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Abstract—Weather forecasting models are computationally
intensive applications. These models are typically executed in
parallel machines and a major obstacle for their scalability
is load imbalance. The causes of such imbalance are either
static (e.g. topography) or dynamic (e.g. shortwave radiation,
moving thunderstorms). Various techniques, often embedded in
the application’s source code, have been used to address both
sources. However, these techniques are inflexible and hard to use
in legacy codes.

In this paper, we demonstrate the effectiveness of processor
virtualization for dynamically balancing the load in BRAMS,
a mesoscale weather forecasting model based on MPI paral-
lelization. We use the Charm++ infrastructure, with its over-
decomposition and object-migration capabilities, to move sub-
domains across processors during execution of the model. Pro-
cessor virtualization enables better overlap between computation
and communication and improved cache efficiency. Furthermore,
by employing an appropriate load balancer, we achieve better
processor utilization while requiring minimal changes to the
model’s code.

I. INTRODUCTION

Weather forecasting models are undoubtedly an important
class of applications. Currently, they have received even more
attention because they are an indispensable tool to study
climate change. These applications are also computationally
intensive and the computer power demand is expected to
increase due to higher resolutions, longer simulated periods
and more complex models of the atmospheric processes [1].
Therefore, to run these models in a feasible amount of time,
they are usually executed in parallel machines. However, a
major obstacle to their scalability is load imbalance.

The causes of load imbalance in weather models can be
either static or dynamic. One example of a static factor is
topography. Many weather models represent the atmosphere
with a three-dimensional grid of points, and distribute those
points across the processors according to a division of domains
in the latitude/longitude plane. Each processor receives the
full columns corresponding to the points in its domain. Thus,
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locations with a high topography will have fewer grid points
associated to atmosphere, hence less work to be computed by
the model. Although such imbalance changes with the input
dataset, it is conceivable that one could derive in advance an
ideally balanced decomposition if the model is routinely used
on the same region.

The dynamic sources of load imbalance in weather models
are much more involved. Some of those sources are pre-
dictable, while others are unpredictable. Consider, for exam-
ple, the effects caused by earth rotation. Two domains with
the same latitude receive different values of solar incidence
at a given moment; this results in distinct amounts of compu-
tation for the radiative components of the model on the two
underlying processors. This kind of imbalance repeats with a
periodicity of twenty-four hours in simulated time.

Meanwhile, other imbalance factors lack such predictability.
As an example, running a certain weather model (described in
Section-III) on 64 processors resulted in the forecast depicted
in Figure la. Instrumentation of the model revealed that the
computational loads in the 8 x8 set of processors were as indi-
cated by the grayscale-coded distribution of Figure 1b. There
is a clear correlation between rain and computational load:
domains containing rain correspond to overloaded processors.

If the simulation of Figure la is allowed to proceed, the
rain may “move” across domains, changing the distribution
of overloaded and under-loaded processors. This movement is
unknown a priori (since predicting where the rain will go is
precisely what the model is designed for!). Responding to such
unpredictable sources of load imbalance in weather models
remains mostly an open problem.

In this paper, we propose a novel technique to address the
load balancing problem in weather models. Our technique rests
on the concept of processor virtualization, provided by the
Charm++ infrastructure [2]. Charm++ empowers MPI appli-
cations with a proven runtime system that can dynamically
migrate work across the processors of a parallel machine.
By leveraging this migration capability, Charm++ supports a
dynamic, measurement-based load balancing mechanism.

Our approach can handle both predictable and unpredictable
sources of load imbalance in a uniform fashion. Moreover,
minimal changes to the original application code are required.
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Fig. 1: Dynamic source of load imbalance

We present experimental results with an existing weather
forecasting model, using real atmospheric data, to show that it
is possible to improve the model’s performance by employing
appropriate load balancers.

The main contribution of this paper is to demonstrate that
processor virtualization can be effectively used to improve per-
formance of MPI applications that suffer from load imbalance,
which is typically the case in weather and climate models. The
rest of the paper is organized as follows. In Section-1I, we
review previous work in load balance for weather and climate
codes. Section-III presents the tools that we use, namely a
particular weather code (BRAMS) and the main features of
Charm++. Section-IV describes how we adapted BRAMS to
exploit processor virtualization. Section-V contains the results

from our experiments, and Section-VI presents our conclusions
and future work.

