, we rewrite Eq.(5) as follows,

yk
′
−

c∑
i=1

wk′

ni
xk

′

ni
=

N−c∑
j=1

wk′

mj
xk

′

mj
+ εk

′
(6)

where mj denotes the index for the template which is not
chosen to reconstruct the current tracking result. Suppose
we have K ′ unreliable visual cues. Without loss of gen-
erality, let visual cues 1, · · · ,K − K ′ be reliable, while
K − K ′ + 1, · · · ,K be unreliable. To detect the K ′ un-
reliable visual cues, we employ the sparsity assumption for
the unreliable features, i.e. the number of unreliable visu-
al cues K ′ = ‖(

∑N−c
j=1 |w1

mj
|2, · · · ,

∑N−c
j=1 |wK

mj
|2)‖0 is a

small number, which can be used to define the regulariza-
tion function. Similar to Eq.(4), L1 norm is used instead
of L0 norm. Combining with the regularization function
for discovering the joint sparsity among reliable features, Ω
becomes

Ω(W ) = θ1

N∑
n=1

K−K′∑
k=1

|wk
n|2 + θ2

K∑
k=1

N−c∑
j=1

|wk
mj
|2 (7)

where θ1 and θ2 are non-negative parameters to balance the
joint sparsity across the selected target templates and unre-
liable visual cues.

However, we have no information about the selected
templates and unreliable features before learning, so we
cannot define the regularization function like Eq.(7) practi-
cally. Inspired by robust multi-task feature learning [7], the
weight matrix W can be decomposed into two terms R and
S withW = R+S. Suppose the non-zero weights of the re-
liable features be encoded in R, while the non-zero weights
of the unreliable features encoded in S. The current track-
ing result of the reliable visual cue k can be reconstructed
by the information in R only, i.e. Eq.(3) is revised as

yk = rkn1
xkn1

+ · · ·+rknc
xknc

+εk, k = 1, · · · ,K−K ′ (8)

On the other hand, Eq.(6) for the unreliable feature k′ is
changed to

yk
′
−

c∑
i=1

sk
′

ni
xk

′

ni
=

N−c∑
j=1

sk
′

mj
xk

′

mj
+ εk

′
,

k′ = K −K ′ + 1, · · · ,K

(9)

According to the above analysis, the final regularization
function can be defined analogous to Eq.(7), i.e.

Ω(W ) = θ1

N∑
n=1

‖rn‖2 + θ2

K∑
k=1

‖sk‖2 (10)

Denote λ1 = λθ1 and λ2 = λθ2. Substituting Ω(W )
by Eq.(10) into optimization problem (2), the proposed ro-
bust joint sparse representation based feature-level fusion
(RJSR-FFT) model for visual tracking is developed as,

min
W,R,S

1

2

K∑
k=1

‖yk −Xkwk‖22 + λ1

N∑
n=1

‖rn‖2 + λ2

K∑
k=1

‖sk‖2

s.t. W = R+ S

(11)

The procedures to solve optimization problem (11) will
be given in the following section. The optimal fused repre-
sentation is given by R and S, which encode the informa-
tion about important target templates and unreliable visual

3



cues, respectively. With S, we determine the index set O of
the unreliable features as

O = {k′, s.t.,
‖sk

′
‖2

max{
K∑

k=1

‖sk‖2, ε}
≥ T} (12)

where ε is a positive number to avoid zero division for re-
liable features. This scheme detects the unreliable visual
cues when the norm of some column of matrix S is larger
than a pre-defined threshold T .

On the other hand, the likelihood function is defined by
R and S as follows. The representation coefficients of dif-
ferent visual cues are estimated and the unreliable features
are detected by solving optimization problem (11). Then,
the observation likelihood function is defined by

p(zt|lt) ∝ EXP (− 1

K −K′

∑
j /∈O

‖yj −Xj · rj‖22) (13)

where lt is the latent state and zt is the observation in par-
ticle filer framework, and the right side of this equation
denotes the average reconstruction error of reliable visual
cues. Since the proposed model can detect the unreliable
cues, the likelihood function can combine the reconstruc-
tion error of reliable cues to define the final similarity be-
tween the target candidate and the target templates.

