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Abstract—The key task in graph-oriented learning is con-
structing an informative graph to model the geometrical and
discriminant structure of a data manifold. Since traditional
graph construction methods are sensitive to noise and less
datum-adaptive to changes in density, a new graph construction
method so-called ℓ1-Graph has been proposed [1] recently.
A graph construction method needs to have two important
properties: sparsity and locality. However, the ℓ1-Graph is
strong in sparsity property, but weak in locality. In order to
overcome such limitation, we propose a new method of con-
structing an informative graph using automatic group sparse
regularization based on the work of ℓ1-Graph, which is called
as group sparse graph (GroupSp-Graph). The newly developed
GroupSp-Graph has the same noise-insensitive property as
ℓ1-Graph, and also can successively preserve the group and
local information in the graph. In other words, the proposed
group sparse graph has both properties of sparsity and locality
simultaneously. Furthermore, we integrate the proposed graph
with several graph-oriented learning algorithms: spectral em-
bedding, spectral clustering, subspace learning and manifold
regularized non-negative matrix factorization. The empirical
studies on benchmark data sets show that the proposed algo-
rithms achieve considerable improvement over classic graph
constructing methods and the ℓ1-Graph method in various
learning tasks.

Keywords-graph learning; sparse representation; spectral
embedding; subspace learning; non-negative matrix factoriza-
tion

I. INTRODUCTION

In recent years, manifold-based learning has become an
emerging and promising approach in machine learning, with
numerous recent applications in data analysis including
dimensionality reduction [2], [3], [4], [5], [6], clustering [3],
[7], [8] and classification [9], [1].

The main assumption in these approaches is that the data
resides on a low dimensional manifold embedded in a higher
dimensional space. When approximating the underlying
manifold, the most common strategy is to construct an infor-
mative graph. The graph can be view as a discretized approx-
imation of manifold sampled by the input patterns. Many
manifold learning based dimensionality reduction algorithms
begin by constructing an information graph. For example,
ISOMAP (Isometric Feature Mapping) [2], a widely used
manifold embedding method, extends metric multidimen-
sional scaling by incorporating the geodesic distances of all
pairs of measurements imposed by a global weighted graph.

LE (Laplacian Eigenmaps) [3] and LLE (Locally Linear
Embedding) [4] preserve proximity relationships through
data manipulations on an undirected weighted graph that
indicates the neighbor relations of pairwise measurements.
Manifold-based clustering, e.g., spectral clustering, also can
be solved by graph partitioning. Moreover, manifold sub-
space learning, e.g., LPP (Locality Preserving Projections)
[5] and NPE (Neighborhood Preserving Embedding) [6], can
be explained in a general graph framework [10]. We can see
that graph plays a key role in these graph-oriented learning
algorithms.

In most graph-oriented learning methods, the graph is
constructed by calculating pairwise Euclidean distances, e.g.,
𝑘-nearest neighbor graph. However, this graph based on
pairwise distances is very sensitive to unwanted noise. To
handle such problem, more recently, a new method (so called
ℓ1-Graph [1]) was proposed that constructs the graph based
on a modified sparse representation framework [11], [12].
SRLP (Sparse Representation-based Linear Projections) [13]
and SPP (Sparsity Preserving Projections) [8] were two
new subspace learning methods which have a similar idea
with ℓ1-Graph. Both of them choose local neighborhood
information for dimensionality reduction by minimizing ℓ1

regularization objective function. Although it has shown that
the ℓ1-Graph based algorithms [1], [13], [8] outperform PCA
(Principle Component Analysis) [14], LPP [5] and NPE [6]
on several data sets, the ℓ1-Graph based algorithms only have
the sparsity property, but do not have the locality property
(more details can be seen in Section 3.1).

In this paper, based on ℓ1-graph, we propose a new
approach to build a graph that has both sparsity and
locality properties. As one known, high-dimensional data
often observe sparsity and locality, which should be taken
into account in the graph-oriented learning. However, in
the ℓ1-graph, the regularization term of ℓ1 norm tends to
select few bases for graph construction to favor sparsity,
thus losing the locality property. Motivated by the above
observations, we induce two sparse regularization methods
(Elastic net [15] and OSCAR (Octagonal Shrinkage and
Clustering Algorithm for Regression) [16]) that have the
automatic group effect for the graph construction. Then
a novel group sparse graph method (GroupSp-Graph) is
proposed for several graph-oriented learning algorithms. The
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proposed graph has the same noise-insensitive property as
that of ℓ1-graph, and also has successively preserved the
group and local information in the graph. Our empirical
studies on benchmark data sets demonstrate the promising
results of the proposed approach.

The rest of this paper is organized as follows: the related
work on graph-oriented learning algorithm is described in
Section 2. In Section 3, the main disadvantage of sparse
graph construction is analyzed and then the new group
sparse based graph construction method is introduced for
several graph-oriented learning algorithms. In Section 4, the
experimental results and analysis are then presented. Finally,
we conclude the discussions and indicate the further work
at the end of the last section.