II. RELATED WORK

Various researches have studied the load balancing problem
in weather and climate models. Ghan et al [3], for example,
found that orography, which is a static input, causes load
imbalance to the NCAR/CAM model.

Foster and Toonen [4] identified that physics computation
also causes load imbalance in climate codes. Examples of
physics computation are radiation, which changes with the
movement of the planet, and cloud and moisture, which
are transported with the movement of the atmosphere. They
proposed a dynamic scheme to balance the load based on a
carefully planned exchange of data across processors at each
timestep. Their rationale was that the model employed three
types of timesteps, with varying degrees of radiative calcu-
lations, and a good decomposition for one kind of timestep
was not as good for the other kinds. When applying their
scheme to the PCCM2 climate model, they achieved an overall
improvement of 10% on 128 processors, but that improvement
degraded with more processors. This technique requires a sig-
nificant amount of data exchange between processors at each
timestep. As the model is scaled, this overhead may dominate
execution and offset any potential gains provided by the load
balancing scheme. Also, implementing this scheme requires
intimate knowledge of the application’s code, to determine
which variables must be exchanged between processors.

Xue et al [5] stated that sub-domains assigned to some
processors may incur 20%-30% additional computation due to
active thunderstorms. They also claimed that the complexity
of the associated algorithm and the overhead imposed by
the movement of load prevent the use of load balancing
techniques.

In previous work by some of us [6], simulations had shown
the maximum possible gains achievable with dynamic load
balancing in RAMS, a predecessor of BRAMS. That study
included simulations using an oracle with knowledge about the
load throughout the entire execution. However, that ideal sce-
nario assumed that the grid points could be flexibly assigned to
any processor; in practice, both RAMS and BRAMS require
rectangular domains per processor. These rectangles impose
limitations to the distribution of grid points. Our present
work, as we show in Section-IV, removes that limitation:
the over-decomposition scheme enabled by Charm++ creates
sub-domains that are “mini-rectangles” dividing each original
domain. The ability to migrate these mini-rectangles enables
balancing strategies with much finer granularity. Furthermore,
this approach requires no changes to the original algorithm
employed by the application.

III. BACKGROUND

A. BRAMS Model

BRAMS (Brazilian developments on the Regional Atmo-
spheric Modeling System, RAMS) is a multipurpose regional
numerical prediction model designed to simulate atmospheric



circulations at many scales. It is used both for production
and research world wide. It has its roots on RAMS [7],
which solves the fully compressible non-hydrostatic equations
described by Tripoli and Cotton [8], and is equipped with a
multiple grid nesting scheme that allows the model equations
to be solved simultaneously on any number of two-way
interacting computational meshes of increasing spatial resolu-
tion. It has a set of state-of-the-art physical parameterizations
appropriate to simulate important physical processes such as
surface-air exchanges, turbulence, convection, radiation and
cloud microphysics.

BRAMS started as a research project aimed to tailor RAMS
to the tropics and to modernize its software structure. BRAMS
modeling features extended the original RAMS to include
cumulus convection representation as part of an ensemble ver-
sion of deep and shallow cumulus scheme based on the mass
flux approach [9], daily soil moisture initialization data [10]
and a specific surface scheme that allows the representation
of important tropical phenomena. More recently, a coupled
aerosol and tracer transport model (CATT-BRAMS [11]) was
developed to allow the study of emission, transport and
deposition of gases and aerosols associated with biomass
burning, such as those originated at the Amazon. CATT-
BRAMS has been used in daily production mode at CPTEC
to forecast air quality for the entire South America (see
http://meioambiente.cptec.inpe.br/).

BRAMS uses Fortran 90 features to eliminate dusty deck
software constructs from the original RAMS code, including
static memory allocation and the heavy use of Fortran 77
commons, achieving production quality code while maintain-
ing research flexibility. BRAMS is open source code freely
available at http://brams.cptec.inpe.br/, supported and main-
tained by a modest software team at CPTEC that continuously
transforms research contributions into production quality code
to be incorporated at future code versions. It is also a plat-
form for computer science research in themes such as grid
computing [12], [13].