3.3. Optimization Procedures

The objective function in optimization problem (11)
is given by a smooth function plus a non-smooth one.
This kind of optimization problem can be solved efficient-
ly by employing Accelerated Proximal Gradient Method
(APG) [4]. Let

F (R,S) =
1

2

K∑
k=1

f(rk, sk) =
1

2

K∑
k=1

‖yk −
N∑

n=1

xkn(r
k
n + skn)‖22

G(R,S) = λ1

N∑
n=1

‖rn‖2 + λ2

K∑
k=1

‖sk‖2

(14)

where F (R,S) and G(R,S) are differential and non-
differential terms in the objective function, respectively. In
the (t + 1)-th iteration, given the aggregation matrices U t

and V t, the proximal matrices Rt+1 and St+1 are given by
solving the following minimization problem:

min
R,S

1

2

K∑
k=1

{f(uk,t, vk,t) +∇fTuk,t(r
k − uk,t)

+∇fTvk,t(s
k − vk,t) +

µt+1

2
‖rk − uk,t‖22

+
µt+1

2
‖sk − vk,t‖22}+ λ1

N∑
n=1

‖rn‖2 + λ2

K∑
k=1

‖sk‖2

(15)

where µt+1 is the Lipschitz constant [4]. Expanding the ob-
jective function in optimization problem (15) and neglect-
ing the constant terms, optimization problem (15) can be
separated into two independent sub-problems about R and
S, respectively, i.e.

min
R

1

2

K∑
k=1

‖rk − (uk,t − 1

µt+1
∇k,t

u )‖22 +
λ1
µt+1

N∑
n=1

‖rn‖2

min
S

1

2

K∑
k=1

‖sk − (vk,t − 1

µt+1
∇k,t

v )‖22 +
λ2
µt+1

K∑
k=1

‖sk‖2

(16)

where the gradient operators of f are given by ∇k,t
u =

−(Xk)T yk + (Xk)T (Xk)uk,t + (Xk)T (Xk)vk,t, ∇k,t
v =

−(Xk)T yk + (Xk)T (Xk)vk,t + (Xk)T (Xk)uk,t. The
above subproblems in each iteration can be solved in two
steps:

Gradient Mapping Step: According to the proved
proposition in [18], we updated the proximal matricesRt+1

and St+1 by Eq.(17) and Eq.(18), respectively.

rk,t+
1
2 = uk,t − 1

µt+1
∇k,t

u , k = 1, · · · ,K,

rt+1
n = max(0, 1− λ1

µt+1‖rt+
1
2

n ‖2
) · rt+

1
2

n , n = 1, · · · , N

(17)

sk,t+
1
2 = vk,t − 1

µt+1
∇k,t

v , k = 1, · · · ,K,

sk,t+1 = max(0, 1− λ2

µt+1‖sk,t+ 1
2 ‖2

) · sk,t+
1
2 , k = 1, · · · ,K

(18)

It should be noticed that the update schemes (17) for R and
(18) for S are different from each other, since R and S have
different sparsity properties grouping according to columns
and rows, respectively.

Aggregation Step: We adopt the aggregation matrix up-
date scheme in [4] as follows.

U t+1 = Rt+1 +
at − 1

at+1
(Rt+1 −Rt),

V k+1 = St+1 +
at − 1

at+1
(St+1 − St)

(19)

where at+1 = 1+
√

1+a2
t

2 , and a0 = 1.