Notation For any vector 𝒙, its transpose is denoted by
𝒙⊤, its 𝑖th component by 𝒙[𝑖]. The ℓ1-norm of 𝒙 is ∥𝒙∥1 =∑

𝑖 ∣𝒙[𝑖]∣, and its ℓ2-norm is ∥𝒙∥2 =
√∑

𝑖(𝒙[𝑖])
2.

II. RELATED WORKS

A. Graph-oriented Learning

Although the motivations of different manifold and graph-
oriented learning algorithms vary, their objectives are simi-
lar, which are to derive a lower-dimensional manifold rep-
resentation of high-dimensional data, which can be used to
facilitate the related tasks. Central to them is constructing a
graph structure that models the geometrical and discriminant
structure of the data manifold.

Suppose we have 𝑛 data points represented as a matrix
𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛], where 𝒙𝑖 ∈ ℝ

𝑚. With the data
points, we can build a graph 𝒢 = (𝒱, ℰ), where the vertex
set of the graph is referred as 𝒱(𝒢) = {𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛},
its edges set as ℰ(𝒢) = {𝑒𝑖𝑗}. The number of vertices of
a graph 𝒢 is its order [17], written as ∣𝒢∣; its number of
edges is denoted by ∥𝒢∥. If an edge 𝑒𝑖𝑗 connects vertices
𝒙𝑖 and 𝒙𝑗 , we denote the relation as 𝑖 ∼ 𝑗. The number of
neighbors of a node 𝒙 is called degree of 𝒙 and is denoted
by 𝑑𝒢(𝒙), 𝑑𝒢(𝒙𝑖) =

∑
𝑖∼𝑗 𝑒𝑖𝑗 . Further, each edge 𝑒𝑖𝑗 can be

weighted by 𝑤𝑖𝑗 > 0 for pairwise similarity measurements.
For the above notation, it is easy to see that edge 𝑒𝑖𝑗 and

weight 𝑤𝑖𝑗 are important factors in graph construction. In
common graph-oriented learning algorithms, the edges and
weights are often specified with the following manners:

Global Graph: For ∀𝑖, 𝑗, 𝑖 ∼ 𝑗, 𝑤𝑖𝑗 = ∥𝒙𝑖−𝒙𝑗∥2 as the
Euclidean distance or problem-dependent distance between
two vertices, 𝑑(𝒙𝑖) = 𝑛− 1;

kNN Graph: For ∀𝑖, 𝑖 ∼ 𝑘, 𝒙𝑘 belongs to the 𝑘-nearest
neighbor vertices for 𝒙𝑖, 𝑤𝑖𝑘 = exp(−∥𝒙𝑖−𝒙𝑘∥2

2𝜎2 ) or 𝑤𝑖𝑘 = 1
simply, 𝑑(𝒙𝑖) = 𝑘;
𝜀 NN Graph: For ∀𝑖, 𝑖 ∼ 𝑗, if ∥𝒙𝑖 − 𝒙𝑗∥ ≤ 𝜀, 𝑤𝑖𝑗 =

exp(−∥𝒙𝑖−𝒙𝑗∥2
2𝜎2 ) or 𝑤𝑖𝑗 = 1, 𝑑(𝒙𝑖) is 𝑘𝜀(𝒙𝑖)

1;

1𝑘𝜀(𝒙𝑖) is used to denote the number of node 𝒙 which satisfies ∥𝒙𝑖 −
𝒙∥ ≤ 𝜀

Moreover, to describe the concept of sparse graph, we
induce the definition of graph density as follow:

Definition 1 (Graph density [18]). For an undirected graph
𝒢 = (𝒱, ℰ), the graph density of 𝒢 is 2∥𝒢∥

∣𝒢∣(∣𝒢∣−1) .

From the definition, one can see the density of Global
Graph is 1 and the kNN Graph has a low density 2𝑘

𝑛−1 when
𝑘 ≪ 𝑛. Formally, we define a dense graph is a graph which
has a high graph density, while a graph with a low graph
density is a sparse graph.

The sparse graph plays an important role in graph-oriented
learning. From the sparse graph, one can construct a matrix
whose spectral decompositions reveal the low dimensional
structure of the submanifold [3]. Thus, with the appropriate
sparse graph, we can set up a quadratic objective function
derived from the graph for embedding or subspace learning
and solved by the eigenvectors of eigen-problem [10]. Also,
the sparse graph based function can be incorporated as a
geometric regularization in semi-supervised learning, trans-
ductive inference [9] or non-negative matrix factorization
[7], [19].

B. Learning with ℓ1-Graph

Since above traditional graph construction methods are
sensitive to data noise and less datum-adaptive to changes
in density, a new construct approach (so-called ℓ1-Graph) via
sparse representation has been proposed, and harnessed for
prevalent graph-oriented learning tasks [1]. The motivation
of ℓ1-Graph is that each datum can be sparse reconstructed
by neighbor training data. Sparse reconstructive coefficients
can describe the latent local neighborhood information,
which are achieved by minimizing an ℓ1 optimization prob-
lem or lasso problem in Statistics [11].