This work uses the current research version (BRAMS 5.0)
that has enhanced parallelism when compared to the current
production version. Up to the current production version,
BRAMS used the original RAMS master-slave parallelism
that partitions the horizontal projection of the 3D domain
into rectangles as close to squares as possible, assigning one
rectangle to each slave process. The current research ver-
sion eliminates the master-slave parallelism to avoid memory
contention on the master process, using all processes on the
original domain decomposition. Resulting code eliminated the
master memory bottleneck, enhancing parallel scalability up
to O(1000) processors [14]. Load balancing became the major
scalability bottleneck, partially due to rectangular domain
decomposition but mainly due to the dynamic load variation
during integration.

B. Processor Virtualization with Charm++

Charm++ [2] is an object-oriented parallel programming
system aimed at improving productivity in parallel program-

ming while enhancing scalable parallel performance. A guid-
ing principle behind the design of Charm++ is to automate
what the system can do best, while leaving to the programmers
what they can do best. It is assumed that programmers can
specify what to do in parallel relatively easily, while the
system can best decide which processors own which data
units, as well as which work units each processor executes.
This approach requires an intelligent runtime system, which
Charm++ provides.

At its core, Charm++ employs the idea of processor virtu-
alization, based on migratable objects. In this approach, the
programmer decomposes a problem into a set of /N objects
that will execute on P processors, where ideally N >> P.
The programmer’s view of the execution is of N objects
and their interactions. Meanwhile, the underlying runtime
system, implemented by Charm++, maps those objects to
the P processors. This mapping is dynamic and objects can
migrate across processors during execution, under control of
the runtime system. That over-decomposition scheme effec-
tively decouples the partitioning of the problem from the
physical machine where the program will run. This, in turn,
provides many opportunities for runtime optimizations, such
as better overlap between computation and communication, or
improved communication strategies.

Object-based virtualization leads to programs that automati-
cally respect locality, in part because objects provide a natural
encapsulation mechanism. At the same time, it empowers
the runtime system to automate resource management. The
combination of features in Charm++ has made it suitable for
the expression of parallelism over a range of architectures,
from multi-core desktops to existing petaFLOP-scale parallel
machines. Moreover, it has enabled scaling real applications
to thousands of processors on several scientific areas, such as
molecular dynamics [15], quantum chemistry [16], computa-
tional cosmology [17], rocket simulation [18] and others.

C. Adaptive MPI

Adaptive MPI (AMPI) is an implementation of the MPI
standard based on Charm++ [19]. In AMPI, each MPI task
is embedded in a Charm++ object and implemented as a
user-level thread. Differently from kernel-threads, these user-
level threads are lightweight and result in very short context-
switch times [20]. Like any Charm++ object, those threads can
migrate across processors as well. Hence, by using AMPI,
many of the benefits from processor virtualization become
available to legacy MPI applications, written in C/C++/Fortran.

In AMPI, because N Charm++ objects are used to im-
plement the original MPI tasks, it is common to refer to
those objects as Virtual Processors (VPs). Thus, an MPI code
designed with a decomposition into N tasks has each of
those tasks presented with the “illusion” of owning an AMPI
virtual processor. Many VPs can share a physical processor
during execution: each VP is associated to one of the user-
level threads comprising the process that is running on that
processor. The ratio between the number of VPs and the
number of physical processors (P) available for the program



is called the virtualization ratio. The ideal values for this ratio
depend strongly on the underlying application.

A potential problem that may arise from the sharing of
a physical processor by multiple VPs is a conflict in the
access to global and static variables in the application. This is
because the VPs are implemented as threads, therefore they
share the same address space. With the original MPI, this
conflict does not exist because each task has its own address
space, hence a given global or static variable can be accessed
by only one task. To resolve that conflict in AMPI, it is
necessary to privatize those variables. There are a few different
mechanisms for such privatization, with varying degrees of
automation. Although the privatization process can result in
some overhead due to context-switching during execution,
there are techniques that keep this overhead low, regardless of
the number of globals or statics in the application’s code [21].
We demonstrate, in Section-IV, possible ways to handle this
privatization issue.

D. Load Balancing in Charm++ and AMPI

The Charm++ runtime system has a powerful load-
balancing infrastructure. This infrastructure contains instru-
mentation that, when enabled, automatically captures informa-
tion about computational load and communication traffic from
the various application sections. That information is typically
used by the runtime system to decide how to redistribute the
load across the underlying processors. The rationale in this
approach is that observations from the recent past provide a
good predictor of the execution in the near future.