3.4. Template Update Scheme

The proposed tracker is sparse-based. Thus, we adopt the
template update scheme in [16] with a small modification
because the proposed tracker is also fusion-based tracker
with outlier detection scheme. Similar to [16], we associate
each template in different visual cues with a weight, and
the weight is updated in each frame. Once the similarity
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between the template with the largest weight from the reli-
able visual cue and the target sample of the corresponding
visual cue is larger than a predefine threshold, the proposed
tracker will replace the template which has the least weight
with the target sample. The difference between [16] and the
proposed method is that the update scheme in this paper is
performed simultaneously for template sets in different vi-
sual cues. Once one template of the template set in a visual
cue is replaced, the template in other visual cues will be
replaced because the proposed model performs multi-cue
fusion on feature level. As such, all the cues of the same
template should be updated simultaneously.

4. Experiment
In this section, we evaluate the proposed robust joint s-

parse representation based feature-level fusion (RJSR-FFT)
tracking algorithm using both synthetic data and real videos
for experiments.

4.1. Unreliable Feature Detection on Synthetic Data

To demonstrate that the proposed method can detec-
t unreliable features, we compare the RJSR-FFT with the
weight matrices obtained by solving optimization problem
(2) with the regularization term (4) as in the multi-task joint
sparse representation (MTJSR) method [22]. In this experi-
ment, we simulated the multi-cue tracking problem by ran-
domly generating five kinds of ten dimensional normalized
features with 30 templates, i.e. Xk ∈ R10×30, k = 1, · · · , 5
are the template sets. Two kinds of features are set as un-
reliable with sparsity patterns. For the other three kinds
of reliable features, we divide the template sets into three
groups and randomly generate the template weight vector
wk ∈ R30, such that the elements in wk corresponding to
only one group of templates are non-zero. The testing sam-
ple of the k-th feature yk to represent the current tracking
result is computed by Xkwk plus a Gaussian noise vector
with zero mean and variance 0.2 to represent the reconstruc-
tion error εk. For fair comparison with the MTJSR [22],
we extend our model to impose the group lasso penalty by
simply using a group sparsity term in optimization problem
(11). We empirically set parameters λ, λ1, λ2 as 0.001 and
the step size µ as 0.002 and repeated this experiment 100
times.

We use the average normalized mean square error be-
tween the original weight matrix and recovered one for e-
valuation. Our method achieves a much lower average re-
cover error of 4.69% compared with that of the MTJSR with
12.29%. This indicates that our method can better recov-
er the underlying weight matrix by detecting the unreliable
features successfully. To further demonstrate the ability for
unreliable feature detection, we give a graphical illustration
of one out of the 100 experiments in Fig.1. The original
weight matrix is shown in Fig.1(a) with each row repre-

(a) Original Weight Matrix (b) Weight Matrix by MTJSR [22]

(c) Matrix R by RJSR-FFT (d) Matrix S by RJSR-FFT

Figure 1. Graphical illustration of unreliable feature detection

senting a weight vector wk. The horizontal axis records
the sample indexes, while the vertical gives the values of
weights. From Fig.1(a), we can see that the first three share
the same sparsity patterns over the samples with indexes in
the middle range, while all the weights of the last two fea-
tures are non-zeros, thus non-sparse. In this case, the MTJS-
R cannot discover the sparsity patterns as shown in Fig.1(b),
while the proposed RJSR-FFT can find out the shared spar-
sity of the reliable features and detect unreliable features as
shown in Fig.1(c) and (d). This also explains the reason
why our method can better recover the underlying matrix as
shown in Fig.1(a).

4.2. Visual Tracking Experiments

While the simulated experiment showed that the pro-
posed method can detect unreliable features, the tracking
results with real videos are reported in this section.

