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Abstract Modern consumer electronics are designed as Analog/Mixed-Signal Systems-on-
Chip (AMS-SoCs). In an AMS-SoC, the analog and mixed-signal portions have not re-
ceived systematic attention due to their complex nature and the fact that their optimization
and simulation consume significant portions of the design cycle time. This paper presents
a new approach to reduce the design cycle time by combining accurate polynomial meta-
models and optimization algorithms. The approach relies on a mathematical representation
(metamodel or surrogate model) of AMS-SoC subsystems/components. Polynomial meta-
models are created from post-layout parasitic netlists and provide an accurate representation
for each Figure-of-Merit (FoM) over the entire design space of the AMS-SoC component.
The metamodel approach saves a very significant amount of time during design iterations.
Polynomial metamodels are reusable and language independent. Three algorithms are inves-
tigated to compare the speed for optimization on the polynomial metamodels. Two widely
used circuits have been designed in two different technologies as comparative case stud-
ies: an 180 nm LC-VCO and a 45 nm ring oscillator. Experimental results prove that the
metamodel-based optimization achieved speed-up as high as 21,600× for the LC-VCO cir-
cuit and 11,750× for the ring oscillator in comparison to the actual circuit netlist-based
(SPICE) optimization, with less than 1% error. Thus, the paper demonstrates that the poly-
nomial metamodeling approach to the design problem is an effective and accurate means for
fast design space exploration and optimization.
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1 Introduction and Motivation

Modern consumer electronics (e.g. mobile phones) are built as Analog/Mixed-Signal Systems-
On-Chip (AMS-SoCs) in which the analog and digital portions are integrated on the same
die for cost-performance tradeoffs [7,20]. Analog components are absolutely necessary in
an AMS-SoCs, at a minimum as interface elements, even though a significant amount of
computing is being performed by digital subsystems. In addition, components such as Ana-
log to Digital Converters (ADCs), Digital to Analog Converters (DACs), and Phase-Locked
Loops (PLLs) are intrinsically mixed-signal circuits. Present day AMS-SoCs are of gigas-
cale complexity and consist of nanoscale CMOS transistors [41]. To make the situation
worse for such highly complex systems, the time-to-market has been reduced significantly
due to strong competition. In such a situation, Computer Aided Design (CAD) frameworks
are more important than ever in order to produce error free AMS-SoCs on time [7,15].

The standard circuit-level simulation based design approach can only be used when a
designer has sufficient time for running simulations to optimize the circuit. Unfortunately,
this is usually not the case, since the timeline for a design process is very short. Usually
simulation times for complex circuits are very long and it is not feasible to conduct an
exhaustive search to find the optimal circuit. The simulation time for PLL lock on a full
parasitic netlist is of the order of many days to weeks [6]. Standard simulation based flows
do not account for the parasitics of the circuit, which can only be calculated after the initial
physical design is complete. The parasitics present in the circuit have a dramatic effect on
the responses of the circuit [32]. Analyzing the usual design process, one can see that the
longest manual labor is spent during the physical layout creation and numerous subsequent
adjustments. Therefore, to shorten the design time, this paper introduces a design flow that
requires only two iterations of the physical layout. The first is the starting physical design
and the second is the final design after the optimization phase.

The quest for accurate and less time consuming design flows has led to the metamodel-
ing approach which is widely used in other technical fields [25,38,10]. The objective of this
paper is to simplify the optimization phase of the design cycle and perform it using the least
possible amount of circuit simulations possible. Optimization over metamodels is proposed
as a solution for fast and yet accurate nano-CMOS circuit design exploration. Metamodels
are essentially an abstract representation, e.g. commonly a mathematical algorithm, of the
behavior of the circuit for a desired output [43]. It may be noted that in the existing literature
the terms macromodel and metamodel are often used interchangeably but they represent very
distinct approaches [1,30]. Macromodels are reduced complexity models of the circuit but
rely on the same type of modeling and simulator as the original model (e.g., SPICE) [39]. In
the metamodeling approach, the underlying system is completely decoupled from the sim-
ulator and the resulting metamodel (i.e., model of a model) is a mathematical algorithm, as
depicted in Fig. 1 [12]. A metamodel is more general, flexible and easier to simulate and
optimize than a macromodel.

The metamodels available in the existing literature are of many types. A selected tax-
onomy of common metamodels is presented in Fig. 2 [47,40,27]. The different metamodel
classes include polynomials, Splines, artificial neural networks (ANN), support vector ma-
chines (SVM), genetic programming, Kriging methods, and Gaussian processes. The choice
of a specific metamodel is a tradeoff between speed and accuracy. Polynomial metamodels
are easy to create, but have lower accuracy for complex circuits and large number of de-
sign parameters. Nonpolynomial metamodels are difficult to create but can handle complex
circuit with large number of design parameters. An accurate metamodel simplifies the cal-
culations for the effects of the circuit and makes it possible to employ more time consuming
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Fig. 1 Metamodeling transforms an AMS-SoC component netlist to mathematical functions thus facilitating
fast design exploration.

accurate optimization algorithms. A comparative perspective of polynomial metamodeling
and an ANN for a 180 nm CMOS phase-locked loop (PLL) is presented in Table 1 [29,30].
Polynomial metamodels with approximately 1% loss of accuracy provide simpler mathemat-
ical forms to handle reasonable size circuits. This paper shows that polynomial metamodels
can be used to adjust the initial physical design circuit to the target figure of merit. Then,
selected optimization algorithms are explored to search the design space for a target design
specification. To account for parasitics, the physical designs are initially created and a netlist
with full parasitics is generated for subsequent analysis.
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Fig. 2 Different Types of metamodels which can be explored for VLSI design.

Table 1 Comparative Perspective of Polynomial and ANN Metamodels for a 180 nm CMOS PLL with
center frequency fc of 2.7GHz. RMSE is the root mean square error of the approximation considering SPICE
simulation as the “accurate” result.