Through this measurement-based load-balancing technique,
several different balancing policies have been developed and
become available for use by any Charm++ application [22].
Some of those policies focus on computation only, others favor
communication, and there are also policies that combine those
two aspects or consider the topology of the interconnection
network [23]. It is also very simple to write new balancers
that implement other policies. The specific policy to be used
in an execution is selected in the command line.

In addition to the measured factors, the balancers can also
employ application-specific information. There is an applica-
tion interface that allows the programmer to pass arbitrary
values to be considered in the balancing decisions. Those
values can be derived from characteristics of the particular
application.

The load-balancing infrastructure of Charm++ is made
available to MPI programs through an AMPI extension im-
plemented with the MPI_Migrate() call. This function is a
collective operation that, when invoked, triggers the load
balancing mechanism. At this invocation, AMPI threads may
migrate across processors, if the policy being used determines
that such migration will improve application’s performance.

IV. BRAMS ADAPTATION TO AMPI

In general, adapting a given MPI code to use AMPI is a
simple process. The only issue that requires attention is the
proper handling of global and static variables, as explained in

the previous section. In this section, we show what had to be
done with BRAMS in regard to that. Additionally, we describe
a new load balancer that we developed in Charm++, to imple-
ment a balancing policy more convenient for the characteristics
of codes with a two-dimensional domain decomposition like
BRAMS.

A. Over-Decomposition and Variable Privatization

For a given MPI code to benefit from the advantages
of AMPI, it must exploit processor virtualization. In this
approach, the idea is to replace MPI’s task decomposition
with a new scheme that over-decomposes the same domain
into a larger number of AMPI threads. Figure 2 illustrates
that: on the left, we represent a regular domain decomposition
with four MPI tasks, whereas the right side corresponds to
a possible decomposition of the same domain into sixteen
AMPI threads. With AMPI, there will be sixteen ranks, each
associated to one thread. In this particular case, AMPI would
have VP=16 and a resulting virtualization ratio of four. Other
values of VP and virtualization ratio could be used as well.
From the application’s perspective, the execution with AMPI
will behave similarly to an execution under sixteen MPI ranks.

Two issues have to be considered when using the over-
decomposition scheme: (1) the application must have the prop-
erty of binary reproducibility, which means that the numerical
behaviour of the code is independent of the number of MPI
ranks in use; and (2) the user has to consider the increase
in memory usage due to the over-decomposition. This is
because the amount of ghost cells and stack increases with
the virtualization ratio. In our experiments, we measured an
increase in memory usage. However, the benefits were still
enough to justify the use of this technique.

In the example of Figure 2, AMPI will start the execution
with threads {0,1,4,5} mapped to the first processor, threads
{2,3,6,7} mapped to the second processor, and so on. As the
execution progresses and the load balancer is invoked, threads
may migrate across the four processors. Actual migrations
depend on the observed behavior prior to load balancing and
on the policy of the particular load balancer in use. Given the
iterative behavior of BRAMS, a natural place to invoke the
load balancer is between a certain number of timesteps in the
simulation. To perform that invocation at every K timesteps,
we simply added the following line at the end of the main
loop in the BRAMS source code:

if ( mod(iteration,K) == 0 ) call MPI_Migrate()

When using the AMPI decomposition shown on the right
of Figure 2, four threads share the same physical processor.
As we observed in Section-III, this may create problems
for global and static variables. On platforms that support
the ELF format, AMPI provides a build-time flag that can
automatically handle the privatization of global variables. This
flag (-swapglobals) ensures that each thread will have its own
version of a given global. At thread context-switch time, those
versions are automatically switched by the Charm++ runtime
system. Unfortunately, this method does not work for static
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Fig. 2: Domain decomposition

variables. A possible workaround is to create a module, insert
all static variables into that module, and replace their original
declarations in the source code. This scheme would effectively
transform the statics into globals, which could then be handled
with -swapglobals.

While the -swapglobals scheme effectivelly privatizes
global variables, it may not be very efficient in some cases,
because it makes the time of thread context switch proportional
to the number of globals in the code. The reason for this fact
is that the -swapglobals flag forces the code to be compiled
as shared library. Consequently, the linker creates a global
offset table (GOT) that contains pointers to all global variables
in the application. To privatize globals, at context switch
the Charm++ runtime system changes every entry of the
GOT to the corresponding data of the resuming thread. In
some applications, however, the number of static and global
variables is very large. Table I shows those numbers for
BRAMS and for WREF, another popular weather forecasting
code. For codes like these, with thousands of globals and
statics, the context switch time becomes excessively large, as
many operations are needed to update the GOT.