Algorithm 1 ℓ1-Graph Construction [1]

Input: Data points matrix 𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ
𝑚×𝑛

Output: Affinity matrix 𝑾 ∈ ℝ
𝑛×𝑛

1: Normalize the data point 𝒙𝑖 with ∥𝒙𝑖∥2 = 1.
2: For each data point 𝒙𝑖, find sparse coefficient 𝜶∗𝑖 and 𝒆∗𝑖
from the ℓ1 norm regularization problem:

min ∥𝒙𝑖 −
[
𝑩𝑖 𝑰

] [ 𝜶𝑖

𝒆𝑖

]
∥2 + 𝜆∥

[
𝜶𝑖

𝒆𝑖

]
∥1 (1)

where 𝑩𝑖 = [𝑿 ∖𝒙𝑖] ∈ ℝ
𝑚×(𝑛−1); 𝑰 is an 𝑚-order identity

matrix, 𝜶𝑖 ∈ ℝ
𝑛−1.

3: Set affinity matrix 𝑾𝑖𝑗 = ∣𝜶∗𝑖 [𝑗]∣ if 𝑖 > 𝑗 and 𝑾𝑖𝑗 =
∣𝜶∗𝑖 [𝑗 − 1]∣ if 𝑖 < 𝑗.

In Algorithm 1, the identity matrix 𝑰 is introduced as
a part of dictionary to code the noise, e.g. the corrupted
or occluded pixels in an image [12]. That makes ℓ1-Graph
more robust to noise than other pairwise graph construction
manners. In addition, from Equation (1), we can see that

548252



the neighbors of 𝒙𝑖 is automatically determined by solving
an ℓ1 regularized linear regression problem. Especially, ℓ1

regularization as a convex relaxation of ℓ0 regularization
promotes sparsity in the solution 𝜶𝑖. Also, this sparse
solution determines the set of support samples that is closest
to the given sample 𝒙𝑖. Formally, if we define the support of
a sparse vector 𝜶𝑖 as 𝑠𝑢𝑝𝑝(𝜶𝑖) = {𝑗 : 𝜶𝑖[𝑗] ∕= 0}, the graph
density of ℓ1-Graph is 2

∑𝑛
𝑖 ∣𝑠𝑢𝑝𝑝(𝜶𝑖)∣
𝑛(𝑛−1) . Sine ∣𝑠𝑢𝑝𝑝(𝜶𝑖)∣ ≪ 𝑛,

ℓ1-Graph can be defined as a sparse graph. Now, we sum-
marize the ℓ1-Graph construction approach as follow:
ℓ1-Graph: For ∀𝑖, 𝑖 ∼ 𝑗, if 𝜶∗𝑖 [𝑗] ∕= 0, 𝑤𝑖𝑗 = ∣𝜶∗𝑖 [𝑗]∣

when 𝑖 > 𝑗 and ∣𝜶∗𝑖 [𝑗−1]∣ when 𝑖 < 𝑗, 𝑑(𝒙𝑖) = ∣𝑠𝑢𝑝𝑝(𝜶𝑖)∣.

III. PROPOSED METHOD

A. Sparsity or Group Sparsity

Research in manifold or graph-oriented learning shows
that a sparse graph characterizing locality relations can con-
vey the valuable information for classification and clustering
[3]. Thus, two of important issues in graph construction are
sparsity and locality.

The ℓ1-Graph just considers sparse representation during
sparse graph construction. One can choose the weights and
edges connecting 𝒙𝑖 to other vertices by solving a lasso
problem, and utilize the recovery coefficients to reveal the
latent locally sparsity. In our opinion, it has the following
limitations:

(1) ℓ1-norm (lasso) regularization encourages sparsity
without any consideration of locality. Indeed, most graph-
oriented learning algorithms are proposed under the mani-
fold assumption. Also, the graphs in the learning algorithm
are used to approximating the underlying manifold. Further-
more, the core of manifold concept is locally Euclidean,
equivalents to the requirement that each data point 𝒙𝑖 have a
neighborhood subspace 𝑈 homeomorphic to an 𝑛-ball in ℝ

𝑛

[20]. Ideally, when constructing a graph via sparse coding,
we desire the neighborhood subspace 𝑈 is support with the
data that are indicated by the nonzero sparse coefficients.
That means the support samples are highly correlated with
each other to satisfy the property locally Euclidean. So
we desire the nonzero coefficients locality and sparsity not
merely sparsity.

(2) ℓ1-norm regularization encourages sparsity, but it tends
to select only one sample from the entire class [21], [15],
as a nearest neighbor selector in the extreme case. Thus,
when some samples are correlated from different classes
(e.g., digit ”7” is analogous with digit ”1” in a particular
situation, but they belong to a diverse class), lasso may
choose the single wrong sample to represent the test sample.
So, ℓ1-Graph is too sparse to keep the high discriminating
power for graph-oriented learning.