Polynomial Metamodel ANN Metamodel
Time to Create RMSE Time to Create RMSE

11 hr for sampling 78 MHz 11 hr for sampling 48 MHz
+ 1 min for creation. (2.9% of fc) + 10 min for creation. (1.8% of fc)
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The rest of the paper is organized as follows. The novel contributions of this paper are
listed in Section 2. Section 3 presents related research. The case study nanoscale circuits
are presented in Section 4. Section 5 presents the metamodel-based design flow. Section 6
presents the three algorithms investigated in the metamodel-based design flow. Experimen-
tal results are discussed in Section 7. Section 8 concludes this paper and discusses future
research.

2 Contributions of this Paper

This paper introduces an approach called polynomial metamodel-based optimization to ac-
quire an accurate physical design (layout) of AMS-SoC subsystems with minimal design
cycle time. A polynomial metamodel is a mathematical description of a figure of merit of a
circuit in terms of it design parameters. The creation of an accurate metamodel provides de-
signers with a simple, less computationally expensive, reusable and language-independent
model which is sufficiently accurate to produce an optimized result for the given parametric
problem. The approach is depicted in Fig. 3.
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Fig. 3 Fast design space exploration of analog circuits through accurate metamodeling. The exploration and
comparison of optimization algorithms over the metamodels is the scope of this paper.

For maximum accuracy and optimal design, one can optimize the actual circuit model
(a SPICE netlist). This optimization on the actual circuit, represented as a dashed line in
Fig. 3, is very slow and may be even impossible for complex nanoscale circuits with large
numbers of transistors and extensive interconnects. For fast, yet accurate design optimiza-
tion of analog circuits the proposed approach is demonstrated by the solid line in Fig. 3.
In this approach, polynomial metamodels of the AMS-SoC components are first generated.
The component optimization is then performed on the polynomial metamodels instead of
the actual circuit (i.e. parasitic aware netlist). This makes the design exploration fast and yet
accurate as the polynomial metamodels are ab initio generated accounting for parasitic ef-
fects. The current paper focuses on exploration of the optimization algorithms on metamod-
els, whereas the details of metamodel generation are presented in our previous publication
[12]. Thus, the current paper and [12] jointly cover the complete spectrum of simulation
and optimization of the overall design cycle.

To the best of the authors’ knowledge, this is the first application of polynomial meta-
models to parasitic-aware netlists for analog/mixed-signal design optimization. The novel
contributions of this paper are summarized as follows:
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1. This paper proposes a metamodel-based design flow for fast and accurate optimization
of nano-CMOS complex mixed-signal circuits.

2. The design flow requires a single iteration with two manual layouts, the second of which
is only a perturbation of the first; thus the proposed flow reduces errors related to layout
iterations and shortens the design cycle.

3. As a step toward optimization of nano-CMOS technology based circuits, four distinct
optimization algorithms are discussed which are based on the following: exhaustive
search, simulated annealing, tabu search, and artificial bee colony (ABC).

4. An 180 nm LC-VCO and a 45 nm Ring Oscillator (RO) are designed and characterized,
including the layout, and are used as case studies.

5. Full RCLK (resistance, capacitance, and self and mutual inductance) parasitic extrac-
tion is performed and compared to the schematic of the oscillators. Metamodels are
generated on the parasitic extracted netlist from the initial physical layout.

6. It is shown that metamodeling is significantly faster compared to SPICE simulations.
7. The use of optimization techniques with and without metamodeling are compared.
8. The metamodeling approach is used to center the LC-VCO and ring oscillator to various

target frequencies.

3 Related Prior Research

Research is in full swing to reduce design cycle time of analog/mixed-signal circuits and
systems. This section discusses research works that relate to the scope of the present paper.
They are grouped into three categories: (1) optimization on actual circuits (i.e. netlists), (2)
design effort reduction using macromodels, and (3) design time reduction using metamodels.

Optimization on actual circuits (netlists) has the advantage of using the same framework
for design, simulation, and characterization. However, they are often not scalable to large
circuits. In [8], automatic synthesis of CMOS LDO regulators is presented. In [14], a conju-
gate gradient optimization is presented for current-starved VCO circuits. In [5], a geometric
program formulation for transistor sizing and optimization is investigated but it is not par-
asitic aware and slow to converge. In [44], a framework based on ellipsoidal uncertainty is
presented. Design characterization of ring oscillators including jitter, power and frequency
is presented in [33]. In [46], geometric programming is used for metal mask configurable
circuit optimization. A heuristic tabu search optimization algorithm is proposed in [2] and
compared with simulated annealing for an operational amplifier. In [26], an automated ana-
log circuit design was proposed for a two-stage CMOS operational amplifier.

Macromodels have been extensively explored as an attractive approach in analog de-
sign. In [4], a variation-aware performance macromodeling technique is presented for ana-
log building blocks to facilitate synthesis. In [37], an approach for passivity verification and
enforcement of large order macromodels is presented for scattering parameters based on
multiport subnetworks. In [18], the limitations of macromodels that can lead to unaccept-
ably high estimation errors are discussed. In [9], a sequential design space decomposition
technique is presented for efficient analog feasibility and performance macromodeling. In
[45], a leakage current macromodeling technique for dual-threshold circuits is presented.

A few existing research works deal specifically with metamodeling, but not necessar-
ily for mixed-signal circuits. Adaptive or sequential metamodeling has been implemented
for grid computing in [17]. A surrogate modeling approach is also used for statistical wire-
length estimation in [42]. An automated technique for surrogate multivariate mathemati-
cal modeling for microwave components is proposed and tested in [21]. In [24], artificial
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neural networks have been used to model spiral inductors and particle swarm optimization
(PSO) has been used for optimization. IP reuse for SoC interaction and microprocessor de-
sign is covered in [25]. In [34] surrogate modeling for expensive circuit-level simulation
is proposed for support vector machine (SVM)-based machine learning. In [23], ANN and
Gaussian processes has been used for performance prediction without using electromagnetic
(EM) simulations. In [22], Gaussian process has been used along with memetic optimization
for differential amplifier synthesis.