To eliminate this context switch overhead, we developed a
new privatization strategy [21] based on Thread-Local Storage
(TLS). TLS is employed by kernel-level threads to privatize
data. It is used, for example, to implement the C directive
__thread in compilers. Because there is no such directive in
Fortran, we modified the gfortran compiler to adopt the TLS
scheme for all global and static variables. We also modified
the Charm++ runtime system such that TLS storage implied
using user-level threads, rather than kernel-level threads. These
changes are generic and remain useful for any other Fortran
code that needs to be used with AMPI. The TLS-based strategy
has two advantages: (a) it makes context switches O(1) and
(b) it also privatizes static data. For all experiments reported

Model  Globals  Statics  Commons
BRAMS 10203 519 32
WRE-v.3 8661 550 70

TABLE I: Number of global and static variables in two
meteorological models.

in this current paper, we used this TLS strategy.

B. New Load Balancer in Charm++

Charm++ provides a series of load balancers implementing
different balancing policies. As already explained, those bal-
ancers can be applied to any AMPI program via the trivial
insertion of the MPI_Migrate() call; no other application
changes are required. Because they were designed to be
general-purpose, most of the existing Charm++ balancers con-
sider only computational load or communication traffic in their
balancing decisions. This generality favors wide applicability,
but misses opportunities for optimizations in particular cases.

In a typical BRAMS execution under MPI, a processor
associated to a given domain exchanges information with
the processors of domains around it at each timestep. This
communication occurs to allow the processors to exchange
data near the domain borders. Several atmospheric variables
are contained in those exchanges. There are also broadcasts
and reductions for I/O, but those operations are much less
frequent; they occur at the beginning of the execution and
between a certain number of timesteps. In general, these I/O
operations do not affect the code’s performance.

The existing set of load balancers in Charm++/AMPI in-
cludes two balancers that could, in principle, be useful in
BRAMS: RefineCommLB and RecBisectBfLB. The first bal-
ancer (RefineCommLB) moves threads away from the most
overloaded processors, taking communication into account as
well; it limits the number of threads that actually migrate.
Meanwhile, RecBisectBfLB uses the thread communication
graph to recursively partition the threads, according to their
observed loads, until there is one partition for each processor.
Hence, both balancers consider computational load and com-
munication traffic. However, as we show in the next section,
none of these balancers fits well the two-dimensional spatial
domain decomposition of BRAMS.

We developed a new Charm++ balancer based on the recur-
sive bisectioning idea. We place the various threads with their
loads into a two-dimensional Hilbert space-filling curve [24],
and then recursively bisect that curve until the number of
segments is equal to the number of processors. Because the
Hilbert curve preserves spatial locality, threads corresponding
to sub-domains that are close in space are likely to be assigned
to the same processor. This implies that a significant amount
of communication between threads will be local to the same



processor, which benefits application performance. Figure 3
shows the Hilbert curve for the example of Figure 2.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the impact of applying pro-
cessor virtualization to BRAMS. We divided our tests in two
parts: first, we simply varied the virtualization ratio, without
introducing any thread migration; next, we used migration to
balance the load across processors. For both cases, we conduct
a quantitative evaluation of the overall application performance
and of the factors leading to that observed performance.

All our tests were performed on a Cray XTS5 system
(Kraken), whose nodes have two 2.6GHz six-core AMD
Opteron processors. This machine uses the Cray SeaStar2+
network to connect its nodes. As our test case, we employed
a grid with 40 vertical levels and 512x512 points for a
region in the southeast of Brazil (the same region depicted in
Figure 1a), corresponding to a horizontal resolution of 1.6 Km.
We conducted four-hour forecasts in BRAMS with a timestep
of 6 seconds.