(3) Without group constraint, the nonzero sparse co-
efficients by ℓ1-norm regularization tend to unstable and
the resultant model is difficult to interpret. For example,
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Figure 1. Nonzero sparse coefficients solved by lasso, elastic net and
OSCAR; Left: keeping the same number of nonzero coefficients by ad-
justing regularization parameters; Right: increasing the number of nonzero
coefficients to compare the performance of different regularizations. In this
example, we built a dictionary with 400 noised images from the teapot data
set (details in Experiment 1), then one image is reconstructed with different
manners. All coefficients are normalized and shown in the above figure.

in Fig. 1, when we adjust the regularization parameter to
increase the nonzero sparse coefficients, some small weight
coefficients solved by lasso will be randomly distributed.
However, other group sparsity regularizer, which will be
mentioned in next subsection, can keep coefficients group-
clustered sparse.

In summary, ℓ1-norm regularization for sparse graph con-
struction is limited, which cannot satisfy sparsity and local-
ity constraints simultaneously. To overcome this limitation,
we propose an alternate regularization method which can
enforce automatic grouping sparsity.

B. Group Sparse Graph Construction

The problem of group sparsity is studied in [22], [23].
They assume that the sparse coefficients in the same group
tend to be zero or nonzero simultaneously. However, in these
papers, the label information of groups is required to be
known in advance. In other words, they belong to supervised
learning. In our method, we focus on the unsupervised
learning, the same as ℓ1-Graph. When constructing a sparse
graph in an unsupervised scenario, the label information of
groups can be unknown in the data set, but the sparsity and
group clustering tend are known.

In this paper, two sparse regularization methods with auto-
grouping effect are proposed for graph construction, elastic
net [15] and OSCAR [16].

Elastic net:
Elastic net regularizer is a combination of the ℓ1- and ℓ2-

norms. The ℓ1 penalty promotes sparsity, while ℓ2 penalty
encourages grouping effect [15]. When applying this reg-
ularization to constructing a sparse graph, we can rewrite
Equation (1) as follow:

min ∥𝒙𝑖 −
[
𝑩𝑖 𝑰

]
𝜷𝑖∥2 + 𝜆1∥𝜷𝑖∥1 + 𝜆2∥𝜷𝑖∥22 (2)
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(a) Lasso (b) Elastic Net (c) OSCAR

Figure 2. Graphical representation of constraint region of lasso, elastic
net, and OSCAR; Specifically, OSCAR has an octagonal constraint region,
which can achieve grouping property [16]. Elastic net can be adjusted
between ℓ1 and ℓ2 regularization with different choices of the tuning
parameter (dashed lines). Thus, elastic net could induce a grouping property
with appropriate tuning.

where 𝜷𝑖 = [𝜶𝑖 𝒆𝑖]
⊤; 𝜆1 and 𝜆2 are regularization param-

eters.
OSCAR:
OSCAR (Octagonal Shrinkage and Clustering Algorithm

for Regression) [16] is a novel sparse model that constructs
regularizer with a weighted combination of ℓ1-norm and a
pairwise ℓ∞-norm. It encourages both sparsity and equality
of coefficients for correlated samples. Thus, group sparse is
automatically discovered without prior knowledge. Utilizing
this regularizer, Equation (1) will be reformulated as the
following optimization problem:

min ∥𝒙𝑖−
[
𝑩𝑖 𝑰

]
𝜷𝑖∥2+𝜆1∥𝜷𝑖∥1+𝜆2

∑
𝑗<𝑘

max{∣𝜷𝑖[𝑗]∣, ∣𝜷𝑖[𝑘]∣}
(3)

where 𝜆1 and 𝜆2 are regularization parameters. In Fig. 2, we
can see OSCAR uses a new penalty region that is octagonal
in shape, which requires no initial information regarding the
grouping structure. Moreover, it can be solved efficiently
based on accelerated gradient methods [24].

With the two auto-grouping regularization terms, we can
discover the hidden data groups automatically and estimate
the reconstruction sparse coefficient on a group-specific
dictionary. Moreover, the learned data groups are consist of a
small number of correlated samples. This means that locality
and sparsity properties are emphasized at the same time.
Formally, we can define a set 𝐺𝑖 to indicate the nonzero
regression coefficients of 𝒙𝑖 which are solved by auto-
grouping regularized sparse representation. Indeed, 𝐺𝑖 =
𝑠𝑢𝑝𝑝(𝜶𝑖) = {𝑗 : 𝜶𝑖[𝑗] ∕= 0} but further emphasizes the
datum indicated by 𝐺𝑖 belong to a neighborhood subspace
and correlate with each other.