4 The Case Study Nano-CMOS Circuits: LC-VCO and Ring Oscillator

This section presents two case study oscillator circuits, an LC-VCO and a ring oscillator.
Both of these are widely used in mixed-signal circuits and systems. These are designed for
two different technology nodes. Complete design details are given in [12], however they are
briefly discussed here again for completeness of the current paper.

4.1 A 180 nm CMOS LC-VCO Circuit

A conventional complementary NMOS and PMOS cross-coupled LC-VCO circuit (Fig.
4(a)) is used as case study. The inductor is chosen to be as large as possible to minimize
power consumption, which leaves the varactor capacitance and the transistor sizing as de-
sign variables. It is logical to find a close value for the varactors and the inductor first then
adjust the width of the transistors to “fine-tune” the needed frequency as changing the size
of transistors does not change their capacitance significantly relative to the varactors.
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(b) Layout design

Fig. 4 Design of the LC-VCO for 180 nm CMOS technology.

The physical design of the LC-VCO is shown in Fig. 4(b). The parasitic-aware netlist
of the LC-VCO is extracted from the physical design which is made to be symmetrical. The
symmetry of the layout provides even-order distortion in the differential output waveform
and up-conversion [16]. The wire widths are maximized to minimize wire resistance and
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provide some space for future sizing of the devices as the layout will be adjusted in the
second iteration of the design optimization flow.

The tuning characteristics of the designed LC-VCO, which has a target frequency of
2.2 GHz in the middle of the tuning range, are shown in Fig. 5(a). The phase noise of the
LC-VCO is shown in Fig. 5(b) for the center frequency of 2.2 GHz. Phase noise at 1 MHz
offset from the carrier is -117 dBc/Hz. This circuit is completely symmetrical for Voutn and
Vout p to have exactly the same frequency. The transistors have the same effect on frequency
as the varactors.
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Fig. 5 Characterization of the 180 nm LC-VCO.

The simulation on the parasitic extracted netlist with the same sizing of the devices as
in the schematic demonstrates the effect of parasitics on the circuit. The number of extra
components which have been added due to the parasitics is presented in Table 2. An implicit
assumption is that minor modifications on some devices in this particular layout will not
have drastic effects on the parasitics of the future modified layout. Hence, the optimization
can be performed on the sizing of the devices of this circuit with extracted parasitics and
only consider the parasitics in the final layout to assess the effects they have on the FoMs
during the optimization.

4.2 A 45 nm CMOS Ring Oscillator Circuit

A Ring Oscillator (RO) consists of an odd number of inverters connected in series with
positive feedback as shown in Fig. 6(a). In this circuit, the transistor widths are varied to
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Table 2 Number of parasitic elements of the 180 nm LC-VCO.

Simulations Transistors Capacitors Inductors Resistors Total

Without Parasitics 2 2 1 0 5
With Parasitics 2 108 14 600 724

obtain the desired oscillating frequency. The initial design parameters are as follows: length
of transistors L = 45 nm, width of NMOS Wn = 120 nm and width of PMOS Wp = 240
nm, with a nominal operating voltage of Vdd = 1 V, as shown in Fig. 6(a). It is difficult to
estimate the effect of parasitics without performing the layout even for such a simple circuit.
A full parasitic netlist is extracted from the physical design of the ring oscillator, which is
shown in Fig. 6(b). The extracted netlist is then parameterized and is used subsequently for
all parasitic-aware design, simulations and optimization.

Wn=120nm

Output

Wp=240nm
L=45nm

Wp=240nm
L=45nm

Wn=120nm
L=45nmL=45nm

Gnd

Wn=120nm

Vdd

Wp=240nm
L=45nm

L=45nm

(a) Schematic design (b) Layout design

Fig. 6 Design of the ring oscillator for 45 nm CMOS technology.

SPICE simulation of the post-layout parasitic netlist of the ring oscillator circuit shows
a dramatic decrease in frequency compared to the initial schematic design. The presence
of parasitics in the circuit also increases the run time of each simulation. In more complex
circuits with hundreds or even thousands of transistors, the simulation time will be in the
order of days if not weeks, depending on the complexity of the circuit. Table 3 shows a
comparison of the number of components between the regular schematic and the parasitic
netlist. As evident from the table, the complexity of the circuit (SPICE topology matrix) has
increased by almost 20×.

Table 3 Number of parasitic elements of the 45 nm ring oscillator.

Simulation Transistors Capacitors Resistors Total

Without Parasitics 6 0 0 6
With Parasitics 6 82 19 107
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5 Polynomial Metamodel-Based Design Flow using Only Single Layout-Iteration

5.1 Parasitic-Aware Design Optimization Flow

A parasitic-aware design flow that uses only two manual layouts is proposed in Fig. 7. An
initial physical design is generated once the logical design is complete and meets the spec-
ifications. The physical design is then subjected to Design Rule Check (DRC), Layout ver-
sus Schematic (LVS), and parasitic (RLCK) extraction. If the specifications are not met, a
parasitic parameterized netlist is then created with the design variables as parameters. The
parasitic-aware netlist contains all the parasitics associated with the initial physical de-
sign, while the devices that are selected to be varied are parameterized. The parasitics are
captured based on the process design kit specific to a technology. In the current paper the
parasitic-aware netlist contains parasitic resistance, capacitance, and self and mutual induc-
tance, along with the active devices. The netlist is simulated using SPICE. The speed up in
the design flow stems from the following: (1) use of more automatic iterations instead of
manual iterations in the flow and (2) use of fast optimization algorithms.
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Perform DRC/LVS/RCLK Extraction

Stop
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Netlist with All Parasitics
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Specifications

Create Logical Design

Input Specifications

Schematic Design
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Perform DRC/LVS/RCLK Extraction and Simulation

Create Physical Design
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Parameterized Parasitic Netlist
with Design Variables