A. AMPI Virtualization Effects

We started our experiments by analyzing the impact of using
solely processor virtualization in BRAMS, i.e. we simply
varied the number of virtual processors for executions on
a fixed number of physical processors. As the number of
virtual processors increases, some overhead is expected to
occur, because over-decomposition also means that control
code (e.g. ghost zone exchange) will increase as well. On the
other hand, a virtualized execution can benefit from automatic
overlap of computation and communication, even without
explicit use of nonblocking MPI calls: when a certain virtual
processor blocks on a receive, another virtual processor can
execute. In addition, this approach allows for better cache use,
because each sub-domain is smaller than it would be in a
non-virtualized environment. Consequently, these smaller sub-
domains can more easily fit in cache.

Using 64 physical processors, we conducted executions of
BRAMS with AMPI employing, respectively, 64, 256, 1024
and 2048 virtual processors. These executions corresponded
to virtualization ratios of 1, 4, 16 and 32, respectively. The
mapping of virtual processors to physical processors was in a
blocked fashion similar to what had been shown in Figure 2b.

Table II shows the results of these experiments. As it
can be seen from this table, the execution time decreases
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Fig. 3: Hilbert curve for the case of 16 threads

Configuration Execution Time (s)
No Virtualization 4970.59
256 virtual processors 3857.53
1024 virtual processors 3713.37
2048 virtual processors 4437.50

TABLE II: BRAMS execution time on 64 processors
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Fig. 4: Effect of virtualization on BRAMS performance

22.4% with 256 virtual processors. The decrease with 1024
virtual processors is slightly better: 25.3%. However, with
2048 virtual processors the reduction is only 10.7%. Therefore,
there seems to exist a stagnation point beyond which adding
more virtual processors does not improve performance.

Figure 4 compares the performance of two of those execu-
tions, one without virtualization and another with a virtual-
ization ratio of 16. Both executions present peaks that occur
with a period of 100 timesteps: these correspond to timesteps
in which radiation modeling is active. For the virtualized exe-
cution, there is a wide “amplitude” in the observed duration of
the timesteps; this occurs because those timing measurements
are made on thread zero. In the virtualized execution, that
thread shares the physical processor with fifteen other threads.
The order of thread execution is determined by the Charm++
scheduler, and may vary across the simulation. Hence, thread
zero’s slot of execution fluctuates as the simulation progresses.

To determine the reasons for the performance improvements
as we raise the number of virtual processors, we compared
the cases of 256 and 1024 virtual processors, respectively,
to the non-virtualized configuration. We enabled the auto-
matic Charm++ instrumentation to capture detailed perfor-
mance data during a section of the simulations (i.e. between
timesteps 1250 and 1270), and analyzed the obtained data with
our Projections performance analysis tool [25].

Figure 5 shows CPU usage for the various configurations.
The bars represent the amount of CPU used during the
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measured period. There is one bar for each physical pro-
cessor and the first bar is the average CPU usage. Without
virtualization (Figure 5a), the average CPU usage was 44%.
This CPU use is fairly low and could indicate that the sub-
domains were too small. However, this experiment represents

a typical size of a BRAMS simulation, where each sub-
domain has 64 x64 = 4096 columns of the atmosphere and the
ghost-zone contains only 256 more columns. Furthermore, the
experiments were run on a machine with a fast interconnection.
Therefore this CPU usage is well representative of what an
average user would experience with this application.

When we use four virtual processors per real processor
(Figure 5b), the average CPU usage improves to 73%. The
reason for this improvement is that the waiting time that each
processor would experience is filled with computation of other
virtual processors that are ready to execute. As we increase
the virtualization degree further to sixteen virtual processors,
however, we do not see any additional improvement (Figure
5¢). In this case, the average CPU usage is still 73%. This
is because the bottleneck is no longer idle time, but load
imbalance (notice that some processors in Figure 5b were
already near 100% utilization). Nevertheless, this higher de-
gree of virtualization allows for more flexibility when using
migration for load balancing. The average CPU usage for the
case of 2048 virtual processors (not shown here) is also 73%.
As we will show, another reason must exist to explain the
performance loss for this case in Table II.

We also analyzed cache utilization, by reading the hard-
ware performance counters of the AMD processors. We used
the Performance Application Programming Interface (PAPI)
library [26] to access those counters. While using this library
in a non-virtualized environment is trivial, one cannot use the
same instrumentation in a virtualized execution, because the
runtime system does not guarantee that the threads (virtual
processors) are executed in an appropriate order. Therefore,
we developed a scheme to ensure that the first thread entering
the code section started the PAPI counters and the last thread
leaving that section read those counters. Hence, our measured
values account for the execution of all threads on a given
processor. We used global variables forced to be shared among
threads to control this scheme.