After inducing alternate regularizer for promoting group
sparsity, the construction process is formally stated in Algo-
rithm 2:

Typically, GroupSp-Graph in Algorithm 2 inherits the ro-
bustness and adaption of ℓ1-Graph, also further emphasizes
automatic group sparsity which is the lack of ℓ1-Graph. Con-
veniently, we term our two GroupSp-Graph as ℓ1/ℓ2-graph
and ℓ1/ℓ∞-graph individually. Both construction approaches
can be summarized as follow:

Algorithm 2 GroupSp-Graph Construction

Input: Data points matrix 𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ
𝑚×𝑛

Output: Affinity matrix 𝑾 ∈ ℝ
𝑛×𝑛

1: Normalize the data point 𝒙𝑖 with ∥𝒙𝑖∥2 = 1.
2: For each data point 𝒙𝑖, find sparse coefficient 𝜶∗𝑖 and
𝒆∗𝑖 from Elastic net regularization (Equation 2) or OSCAR
regularization (Equation 3)
3: Set affinity matrix 𝑾𝑖𝑗 = ∣𝜶∗𝑖 [𝑗]∣ if 𝑖 > 𝑗 and 𝑾𝑖𝑗 =
∣𝜶∗𝑖 [𝑗 − 1]∣ if 𝑖 < 𝑗.

ℓ1/ℓ2-Graph (ℓ1/ℓ∞-Graph): For ∀𝑖, 𝑖 ∼ 𝑗, if 𝜶∗𝑖 [𝑗] ∕= 0,
𝑤𝑖𝑗 = ∣𝜶∗𝑖 [𝑗]∣ when 𝑖 > 𝑗 and ∣𝜶∗𝑖 [𝑗 − 1]∣ when 𝑖 < 𝑗,
𝑑(𝒙𝑖) = ∣𝐺𝑖∣.
C. Related algorithms

In this subsection, we will integrate our GroupSp-Graph
with the following graph-oriented learning algorithms for
diverse tasks: data embedding, clustering, subspace learning
and manifold regularized non-negative matrix factorization.

(1) Embedding via GroupSp-Graph
The Laplacian embedding algorithm [3] is a geometrically

motivated spectral algorithm for efficient nonlinear dimen-
sionality reduction or embedding. Laplacian embedding can
preserve the local topology of original data in the embedded
space through an informative graph. Also, the embedded
result can be solved with the eigen-problem of a graph lapla-
cian matrix. Typically, when using the group sparse graph
for spectral embedding, the affinity matrix is automatically
constituted with reconstruction coefficients 𝛼∗𝑖 . Moreover,
the group sparse coefficients are significative to emphasize
“local topology”. The detailed algorithm based on GroupSp-
Graph is listed in Algorithm 3.

Algorithm 3 Spectral Embedding via GroupSp-Graph

Input: Data points matrix 𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ
𝑚×𝑛

Output: Embedding data points matrix 𝒀 ∈ ℝ
𝑑×𝑛, 𝑑≪ 𝑚

1: Constructing the Graph via Algorithm 2
2: Symmetrize affinity matrix 𝑾 = (𝑾 +𝑾⊤)/2
3: Set Laplacian matrix 𝑳 = 𝑫−𝑾 , where 𝑫𝑖𝑖 =

∑
𝑗 𝑾𝑖𝑗

4: Compute eigenvalues and eigenvectors for the generalized
eigenvector problem:𝑳𝒚 = 𝜆𝑫𝒚
5: Let 𝒚1,𝒚2, ⋅ ⋅ ⋅ ,𝒚𝑛 be the eigenvectors, sorted in increas-
ing according to each eigenvalues. Then the embedding data
points matrix is given by 𝒀 = [𝒚2, ⋅ ⋅ ⋅ ,𝒚𝑑+1]

⊤

(2) Subspace Learning via GroupSp-Graph
SPP (Sparsity Preserving Projections) [8] is a recent

subspace learning algorithm, in which the learning process is
essentially achieved by constructing ℓ1-Graph. Furthermore
in [1], ℓ1-Graph is also used for a subspace learning.
Based on the same notion, in this subsection, we develop
a subspace learning algorithm with GroupSp-Graph.
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Basically, the generic problem subspace learning is to find
a transformation matrix 𝑨 ∈ ℝ

𝑚×𝑑 that maps each point
𝒙𝑖 ∈ ℝ

𝑚 to a low dimension represent 𝒚𝑖 ∈ ℝ
𝑑(𝑑 ≪ 𝑚),

where 𝒚𝑖 = 𝑨⊤𝒙𝑖. The purpose of transformation matrix
𝑨 can be formulated as the following objective problem:

min
∑
𝑖

∥𝑨⊤𝒙𝑖 −
∑
𝑗

𝑾𝑖𝑗𝑨
⊤𝒙𝑗∥22 (4)

This problem can be solved by the generalized eigenvector
problem [5], [6]. Now, if we use GroupSp-Graph to construct
affinity 𝑾 , the new subspace learning can be instead
summarize as in Algorithm 4:

Algorithm 4 Subspace Learning via GroupSp-Graph

Input: Data points matrix 𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ
𝑚×𝑛