Parasitic Aware
Parameterized Netlist

Perform Design Optimization on
Netlist or Polynomial Metamodels

Optimized Physical
Design Variables

Stop

Final Layout

Optimization Phase
Scope of this paper

Fig. 7 Proposed parasitic-aware physical design optimization flow using polynomial metamodels. This flow
performs the mixed-signal design optimization in one additional layout iteration, in which only two manual
layouts are needed instead of multiple iterations.
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The resulting parasitic-aware netlist is then used by an automated process to conduct
the optimization phase which determines the variable values for the parameters that were
chosen for each circuit. The optimization phase is outlined by the dashed line in Fig. 7 and
is discussed in this paper. The final physical design is then created by using the optimized
parameters. The physical design creation, which is a very time consuming process, needs to
be only conducted at most two times using this proposed approach. The perturbation intro-
duced to the layout by the optimization phase does not have a large impact on the parasitic
behavior. This approach is justified by the results presented in the following sections.

One of the most important phases of the design flow is the optimization algorithm. The
optimization over actual circuits, as is presented in [14], is possible but is still time con-
suming for large circuits. The current paper will thus optimize the mixed-signal components
over their polynomial metamodels.

At this phase of the design flow, the parasitic circuit’s netlist is modified to include
variable parameters that affect the circuit’s output the most. For the LC-VCO, for easier final
physical design, the inductor and the varactors are the biggest devices in the circuit and are
kept constant because their change will affect the parasitics of the final layout substantially.
The varying parameters for optimization are chosen to be Wn and Wp, the NMOS and PMOS
widths, respectively. To simplify the study of the algorithms the current paper uses Wn and
Wp as the design variables for both circuits. However, the algorithms and the design flow are
generic in nature and can accommodate any other design variable that the design engineer
intends to use.

5.2 Polynomial-Metamodel Based Design Optimization Flow

The polynomial metamodel based fast and accurate design flow is presented in Fig. 8. These
proposed steps are the essence of the creation of an accurate metamodel and the optimization
on that metamodel to find the desired response. The parasitic aware design flow is modified
to include the details of the polynomial metamodel generation.

An accurate metamodel provides designers with a good understanding of the behavior of
mixed-signal components as their design spaces are traversed. The metamodels chosen for
this comparison follow a polynomial functional form as follows: y(x1,x2) = ∑

k
i, j=0(ai jxi

1x j
2),

where y is the response or FoM. x = [x1,x2] = [Wn,Wp] is the vector of design variables. ai j
are the coefficients determined by the polynomial regression which is chosen to have at
most degree k = 4. The response FoM is frequency f , power P, or power over frequency
ratio (PFR).

Once the metamodels are generated, the designer can conduct more extensive optimiza-
tion of the circuit and use the same metamodel for different criteria to be optimized. As can
be seen from the example in Section 4, the simulation is significantly more time consuming
than using the metamodel. The designer can adjust and change the optimization algorithm to
fit the proposed design flow, especially if the circuit undergoes multiple optimization (auto-
matic) iterations. Metamodeling is also useful to determine which optimization algorithm to
select and adjust for a given circuit. Metamodel sampling is a time consuming process, but
by choosing the right sampling and fitting technique, it is possible to apply computationally
expensive algorithms such as exhaustive search on the circuit to obtain full coverage of the
design space, with almost no time consumed in the optimization process.

From the previous study for the ring oscillator a Latin Hypercube Sampling (LHS) of
the circuit with 50 points is selected to create an accurate metamodel [12]. The polynomial
metamodel has a root mean square error (RMSE) of 20 MHz with a maximum standard
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Fig. 8 The proposed polynomial metamodel based AMS-SoC design optimization flow.

deviation for error of 10.7 MHz. With the output frequency being in the 10 GHz range,
the accuracy of the metamodel is approximately 99.9%. As for the LC-VCO, metamodels
were generated with order 1 through 6. The 5th order polynomial exhibited the best results
for that circuit with RMSE of 16.8 MHz and highest standard deviation of 9.6 MHz. The
accuracy of the metamodel is calculated at 99.6%. The RMSE values are calculated from
new sampling points which are different from the points used during regression. This ensures
that the RMSE calculation is not artificially optimistic.

The polynomial metamodels are generated for power and frequency for the LC-VCO
and ring oscillator circuits. The 1st order to 5th order polynomials are investigated. The 2nd
order oscillating-frequency metamodels are the following:
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LC-VCO – Order 2:

f (Wn,Wp) = 2.3×109 +6.25×1011Wn +1.45×1011Wp

−4.16×1016W 2
n −2.01×1017WnWp−1.02×1017W 2

p . (1)

Ring oscillator – Order 2:

f (Wn,Wp) = 6.38×109 +2.2×1016Wn +6.1×1015Wp

−5.03×1022W 2
n +3.28×1022WnWp−1.52×1022W 2

p . (2)

6 Algorithms for Physical-Design Optimization

In this section three algorithms are elaborated and their performance is evaluated for differ-
ent oscillator circuits. Each optimization algorithm uses two variables: Wn and Wp, for the
widths of NMOS and PMOS, respectively. The criteria for comparing the algorithms consist
of the following: (1) the time elapsed to do the search, (2) the number of iterations that each
algorithm performed while searching, (3) the number of sampling points, (4) whether the
number of iterations are different than the number of sampling points (in the case of tabu
search), and (5) the accuracy of the result. In the following discussion, all algorithms use
Si for an objective function that holds the best result and S∗i for an objective function that
stores temporary results during the iterative optimal solution search process.

6.1 Algorithm-ESO : Based on Exhaustive Search Optimization

The exhaustive search optimization approach is described in Algorithm 1. This should only
be used if simulation time is not an issue. However, in this paper this is considered as a
baseline algorithm for the purpose of comparison. It is simple to implement and provides
the designer with all available results for all searched points within the constrained space.