4.2.1 Experimental Settings

We evaluate our tracking algorithm on fifteen challeng-
ing video sequences with large illumination variations, par-
tial occlusion, pose variations and/or cluttered background.
Most videos and its corresponding ground truth data can
be found in the website1. We compare our tracker with
state-of-art tracking algorithms including multi-cue track-
ers: OAB [8], COV [11], sparse representation based track-
ers: MTT [26], L1T [16] and other state-of-the-art methods:
IVT [17], CT [24], Frag [1]. We use the source code provid-
ed by the authors of these papers and adjust the parameters
in these methods for better performance.

1http://visual-tracking.net/
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For our tracking method, we extract seven kinds of lo-
cal and global features for fusion. For local visual cues,
we divide the tracking bounding box into 4 blocks and ex-
tract covariance descriptor [11] in each block. For global
visual cues, we use HOG [6], LBP [2] and GLF [27] to
represent the whole bounding box. The parameters are se-
lected as follows. The number of templates is set as 12. The
Lipschitz constant µ is automatically determined according
to [7]. We empirically found that the regularization param-
eters λ1 and λ2 are related to µ for robust performance, so
we set λ1 = 0.0027µ and λ2 = 0.022µ. The template size
is set to 32× 32, while the number of particles is 200.

4.2.2 Quantitative Comparison

Two evaluation criteria are used for quantitative compari-
son: center location error and success rate. The overlap
ratio is define as area(BT∩BG)

area(BT∪BG) , where BT and BG are the
bounding boxes of the tracker and ground-truth. A frame
is successfully tracked means that the overlap ratio is larger
than 0.5. The center location error is the Euclidean distance
between the centers of bounding boxes BT and BG. Table
1 and 2 report the center location error and overlapping rate
on the 15 videos. With limited space available, we list out
frame-by-frame center error comparison results for 8 out of
the 15 videos in Fig.2 and more frame-by-frame comparison
result can be found in supplementary materials. The best re-
sults are shown in red, and the second ones are marked in
green. These results show that the proposed method outper-
forms both multi-cue and sparse representation based track-
ers as well as state-of-the-art methods in most videos. And,
the average center location error of our method is about 7.5
pixels much lower than those of existing trackers, while the
successful tracking rate of the proposed tracking algorithm
is 90.9% much higher than those of existing methods.

4.2.3 Qualitative Comparison

The video sequences of the tracked results of all trackers in
our experiment are provided in supplementary materials and
some frames are shown in Fig.3. We qualitatively evaluate
the tracking results in four different aspects as follows:

Cluttered Background We test the 8 trackers on several
videos(Deer,Football,MountainBike) with cluttered back-
ground as shown in Fig.3(a). When the tracked target
comes into the dense group of players(Football]0149), sim-
ilar pattern of the background distract some trackers from
the target, e.g., COV, OAB. Football also pose partial
occlusion(Football]0295), all trackers except our proposed
tracker lost the target. This mainly attribute to the fusion of
local information in our proposed method so its less sensi-
tive to partial occlusion.

Partial Occlusion FaceOcc1, Girl, David3 pose partial

occlusion as shown in Fig.3(b). All tracker can successful-
ly handle the partial occlusion except OAB has small drift
from the target(FaceOcc1]0057). David3 also pose clut-
tered background and deformation challenge. David3]0051
show cluttered background distract the tracker, e.g., L1T,
COV, Frag, OAB from target. In plan rotation also appears
in Girl sequence. CT, Frag, IVT lost the target(Girl]0246),
and CT has small drift.

Non-rigid Target Skating1, Basketball, Crossing show
the performance of these trackers when the target is non-
rigid as shown in Fig.3(c). Skating1 is the most challenging
one with other variation, e.g., in plane rotation(]0064), par-
tial occlusion(]0176), Illumination(]0310)). only our pro-
posed method can track through the sequence.

Illumination Variation Trellis, Car, Shaking, David1,
CarDark, Car4 test these trackers under illumination and
pose variaton as shown in Fig.3(d). Only our tracker can
successfully tracked the target in Trellis and Shaking in all
frames.