Output: Transformation matrix 𝑨 ∈ ℝ
𝑚×𝑑

1: Constructing the Graph via Algorithm 2
2: Solve the generalized eigenvector problem:

𝑿𝑴𝑿⊤𝒂 = 𝜆𝑿𝑿⊤𝒂 (5)

where 𝑴 = (𝑰 −𝑾 )⊤(𝑰 −𝑾 ); 𝑰 = 𝑑𝑖𝑎𝑔(1, ⋅ ⋅ ⋅ , 1)
3: Let 𝒂1, ,𝒂1, ⋅ ⋅ ⋅ ,𝒂𝑑 be the eigenvectors, sorted according
to each eigenvalues 𝜆1 ≤, ⋅ ⋅ ⋅ , 𝜆𝑑. Then the transformation
𝑨 is given by 𝑨 = [𝒂1,𝒂2, ⋅ ⋅ ⋅ ,𝒂𝑑] ∈ ℝ

𝑚×𝑑

(3) Non-negative Matrix Factorization via GroupSp-
Graph

The Non-negative Matrix Factorization(NMF) is a popular
algorithm to learn the parts of the data representation,
e.g., faces and text documents [25]. Recently, graph or
manifold regularization is incorporated into the non-negative
matrix factorization, named Graph-regularized Non-negative
Matrix Factorization (GNMF) [7]. The GNMF received the
state-of-the-art performance due to build a new parts-based
representation space which respects the geometrical structure
of the data space. In this subsection, following the idea of
GNMF, we utilize our GroupSp-Graph as a regularization to
non-negative matrix factorization.

Considering the data points matrix 𝑿 =
[𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ

𝑚×𝑛, NMF aims to find two
non-negative matrices 𝑼 = [𝒖1,𝒖2, ⋅ ⋅ ⋅ ,𝒖𝑟] ∈ ℝ

𝑚×𝑟,
and 𝑽 = [𝒗1,𝒗2, ⋅ ⋅ ⋅ ,𝒗𝑛] ∈ ℝ

𝑟×𝑛 such that 𝑿 ≈ 𝑼𝑽 .
Usually hidden factor 𝑟 is chosen to be smaller than 𝑛 or
𝑚. Thus, a compressed approximation can be rewritten
column by column as 𝒙𝑖 = 𝑼𝒗𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Therefore,
𝑼 can be regarded as containing a basis that is optimized
for linear combination of the data in 𝑿 . In GNMF [7],
[19], by integrating the manifold regularization [9], GNMF
minimizes the objective function as follows:

min ∥𝑿 −𝑼𝑽 ∥2𝐹 + 𝜆Tr(𝑽 𝑳𝑽 ⊤) (6)

where ∥ ⋅ ∥𝐹 denotes the Frobenius norm; Tr(⋅) is the
trace of matrix and 𝑳 is the graph laplacian matrix. The

detailed algorithm based on GroupSp-Graph is described in
Algorithm 5.

Algorithm 5 Non-negative Matrix Factorization via
GroupSp-Graph

Input: Data points matrix 𝑿 = [𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛] ∈ ℝ
𝑚×𝑛,

hidden factor 𝑟, and 𝑟 ≪ 𝑛, 𝑟 ≪ 𝑚;
Output: Non-negative basis matrix 𝑼 ∈ ℝ

𝑚×𝑟 and coeffi-
cient matrix 𝑽 ∈ ℝ

𝑟×𝑛;
1: Constructing the Graph via Algorithm 2
2: Symmetrize affinity matrix 𝑾 = (𝑾 +𝑾⊤)/2
3: Set Laplacian matrix 𝑳 = 𝑫−𝑾 , where 𝑫𝑖𝑖 =

∑
𝑗 𝑾𝑖𝑗

4: Solve the regularized optimization problem:

min
𝑼 ,𝑽

∥𝑿 −𝑼𝑽 ∥2𝐹 + 𝜆Tr(𝑽 𝑳𝑽 ⊤) (7)

where 𝜆 is the regularized parameter.
5: Approximation of data 𝒙𝑖 = 𝑼𝒗𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

IV. EXPERIMENTS

In this section, we evaluate GroupSp-Graph with differ-
ent learning tasks, including data embedding, clustering,
subspace learning and non-negative matrix factorization.
Furthermore, we solve the sparse modeling problems: lasso,
elastic net and OSCAR in the same framework with accel-
erated gradient methods [26], [24].

A. Spectral Embedding

In this experiment, we compare our GroupSp-Graph based
spectral embedding algorithm with Laplacian Eigenmaps
and ℓ1-Graph based spectral embedding algorithm. In the
experiment, the teapot database is used, which contains 400
teapot color images (each of size 76×101×3). The teapot
was viewed in full 360 degrees of rotation. Theoretically,
two-dimensional embedding of the database should be a
circular, which reflects the underlying rotational degree of
freedom [27]. In addition, noise has been added to each
image to demonstrate the proposed algorithm is insensitive
to data noise. The results are shown in Fig. 3.