Algorithm 1 ESO: Exhaustive Search Optimization
1: Determine the figure of merit (FoM) of interest for the mixed-signal component.
2: Determine the tuning parameters for the mixed-signal component.
3: Determine the step size Step of each variable between Wnmax, Wnmin and Wpmax, Wpmin for N simulations.
4: Initialize the result counter result counter = 0.
5: for (i←Wnmin to Wnmax with StepWn) do
6: for ( j←Wpmin to Wpmax with StepW p) do
7: Calculate the FoM of the mixed-signal component using its polynomial metamodel.
8: Assign the current objective Si j ← Calculate from the polynomial metamodel.
9: if (The objective is is within the error margin) then

10: result[result counter]← Si j .
11: Increment the result counter.
12: end if
13: end for
14: end for
15: return result.

In the current case, the exhaustive search is conducted for various numbers of iterations
taking into consideration the widths of PMOS and NMOS as variables. The design points
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Fig. 9 100×100 search for 2.2 GHz design specification of the LC-VCO. The top surface is the golden
surface for the complete design space exploration. The bottom surface (on the x− y plane) is the search
result.
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Fig. 10 1000×1000 search for 10 GHz design specification of the ring oscillator. The top surface is the
golden surface for the complete design space exploration. The bottom curve is the search result.

that the ESO algorithm determined for the LC-VCO are shown in Fig. 9 and in Fig. 10 for
the RO.

Let us assume that there are n number of design/tuning variables for mixed-signal com-
ponent and each variable is divided into v amount of steps. The ESO algorithm has time
complexity of Θ (nv).

6.2 Algorithm-SAO: Based on Simulated Annealing Optimization

Simulated annealing optimization is an extension of the Monte Carlo technique that simu-
lates the annealing process in metals [35,28]. Hence it has a random component and conse-
quently two successive runs will produce different results. The steps of simulated annealing
based search are presented in Algorithm 2.

The SAO algorithm action as it searches a 10 GHz frequency for the RO in the constraint
space is shown in Fig. 11. The starting point is chosen to be in the middle, and the step value
is a random value which is normally distributed between 0 to 0.1Wnmax on the x-axis and 0 to
0.1Wpmax on the y-axis. The algorithm’s temperature setting does not affect its performance
for this particular circuit since it is very smooth, as shown in Fig. 11. However, it is usually
set as a high number and needs to be able to reach 0 when the inner loop completes its
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Algorithm 2 SAO: Simulated Annealing Optimization
1: Determine the figure of merit (FoM) of interest for the mixed-signal component.
2: Determine the tuning parameters for the mixed-signal component.
3: Initialize iteration counter Counter← 0.
4: Initialize feasible solution Si← (mid(Wn),mid(Wp)).
5: Determine initial FoM for the solution Si i.e. FoMSi using the polynomial metamodels.
6: Initialize temperature T as Ti.
7: while (FoMSi ) is not within error margin) do
8: Counter←Maximum number of iterations.
9: while (Counter > 0) do

10: Generate random transition from Si to S∗i .
11: Determine FoM for the solution Si i.e. FoMSi using the polynomial metamodels.
12: Determine FoM for the solution S∗i i.e. FoMS∗i

using the polynomial metamodels.
13: if (S∗i is acceptable solution) then
14: Update the result with S∗i , i.e. Si← S∗i .
15: break both while loops.
16: else
17: Calculate change as: ∆FoM← FoMSi - FoMS∗i

.

18: if (∆FoM < 0 and random(0,1) < e
∆FoM

T ) then
19: Update the solution with new solution: S← S∗i .
20: end if
21: end if
22: Decrement Counter.
23: end while
24: Decrease temperature as: T ← T ×Cooling Rate.
25: end while
26: return the result Si.

cycles. The max cycle time is set to 50 iterations for the inner loop with T = 100 degrees
and according to that, Cooling Rate = (max iteration/T )−1, which in this case is 0.5.
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Fig. 11 SAO algorithm search for 10 GHz objective for the RO. The search progressed in the direction of the
arrows.

Let us assume that the algorithm goes through n number of iterations. The transition
solution space is a constant time complexity step as obtained from DOE analysis. Let us
assume that the cooling rate is γ . The time complexity of the SAO algorithm is calculated as
O
(

n
γ

)
.
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6.3 Algorithm-DOE-TSO: Based on Design of Experiments (DOE) and Tabu Search
Optimization

The DOE-TSO steps are described in Algorithm 3. This is a meta-heuristic algorithm that
takes a more aggressive approach than most other search approaches. It skips inferior solu-
tions other than the cases when it needs to exit out of a local optimum [31]. This algorithm
uses the entire search constrained space and applies the divide and conquer approach. In
the case of tabu search both design variables yield more than one result, as the algorithm
chooses more than one point.

Algorithm 3 DOE-TSO: Combined Design of Experiments (DOE) and Tabu Search Opti-
mization.
1: Determine the figure of merit (FoM) of interest for the mixed-signal component.
2: Determine the tuning parameters for the mixed-signal component.
3: Initialize iteration counter Counter← 0.
4: Perform design of experiments analysis for Wn and Wp using a center design with 9 points.
5: Generate initial solution Si.
6: Calculate FoMSi ← from the polynomial metamodel functions.
7: while (Counter < Max Counter) do
8: Perform Design of Experiment (DOE) analysis to generate a set of 5 points with resulting FOMs

calculated from the polynomial metamodels.
9: Generate the next feasible solution in the selected quadrant as S∗i .

10: Increment Counter.
11: if (Si is not visited in the previous iterations) then
12: if (FoMS∗i

is better solution than FoMSi ) then
13: if (result is found) then
14: Update result with S∗i , i.e. Si← S∗i .
15: break while loop.
16: end if
17: Update result with S∗i , i.e. Si← S∗i .
18: else
19: Discard the solution S∗i as it is an inferior solution.
20: end if
21: end if
22: end while
23: return the result Si.