5. Conclusion
In this paper, we have successfully formulated a feature-

level fusion visual tracker based on joint sparse representa-
tion. This paper has demonstrated that using proposed ro-
bust feature-level fusion of multiple features can improve
the tracking accuracy. Experimental results on publicly
available videos show that the performance of the pro-
posed tracker using robust joint sparse representation based
feature-level fusion model outperforms seven state-of-the-
art tracking methods.
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Car4 2.1 62.5 88.5 81.2 15.0 118.9 238.5 9.6

Trellis 97.0 41.8 54.5 48.3 58.3 31.1 78.3 6.4
David1 11.2 57.8 21.5 53.3 63.1 18.5 17.2 11.1
Shaking 87.2 137.5 23.3 104.1 145.6 145.9 98.0 8.4

FaceOcc1 16.6 16.2 40.9 18.4 11.0 14.8 22.2 13.6
Girl 27.4 27.6 3.8 18.4 16.2 9.6 9.1 5.6

David3 52.2 149.4 193.1 90.0 252.5 189.5 105.0 5.1
Deer 20.6 212.2 6.2 236.1 78.0 160.9 5.8 7.3

Football 15.7 45.6 19.6 12.8 13.3 27.6 13.6 4.4
MountainBike 21.8 9.4 13.8 213.3 21.1 10.4 5.8 5.6

Basketball 134.8 351.7 153.3 122.4 13.1 106.1 108.6 17.9
Crossing 25.4 72.7 3.0 4.3 50.1 3.8 53.1 4.1
Skating1 154.0 104.5 48.5 175.8 147.4 83.6 262.3 9.5
Average 47.3 86.6 45.1 89.3 66.5 61.7 70.0 7.5

Table 1. Quantitative comparison of 8 trackers in 15 videos in terms of center location error (in pixels). The best two results are shown in
red and green.

IVT [17] COV [11] OAB [8] CT [24] Frag [1] L1T [16] MTT [26] Proposed Method
CarDark 100 98.0 90.6 1.0 5.1 100 100 100

Car 44.8 58.6 80.5 5.8 50.6 82.8 54.0 92.0
Car4 100 31.0 27.8 27.9 37.8 27.8 23.1 99.9

Trellis 42.4 32.0 24.6 32.7 39.9 23.4 28.8 97.9
David1 64.5 19.3 29.5 24.8 20.2 48.6 25.1 79.0
Shaking 3.6 1.1 48.8 15.3 14.0 0.8 1.1 94.5

FaceOcc1 97.5 100 61.1 97.5 100 100 99.8 100
Girl 17.8 31.0 92.6 14.0 61.0 70.0 83.0 76.4

David3 69.1 19.4 15.1 31.0 7.1 4.0 34.5 99.2
Deer 45.1 5.6 95.8 4.2 18.3 4.2 100 100

Football 65.5 42.0 69.1 77.4 71.0 78.2 79.3 95.9
MoutainBike 85.1 69.7 71.9 16.7 69.3 86.4 100 100

Basketball 6.2 5.4 1.1 23.7 69.0 25.7 16 56.1
Crossing 43.3 9.2 95.8 92.5 35.8 95 24.1 81.7
Skating1 8.8 15.5 29.8 10.5 9.3 20.5 17 90.5
Average 52.9 35.9 55.6 31.6 40.6 51.1 52.4 90.9

Table 2. Quantitative comparison of 8 trackers on 15 videos in terms of success rate (%). The best two results are shown in red and green.

(a) Basketball (b) Skating1 (c) Girl (d) Football

(e) David3 (f) Shaking (g) Trellis (h) Deer

Figure 2. Quantitative frame-by-frame comparison of 8 trackers on 8 Challenging videos in terms of center location error
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(a
)

(b
)

(c
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)

Figure 3. Qualitative results on some typical frames including some challenging factors.(a) Cluttered background. (b) Partial occlusion. (c)
Non-rigid object. (d) Illumination variation.
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