The performance gains of the cache should arise from the
Brams code structure. In a time-step of Brams, similarly to
other meteorological models, the various physical processes
are called in sequence. Each of those processes performs its
associated computation for the entire local sub-domain, hence
the second physical process can benefit from the fact that the
sub-domain is still in cache due to the computations of the first
physical process. This effect repeats for the remaining physical
processes within the same time-step. This performance gain is
maximized when the local sub-domain matches the size of
cache.

The measured amounts of cache misses for the period
corresponding to the timesteps of interest in the application are
presented in Table III. A consistent decrease in cache misses
can be seen in both L2 and L3 caches for the cases of 256
and 1024 virtual processors. That confirms the improvement
in spatial locality that virtual processors allow.

The cache misses for the case of 2048 virtual processors,
however, increased. The reason for this increase, and the
corresponding increase in execution time observed in Table II,



Configuration L2 cache misses L3 cache misses

No Virtualization 12,416M 8,448M
256 virtual processors 10,560M 4,416M
1024 virtual processors 9,408M 3,904M
2048 virtual processors 13,696M 5,056M

TABLE III: Total number of cache misses on 64 processors
in BRAMS

is that the sub-domains for this case are too small and cannot
benefit from all cache space available. Since context switch
among threads occurs in this virtualized execution, the data of
a sub-domain cannot stay in cache for a long period, because
it has to give room for data from other virtual processors.
The same fact happens with 256 and 1024 virtual processors,
but in those cases more cached data is used between context
switches. We confirmed this by running a new experiment with
1024 virtual processors but using only 32 physical processors.
The resulting numbers of L2/L3 cache misses were 9,372M
and 4,038M, respectively. Those numbers are very close to
the original results with a virtualization ratio of 16, despite
employing a new ratio of 32. Hence, we can conclude that the
lower cache utilization measured in the last row of Table III
is due to the smaller sub-domain size combined with the
use of virtualization. In summary, there is a sweet spot in
performance that is reached when the size of the sub-domain
assigned to each virtual processor best matches the underlying
cache sizes, in particular the size of the L3 cache, which
accounts for the most expensive misses on the AMD Opteron.

B. Migration for Load Balancing

In addition to the benefits presented in the previous section,
the virtualized implementation of MPI enables migration of
virtual processors. This feature allows users to perform load
balancing by migrating certain virtual processors from more
loaded processors to less loaded ones. The user must still
choose (or develop) a strategy that will coordinate migrations.

To evaluate the effectiveness of some load balancing strate-
gies, we present in this subsection the experimental results of a
forecast that has a localized thunderstorm. This thunderstorm
causes an imbalance that delays the execution of the entire
forecast. We started our tests with two existing Charm++
load balancers described in section IV-B: RefineCommLB and
RecBisectBfLB. Since migration costs in BRAMS may be
high due to the code’s large memory footprint, we chose to
test RefineCommLB because it favors fewer migrations [22].
RecBisectBfLB, in turn, partitions the threads according to their
loads and attempts to maintain in the same partition threads
that interact with each other; this partitioning scheme should
respect the communication pattern existing in BRAMS.

In addition to those two load balancers, we also tested the
newly developed balancer based on Hilbert curves (HilbertLB).
That balancer requires a mapping of threads into the Hilbert
curve and a recursive cut algorithm. Both the cut algorithm
and the mapping have an efficient implementation [27].
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Fig. 6: CPU usage with RecBisectBfLB balancer

We inserted calls to the load balancer in BRAMS every 600
timesteps (i.e. at every hour of simulated time). In our test
case, the thunderstorm happens in the southeastern region of
Brazil, as shown in Figure la. During the four-hour forecast,
we observed that the thunderstorm moved slightly to the south.

Table IV compares the execution times of five different
types of configurations, including different load balancers. The
Speedup column corresponds to the speedup with respect to
the non-virtualized case. According to Table IV, the balancer
that best improved performance was the one based on the
Hilbert curve (HilbertLB). We analyzed some portions of
these executions with Projections, to identify the reasons for
the inefficacy of the RefineCommLB and RecBisectBfLB load
balancers. Using RefineCommLB, a good load balance was
not achieved. The resulting CPU usage (not shown here) was
similar to that without any load balancer. This means that
RefineCommLB did not migrate enough threads to neutralize
the imbalance.