The algorithm performs a design of experiments (DOE) analysis of the search space.
The search space is recursively divided into four adjacent subspaces. Analysis of each of
those areas yields the best area. The idea is demonstrated in Fig. 12. The best area is shown
in green color and the yellow area is then discarded. The algorithm moves to that area by
constraining to its boundaries and then conducts the same analysis of that subspace. In that
process the algorithm is able to perform a detailed search in the region that the result is
potentially present. Fig. 12 shows the points that the algorithm has sampled to find the value
within the search constrained space. The red dot shows the final result of the search for the 9
GHz frequency, which completed in 4 iterations of the algorithm loop and uses 30 sampling
points to obtain this result.

Let us assume that the maximum number of iterations in the DOE-TSO algorithm is n.
During each iteration the algorithm performs DOE for fixed set of points using the polyno-
mial metamodels, thus taking constant time. Hence, it is concluded that the DOE-TSO has
time complexity of O(n).
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Fig. 12 DOE-TSO algorithm search for 9 GHz of the RO. The search space is recursively divided into
rectangles and each time the rectangle with superior result is selected; the other 3 with inferior solutions are
discarded.

6.4 Algorithm-ABC: Based on Artificial Bee Colony Optimization

The artificial bee colony (ABC) algorithm is a recently invented population-based meta-
heuristic approach [3,36,19]. The ABC algorithm mimics the intelligent foraging behavior
of honey bee swarms. In the ABC algorithm, the colony of virtual bees is classified into three
types: workers, onlookers, and scouts. The key working principle of the ABC algorithm is
that a swarm of artificial bees is generated and moved randomly. The artificial bees interact
when they obtain some nectar. The solution of a specific problem under consideration is
obtained from the intensity of the interactions of these artificial bees. The number of worker
bees is the number of solutions of the population. The quality of the solution is related to
the nectar amount. A solution of the optimization problem is essentially a position of the
food source. The ABC optimization starts with a random initial solution i.e. food source for
all worker bees and the algorithm iterates the following steps while requirements are met.
Each worker bee goes to a food source and evaluates its nectar amount. Each onlooker bee
watches the dance of worker bees and chooses one of their sources depending on the dances
and evaluates its nectar amount. Each scout bee determines abandoned food sources and
replaces them with new food sources discovered by scouts. The actions of the bees in the
context of oscillator circuit optimization is depicted in Fig. 13.

As evident from Fig. 13, the movement of the worker, onlooker, and scout bees are
dependent on two factors: the probability of food source (Probfood) and the figure-of-merit
(FoM) of the oscillator. The worker bee continues its evaluation as long as the current FoM
exceeds the previous FoM, i.e. FoMcurr > FoMprev. Otherwise the transition is made to an
onlooker bee. The onlooker bee continues if Probfood is low. When Probfood is high and
FoMcurr > FoMprev, a transition is made to worker bee. When Probfood is high and FoMcurr <
FoMprev, a transition is made to scout bee. The scout bee continues its evaluation as long
as the next FoM does not exceed the current FoM, i.e. FoMcurr < FoMprev. The transition
from scout bee to worker bee is made when FoMcurr > FoMprev. A detailed pseudocode of
the ABC based solution approach is presented in Algorithm 4 [3,19].

In the ABC steps presented in Algorithm 4, the initial food source is calculated using
the following expression [3,19]:

d j,k = dmin,k + rand(0,1)
(
dmax,k−dmin,k

)
, (3)
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Fig. 13 The transition is states of the artificial bees in the beehive implemented in the artificial bee colony
algorithm.

where d is any design, j is any integer from 1 to the number of food sources (i.e. sample
points), k is any integer from 1 to the number of design variables, and rand(0,1) generates
a uniform random number between 0 and 1. The same expression can be used to generate
any random food source. This expression is a constant time consuming operation in the
algorithm. An onlooker bee chooses a food source based on the probability associated with
that food source, which is calculated using the following expression:

Probfood, j =

(
fitness j

∑
# of food sources
j=1 fitness j

)
. (4)

The time complexity of the Probfood computation for all food sources is O(s), if s is the
number of food sources. Let us assume that the number of design variables, which is same
as the number of bees, is n. The algorithm goes through m number of iterations. The time
complexity of the ABC algorithm is calculated as O(nms) [3]. The ABC algorithm can
be said to have linear complexity with respect to the number of design variables i.e. O(n)
[3]. The number of iterations m is user dependent and also can be replaced with an error
tolerance criterion. The number of food sources s can also be limited by the user.

7 Experimental Results

The algorithms presented in the previous section are now examined through experimental
evaluation of the case study circuits. The two tuning parameters, Wn and Wp, are dictated by
nano-CMOS technology adopted for the designs. For example, for the 45 nm ring oscillator,
120 nm width is the minimum value for both variables and 360 nm and 720 nm are the
maximum values for Wn and Wp, respectively. For the 180 nm LC-VCO the ranges are 3 µm
to 20 µm for NMOS and 6 µm to 40µm for PMOS. The optimization is conducted so as to
target a certain output, in the current case frequency ( f ), with 5% accuracy or better.

The performance of the ESO algorithm with an accuracy of 1% is shown in Table 4. For
example, the simulation time for 10,000 points of the RO circuit the algorithm took approxi-
mately 32 hours to run the actual simulation on the parasitic netlist and found 42 points with
the same minimum and maximum values. The optimization data on the polynomial meta-
models are also shown. It is evident from the table that the search time has been reduced
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Algorithm 4 ABC: Artificial Bee Colony Optimization
1: Set the boundaries for each design parameter, e.g. Wn,Wp,Ln,Lp.
2: Initialize Number-of-Bees (i.e. Number of parameters), Bee-Matrix[workers, onlookers, scouts] (i.e. 0/1

entries), food sources (i.e. sample point).
3: while (counter ≤Max-Counter) do
4: for each i from 1 to Number-of-Bees do
5: if ( Bee-Matrix(1,i) == 1 ) then
6: Send worker bee to a random known food source.
7: Calculate FoM of the oscillator circuit using polynomial metamodels.
8: if (current FoM is better than the previous FoM) then
9: Update results (FoM of oscillator circuit) and locations (i.e. design parameters).