As one can see, embedding with kNN-Graph does not
succeed in unraveling the manifold and recovering the two
underlying degrees of freedom due to the influence of noise
as shown in Fig. 3(a). Although a reliable embedding can be
obtained by ℓ1-Graph embedding with a small parameter 𝜆,
the results are not stable when adjusting sparse parameter to
increase nonzero coefficient as shown in Fig. 3(b). In con-
tract, a reliable and stable embedding manifold is obtained
by our proposed methods (ℓ1/ℓ2-Graph and ℓ1/ℓ∞-Graph)
with different number of nonzero sparse coefficients. Also,
the two-dimensional embedding approximates a circular as
shown in Fig. 3(c) and (d).
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(d) ℓ1/ℓ∞-Graph Embedding

Figure 3. 2D embedding of the teapot dataset obtained by: (a) kNN-Graph
(b) ℓ1-Graph (c) ℓ1/ℓ2-Graph (d) ℓ1/ℓ∞-Graph. For visualization purpose,
color coding is used to reveal how the data is embedding in two dimensions.
The results are also computed for different choices of the number of nearest
neighbors K. K in (b), (c), (d) are the average of the number of nonzero
sparse coefficients

B. Spectral Clustering

In this subsection, we investigate the performance of our
proposed approach in spectral clustering. Spectral clustering
is an unsupervised learning task and we compare our method
with PCA (Principal Component Analysis) [14] and several
different graph-based methods, e.g., Laplacian Eigenmaps
[3] and ℓ1-Graph based cluster method [1]. We choose
K-means as our basic clustering algorithm. K-means is
performed in the reduced feature space by PCA and other
graph-oriented embedding methods. For visualization, the
reduced dimension is set to be three. In this experiments,
200 randomly selected samples of each digit (i.e., 1, 2 and
3) from USPS handwritten digit database [28] are used and
the images are normalized to the size of 32× 32 pixels.
Following the approach in [1], we use two standard metrics,
the accuracy (ACC) and the normalized mutual information
(NMI), to measure the clustering performance. Both ACC
and NMI range from 0 to 1, while ACC reveals the clustering
accuracy and NMI indicates whether the different clustering
sets are identical (NMI=1) or independent (NMI=0). The
detail about the these metrics can be found in [1] and [29].

Table I
PERFORMANCE COMPARISONS ON THE EXTENDED YALE B

DATABASE.(NOTE: OUR(1) DENOTES ℓ1/ℓ2-GRAPH), OUR(2) DENOTES

ℓ1/ℓ∞-GRAPH).

Accuracy
𝑑* PCA[14] NPE[6] LPP[5] SPP[8] Our(1) Our(2)
50 0.7882 0.8968 0.8392 0.8898 0.9311 0.9171

100 0.7351 0.8104 0.7342 0.8985 0.9147 0.9114
200 0.5617 0.8370 0.6426 0.7746 0.9054 0.8880
500 0.8147 0.8264 0.8614 0.8499 0.8829 0.8851
Avg. 0.7249 0.8427 0.7693 0.8532 0.9085 0.9029
*𝑑 is the reduced dimensionality

Fig. 4 shows the visualization of the clustering results. The
images of digits (i.e., 1, 2 and 3) from the USPS database
are mapped into a 3-dimensional space and then clustered
with K-means. As shown in the figure, compared with PCA,
LE (Laplacian Eigenmaps) and ℓ1-Graph got good results by
preserving the embedded geometry structure. However, the
better results are obtained by ℓ1/ℓ2-Graph and ℓ1/ℓ∞-Graph,
where the data are much better separated by taking clustered
sparsity into consideration in graph. Meantime, the proposed
GroupSp-Graph based spectral clustering algorithm is bet-
ter than the other evaluated algorithms for two qualitative
metrics: ACC and NMI.

C. Subspace Learning

In this experiment, we compare GroupSp-Graph based
subspace learning algorithm with several widely used unsu-
pervised subspace learning techniques for face recognition
[14], [5], [6], [8]. The Extended Yale B [30] face database
is used in this test. It consists of a total of 38 individuals (64
samples per person). Each image is normalized to the size
of 32×32 pixels. To evaluate the algorithmic performance
on the database, we randomly select 50 images for each
individual and the rest are used for testing. Here, the recog-
nition rates are chosen to measure the performance. For the
baseline method, we simply performed face recognition in
the original 1024-dimensional image space, and the baseline
recognition rate is 0.8415. We use the classical nearest
neighbor classifier for comparing the discriminating power
from each subspace learning approach. The best results
obtained in the different subspaces and the corresponding
dimensionality (50, 100, 200, 500) for each method are
shown in Table 1 and Fig. 5.