Meanwhile, RecBisectBfLB did produce a well balanced
load, as shown in Figure 6. However, the CPU usage was quite
low. One key reason for this fact is communication. If threads
corresponding to neighbor sub-domains migrate to different
processors, the cross-processor communication volume will be
high, which hurts CPU usage. Although RecBisectBfLB con-
siders the communication graph to rebalance load, it does not
attempt to minimize communication across processors. Hence,

Configuration EXFCUthIl S

Time (s) peedup
No virtualization 4987.51 -
No load balancer - 1024 VP 3713.37 25.55%
RefineCommLB - 1024 VP 3714.92 25.52%
RecBisectBfLB - 1024 VP 4527.60 9.23%
HilbertLB - 1024 VP 3366.99 32.50%

TABLE IV: Load balancing effects on BRAMS (all experi-
ments were run on 64 real processors)
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Fig. 7: Cross-processor communication volume in BRAMS with different load balancers

RecBisectBfLB does not necessarily partition the sub-domains
into square blocks, which would minimize the communication
between blocks for BRAMS. Conversely, HilbertLB keeps the
sub-domains in approximately square blocks (see Figure 3)
and consequently the external communication is kept low. This
is confirmed by Figure 7, which shows the cross-processor
communication volumes with RecBisectBfLB and HilbertLB.
Due to the lower communication volume, HilbertLB achieves
much better processor utilization, and also very good load
balance, as demonstrated in Figure 8.

The overall performance of the BRAMS execution with
HilbertLB can be seen in Figure 9. The timestep durations
in this execution are significantly shorter than those observed
in Figure 4, where no virtualization or no load balancing
had been employed. The load balancing calls in Figure 9, in
particular the first one at timestep 600, were quite effective in
improving performance. Notice, though, that we should avoid
calling the load balancer too often, since there is a cost for that
call and for corresponding thread migrations: in the execution
of Figure 9, timesteps 600/1200/1800 had durations of 24.6s,
14.7s and 12.2s, respectively. Those durations are much higher
than in other timesteps of that execution. Hence, there is a
relatively heavy cost in each load balancing call. Nevertheless,
that cost is well amortized by the gains observed in subsequent
timesteps, leading to the improved performance of Table IV.

VI. CONCLUSIONS

Although meteorological models typically use a regular
three-dimensional grid and, in a parallel execution, each
processor executes the same code, this type of application is
subject to load imbalance. However, most models currently
do not perform load balance, due to the complexity involved
with this task. This paper described the use of processor
virtualization in a weather model to simplify the adoption of
load balancing strategies in MPI legacy codes. The amount of
change to the original application is minimal.

Our approach relies on AMPI, a virtualized implemen-
tation of MPI, where the domain is decomposed in more

sub-domains than available processors. Each sub domain is
assigned to a virtual processor and each real processor handles
a set of virtual processors. A virtual processor can migrate
from a real processor to another in order to rebalance load. In
our experiments, we found that just the over-decomposition is
already beneficial for the employed application: we obtained
up to 25.5% reduction in execution time. This reduction can be
attributed to the overlap of communication and computation
and to better use of the cache hierarchy.

Furthermore, by carefully choosing a load balancing strat-
egy, we managed to further reduce the execution time by 7%,
reaching a total gain of 32.5%. For the BRAMS meteoro-
logical model, the appropriate balancing strategy was one that
takes into account the communication across the sub-domains.
We used a Hilbert curve to map the 2-D domain decomposition
to a 1-D space. The curve is then cut into segments so that each
segment has approximately the same load. Due to properties of
the Hilbert curve, the corresponding sub-domains on a given
segment should be close in the 2-D space and, consequently,
the cross-processor communication is reduced.

As an ongoing work, we are investigating strategies to
determine the best moment to invoke the load balancer.
Although simple, a fixed-rate approach may not be the most
adequate: the processor loads may vary quite abruptly in
some occasions, due to the movement of thunderstorms that
cross the boundaries of regions assigned to some of the
processors. Therefore, using a varying invocation scheme may
produce better results. We are also analyzing if meteorological
information, available in the model, could be used to further
improve the balancing decisions that are taken when a load
balance is performed.
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