10: else
11: Convert worker bee to onlooker bee.
12: end if
13: else if ( Bee-Matrix(1,i) == 1 ) then
14: Send onlooker bee.
15: Calculate probability of the food source being (Probfood) good.
16: if (Probfood is high) then
17: Send onlooker bee to random location for each design parameter and Calculate the FoM of

oscillator circuit using polynomial metamodels.
18: if (current FoM is better than the previous FoM) then
19: Update results (FoM of oscillator circuit) and locations (i.e. design parameters).
20: Convert onlooker bee to worker bee.
21: else
22: Convert onlooker bee to scout bee.
23: end if
24: end if
25: else
26: Send scout bee and Pick the best result.
27: Send the scout bee to random location for each design parameter.
28: if (current FoM is better than the previous FoM) then
29: Update results (FoM of oscillator circuit) and locations (i.e. design parameters).
30: Convert scout bee to worker bee.
31: end if
32: end if
33: if (current FoM is better than previous FoM) then
34: Update results (FoM of oscillator circuit) and locations (i.e. design parameters).
35: end if
36: end for
37: Increment counter.
38: end while
39: return Update results (FoM of oscillator circuit) and locations (i.e. design parameters).

significantly, as the same 10,000 point optimization took only 0.46 seconds. Of course the
strength of this approach lies in the fact that an accurate polynomial metamodel is generated
by intelligent sampling of the design space.

The performance of the SAO algorithm for 2.2 GHz frequency of LC-VCO with an ac-
curacy of 1% is presented in Table 5. For the LC-VCO, it is observed that the SAO algorithm
reaches the optimal solution in approximately 25 iterations, which is within 0.06% of the
needed result, within approximately 22 ms. The performance of the SAO for the 10 GHz
frequency RO with an accuracy of 5% is presented in Table 6. It is observed that the algo-
rithm reaches the first optimal solution in 10 iterations which is within 0.48% of the needed
result within 0.77 ms.

The performance of the DOE-TSO algorithm is presented in Table 7 for the LC-VCO.
DOE-TSO algorithm reaches the optimal solution in approximately 3 iterations which is
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Table 4 Results of ESO algorithm for 2.2 GHz LC-VCO and 10 GHz Ring Oscillator (RO).

LC-VCO Ring Oscillator (RO)
Iterations Points Found Time Iterations Points Found Time

Parasitic Netlist Optimization (Without Metamodel)

10000 2940 47.2 hours 10000 42 32 hours
2000 587 9.5 hours 2500 13 8 hours
1000 300 4.7 hours 625 2 2 hours

Metamodel Optimization

1000000 10747 3.65 s 1000000 4566 57.01 sec
10000 1070 313.8 ms 250000 1142 21.73 sec
2000 204 80.03 ms 10000 44 0.46 sec

Table 5 Results of SAO algorithm for 2.2 GHz frequency of LC-VCO.

Loop Iterations Results Needed Results Found Accuracy Time

Parasitic Netlist Optimization (Without Metamodel)

34 2.3 GHz 2.31 GHz 0.44% 7.4 min
60 2.2 GHz 2.22 GHz 0.97% 15 min
24 2.1 GHz 2.08 GHz 0.99% 5.6 min

Metamodeling Optimization

31 2.3 GHz 2.3 GHz 0.06% 23.8 ms
18 2.2 GHz 2.2 GHz 0.09% 18.1 ms
30 2.1 GHz 2.1 GHz 0.03% 25.0 ms

Table 6 Results of SAO algorithm for 10 GHz frequency of Ring Oscillator.

Loop Iterations Results Needed Results Found Accuracy Time

Parasitic Netlist Optimization (Without Metamodel)
35 9 GHz 8.97 GHz 0.33% 6.84 min
24 10.5 GHz 10.40 GHz 0.97% 4.69 min
16 11 GHz 10.96 GHz 0.36% 3.12 min

Metamodeling Optimization

32 9 GHz 8.96 GHz 0.48% 1.8 ms
18 9.5 GHz 9.41 GHz 0.94% 1.05 ms
10 10 GHz 10.05 GHz 0.48% 0.77 ms

within 0.06% of the needed result within approximately 78.5 ms for the LC-VCO circuit.
The performance of the DOE-TSO algorithm is presented in Table 8 for the RO. It is ob-
served from Table 8 that an average of 17 simulations are expected to run for DOE-TSO
algorithm to obtain a result within 5% accuracy with an average of 2.25 loop iterations.

The performance of the ABC algorithm for 2.2 GHz frequency of the LC-VCO with an
accuracy of 1% is presented in Table 9. The ABC algorithm reaches the optimal solution in
approximately 17 iterations which is within 0.91% of the needed result within approximately
40.5 ms for the LC-VCO design. The performance of the ABC algorithm for the 10 GHz
frequency RO with an accuracy of 5% is presented in Table 10. For the ring oscillator circuit,
the ABC algorithm reaches the optimal solution in approximately 17 iterations which is
within 2.2% of the needed result within approximately 30.4 ms.
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Table 7 Results of DOE-TSO algorithm for 2.2 GHz frequency of LC-VCO.

Loop Iterations Results Needed Results Found Accuracy Time

Parasitic Netlist Optimization (Without Metamodel)
5 2.3 GHz 2.3 GHz 0.09% 8.3 min
4 2.2 GHz 2.2 GHz 0.31% 7.2min
5 2.1 GHz 2.1 GHz 0.6% 8.3 min

Metamodeling Optimization

4 2.3 GHz 2.3 GHz 0.02% 85.2 ms
3 2.2 GHz 2.2 GHz 0.17% 65.4 ms
3 2.1 GHz 2.1 GHz 0.06% 84.9 ms

Table 8 Results of DOE-TSO algorithm for 10 GHz frequency of Ring Oscillator.