In the test, we choose an optimal parameter over a
range (parameters: lasso, 𝜆1=0.001; elastic net: 𝜆1=0.0001,
𝜆2=0.0001; OSCAR: 𝜆1=0.0001, 𝜆2=0.0001). In general, the
performance of different methods varies with the number
of dimensions. From the recognition rates summarized in
Table 1, one can see the best results obtained by proposed
GroupSp-Graph based subspace learning algorithms.
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Figure 4. Visualization of the clustering results. (a) PCA (b) Laplacian Eigenmaps (c) ℓ1-Graph (d) ℓ1/ℓ2-Graph and (e) ℓ1/ℓ∞-Graph algorithm for
three cluster (handwritten digits 1, 2, and 3 in USPS database). Various colors of the points indicate different digits. Two compared metrics (ACC and
NMI) are listed above the figures.

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension

A
c

c
u

ra
c

y

 

 

pca
npe
lpp
spp
l1l2
oscar

Figure 5. Performance comparisons on the Extended Yale B database.

D. Non-negative Matrix Factorization

NMF (Non-negative Matrix Factorization) is known as
a powerful tool for data reduction and clustering which
achieves the state-of-the-art performance. In this subsec-
tion, we evaluate proposed NMF via GroupSp-Graph (GS-
GNMF) algorithm on image clustering task. To demonstrate
that the clustering performance can be improved by our
method, our method is compared with Canonical K-means,
NMF [25] and GNMF (Graph regularized Non-negative
Matrix Factorization) [7], [19]. The COIL20 data set [31] is
used in our experiment, which contains 32 × 32 gray scale
images of 20 objects viewed from varying angles. Each ob-
ject has 72 images from different viewpoints. To measure the
clustering performance, we also use two standard metrics,
the accuracy (ACC) and the normalized mutual information
(NMI).

For the baseline method, we simply performed K-means
in the original image space. In the test, GNMF has two

parameters: the number of nearest neighbors 𝑘 and the
regularization parameter 𝜆. Following the suggestion in [19],
we set 𝑘 to 5 and 𝜆 to 100. In GS-GNMF, we use elastic
net as a group sparse regularization and empirically set the
parameters 𝜆1=0.0001 and 𝜆2=0.001. Table 2 and Fig. 6
show the clustering results on COIL20 with different hidden
factor 𝑟. One can see that both GS-GNMF and GNMF
result the best performance by inducing the graph structure.
Especially, GS-GNMF achieves slightly better performance
than GNMF.

When we add noise to the images, the performance of
GNMF decreased drastically as 𝜎 increases (𝜎 is the factor
in the noise model2 to control the noise level), as shown
in Fig. 7. This is because GNMF uses 𝑘-nearest neighbor
graph to capture the local geometric structure, which is
sensitive to noise. However, the performance of GS-GNMF
decreases slightly when 𝜎 increases as shown in Fig. 7. This
demonstrates GS-GNMF is not so sensitive to noise.

V. CONCLUSION

In this paper, we have explored the novel method of
constructing an information graph using automatic group
sparse regularization, which is called as group sparse graph
(GroupSp-Graph). The GroupSp-Graph is an extension of
ℓ1-Graph by integrating the properties of sparsity and local-
ity simultaneously. Also, we integrate the group sparse graph
with various graph-oriented learning algorithms: spectral
embedding, spectral clustering, subspace learning and non-
negative matrix factorization. The experimental results on

2In the experiment, we choose salt and pepper noise to corrupt the images
in COIL20 data set.
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Table II
CLUSTERING PERFORMANCE COMPARISONS ON COIL20.

ACC NMI
𝑟* NMF GNMF Our NMF GNMF Our
2 0.4361 0.5097 0.7361 0.5629 0.6622 0.8360
4 0.6431 0.6931 0.7659 0.7153 0.8226 0.8594
6 0.5991 0.7270 0.7368 0.6947 0.8491 0.8562
8 0.6506 0.8375 0.7938 0.7247 0.9097 0.8763
10 0.5896 0.7819 0.7285 0.7143 0.8617 0.8793
12 0.6562 0.7815 0.7044 0.7281 0.8658 0.8593
14 0.6500 0.7805 0.7936 0.7445 0.8837 0.8962
16 0.6556 0.7729 0.7854 0.7274 0.8966 0.8965
18 0.6020 0.7222 0.6944 0.7037 0.8674 0.8630
20 0.6673 0.7522 0.7701 0.7436 0.8759 0.8902

Avg. 0.6105 0.7359 0.7509 0.7059 0.8495 0.8712
*𝑟 is the hidden factor
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Figure 6. (a) Accuracy (b) Normalized Mutual Information. Clustering
performance comparisons on COIL20

each task and data sets show that the proposed algorithm
achieves considerable improvements over traditional graph
construction methods [14], [6], [5], [3] and the ℓ1-Graph
method [8], [1]. Furthermore, since graph is widely used
in computer vision and machine learning, our technique can
be applied in other latest graph-oriented learning algorithms,
e.g., graph regularized sparse coding [32] and graph-based
ranking for image retrieval [33].
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performance comparisons between GNMF and GS-GNMF on COIL20
under different noise conditions
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