Loop Iterations Results Needed Results Found Accuracy Time
Parasitic Netlist Optimization (Without Metamodel)

32 9 GHz 9.38 GHz 4.22% 6.25 min
18 10.5 GHz 10.5 GHz 0.32% 3.52 min
10 11 GHz 11.1 GHz 0.84% 1.95 min

Metamodeling Optimization

30 9 GHz 9.4 GHz 4.41% 8.6 ms
12 10 GHz 9.93 GHz 0.74% 7.18 ms
24 10.5 GHz 10.5 GHz 0.32% 7.38 ms

Table 9 Results of ABC algorithm for 2.2 GHz frequency of LC-VCO.

Loop Iterations Results Needed Results Found Accuracy Time

Parasitic Netlist Optimization (Without Metamodel)

30 2.3 GHz 2.31 GHz 0.43% 9.2 min
25 2.2 GHz 2.21 GHz 0.45% 7.5 min
16 2.1 GHz 2.10 GHz 0.02% 4.3 min

Metamodeling Optimization

22 2.3 GHz 2.32 GHz 0.87% 52.3 ms
18 2.2 GHz 2.22 GHz 0.91% 41.8 ms
12 2.1 GHz 2.12 GHz 0.95% 27.5 ms

Table 10 Results of ABC algorithm for 10 GHz frequency of Ring Oscillator.

Loop Iterations Results Needed Results Found Accuracy Time

Parasitic Netlist Optimization (Without Metamodel)

32 9 GHz 9.1 GHz 1.11% 7.8 min
26 10.5 GHz 10.60 GHz 0.95% 6.2 min
18 11 GHz 11.2 GHz 1.82% 3.5 min

Metamodeling Optimization

28 9 GHz 9.2 GHz 2.22% 41.5 ms
16 10.5 GHz 10.7 GHz 1.9% 32.6 ms
12 11 GHz 11.3 GHz 2.7% 20.3 ms
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The four algorithms are now compared in terms of their running time when they per-
formed optimization with and without the metamodel. The lower half of each of the results
presented in Table 4, Table 7, Table 8, Table 5, and Table 6 have the running time informa-
tion. The comparative perspective is presented in Fig. 14 and Fig. 15 in order to provide a
visual perspective, for the LC-VCO and ring oscillator, respectively. The calculated speedup
is shown in Table 11 and 12. It is interesting to note that SAO algorithm has greater speedup
amongst metamodel-based optimizations and DOE-TSO performs better with netlist-based
optimizations for both case study circuits.

ESO SAO DOE-TSO ABC

Netlist Optimization Metamodel Optimization
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Fig. 14 Performance of the three algorithms for the LC-VCO.

Table 11 Results of the four Optimization Algorithms: Simulation Speedup.

Optimization Simulation Time (in Sec) Metamodeling Speedup
LC-VCO Ring Oscillator LC-VCO Ring Oscillator

Netlist Metamodel Netlist Metamodel

ESO 57,420 0.73 50,400 19.02 78,657× 2,650×
SAO 648 0.03 178 0.02 21,600× 8,900×

DOE-TSO 463.5 0.08 46.8 0.12 5,794× 387.5 ×
ABC 470 0.04 320 0.03 11,750× 10,526×

It is difficult to provide a fair comparison of the proposed research of the current paper
with prior research discussed in Section 3. This is due to the fact that the scope and the case
study circuits are not exactly the same. From Table 11 it is observed that the speed up is
highest (78,657×) for ESO when metamodels are used, however ESO is very time consum-
ing for netlist based optimization. For the 3 metaheuristic algorithms used over netlist and
metamodels, it can be stated that the current paper advances the state-of-the art by making
the design cycle as fast as ≈ 21,600× for the LC-VCO and ≈ 11,750× for the RO. The
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Fig. 15 Performance of the three algorithms for the ring oscillator.

Table 12 Results of the four Optimization Algorithms: Search Speedup.

Optimization Speedup Over Exhaustive Search
Algorithms Netlist (LC) Metamodel (LC) Netlist (RO) Metamodel (RO)

ESO Baseline Baseline Baseline Baseline
SAO 87× 24.3× 283× 951×

DOE-TSO 124× 9.1× 1077× 158.5×
ABC 122× 18.2× 157.5× 634×

two case-study circuits are carefully selected as they are widely used as oscillators in any
AMS-SoC. However, the scalability of the algorithms for complex circuits is crucial. The
swarm intelligence based ABC optimization algorithm performs quite well for the LC-VCO
as well as the ring oscillator. However, its true potential is more obvious for larger mixed-
signal circuits. The polynomial-metamodel based optimization is further investigated using
the ABC algorithm for larger circuits such as a phase-locked loop (PLL) with more than
1000 transistors and 21 design variables and it is found that the approach is scalable [13].
The polynomial-metamodel based optimization is further investigated using the SAO algo-
rithm for PLL component circuits and it is found that the approach performs very well [30].

8 Conclusions and Future Research

A novel design flow using metamodels is proposed to minimize the amount of time for
AMS-SoC subsystem optimization, with emphasis on oscillators. The fast analysis of four
different optimization algorithms demonstrated that ABC, SAO, and DOE-TSO compute the
result with fewer iterations than exhaustive search, even though they both stop computing
on the first available result within the search criteria, while the exhaustive search computes
all available results. It is also observed that DOE-TSO performs better for the simulation
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approach while SAO performs best for metamodeling. The metamodeling approach is com-
petitively close to the one time optimization in the number of iterations and the accuracy of
the result. Optimization techniques that are not computationally tractable, such as exhaus-
tive search can be used on a metamodel. If the designers need to optimize the circuit more
than once or need to generate all the optimal solutions for the problem, the metamodeling
approach dramatically reduces the design optimization time. Future research will include a
more complex analog nano-CMOS circuit metamodel optimization, with a larger number of
variables, different types of metamodels, and swarm-intelligence optimization algorithms.
The time spent on creating a metamodel is around 98% less than exhaustively searching the
design area, which has roughly shortened the design process by 106 hours for the LC-VCO.
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