
Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/04 21:55

11 A Variational Principle for Graphical Models

Chapter 11 in New Directions in Statistical Signal Processing.

Edited by S. Haykin, J. Principe, T. Sejnowski and J. McWhirter, MIT Press.

To appear in 2005. (This version: March 2005).

Martin J. Wainwright and Michael I. Jordan

Department of Electrical Engineering and Computer Science

Department of Statistics

University of California, Berkeley

Berkeley, CA 94720

wainwrig@eecs.berkeley.edu jordan@cs.berkeley.edu

11.1 Introduction

Graphical models bring together graph theory and probability theory in a powerful
formalism for multivariate statistical modeling. In statistical signal processing—
as well as in related fields such as communication theory, control theory and
bioinformatics—statistical models have long been formulated in terms of graphs,
and algorithms for computing basic statistical quantities such as likelihoods and
marginal probabilities have often been expressed in terms of recursions operating
on these graphs. Examples include hidden Markov models, Markov random fields,
the forward-backward algorithm and Kalman filtering [ Rabiner and Juang (1993);
Pearl (1988); Kailath et al. (2000)]. These ideas can be understood, unified and gen-
eralized within the formalism of graphical models. Indeed, graphical models provide
a natural framework for formulating variations on these classical architectures, and
for exploring entirely new families of statistical models.

The recursive algorithms cited above are all instances of a general recursive
algorithm known as the junction tree algorithm [ Lauritzen and Spiegelhalter,
1988]. The junction tree algorithm takes advantage of factorization properties of the
joint probability distribution that are encoded by the pattern of missing edges in a
graphical model. For suitably sparse graphs, the junction tree algorithm provides a
systematic and practical solution to the general problem of computing likelihoods
and other statistical quantities associated with a graphical model. Unfortunately,
many graphical models of practical interest are not “suitably sparse,” so that the
junction tree algorithm no longer provides a viable computational solution to the
problem of computing marginal probabilities and other expectations. One popular
source of methods for attempting to cope with such cases is the Markov chain

Monte Carlo (MCMC) framework, and indeed there is a significant literature on
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the application of MCMC methods to graphical models [ Besag and Green (1993);
Gilks et al. (1996)]. However, MCMC methods can be overly slow for practical
applications in fields such as signal processing, and there has been significant
interest in developing faster approximation techniques.

The class of variational methods provides an alternative approach to computing
approximate marginal probabilities and expectations in graphical models. Roughly
speaking, a variational method is based on casting a quantity of interest (e.g.,
a likelihood) as the solution to an optimization problem, and then solving a
perturbed version of this optimization problem. Examples of variational methods
for computing approximate marginal probabilities and expectations include the
“loopy” form of the belief propagation or sum-product algorithm [ Yedidia et al.,
2001; McEliece et al., 1998] as well as a variety of so-called mean-field algorithms [
Jordan et al., 1999; Zhang, 1996].

Our principal goal in this chapter is to give a mathematically precise and
computationally-oriented meaning to the term “variational” in the setting of graph-
ical models—a meaning that reposes on basic concepts in the field of convex analy-
sis [ Rockafellar (1970)]. Compared to the somewhat loose definition of “variational”
that is often encountered in the graphical models literature, our characterization has
certain advantages, both in clarifying the relationships among existing algorithms,
and in permitting fuller exploitation of the general tools of convex optimization
in the design and analysis of new algorithms. Briefly, the core issues can be sum-
marized as follows. In order to define an optimization problem, it is necessary to
specify both a cost function to be optimized, and a constraint set over which the op-
timization takes place. Reflecting the origins of most existing variational methods in
statistical physics, developers of variational methods generally express the function
to be optimized as a “free energy”, meaning a functional on probability distribu-
tions. The set to be optimized over is often left implicit, but it is generally taken to
be the set of all probability distributions. A basic exercise in constrained optimiza-
tion yields the “Boltzmann distribution” as the general form of the solution. While
useful, this derivation has two shortcomings. First, the optimizing argument is a
joint probability distribution, not a set of marginal probabilities or expectations.
Thus, the derivation leaves us short of our goal of a variational representation for
computing marginal probabilities. Second, the set of all probability distributions is
a very large set, and formulating the optimization problem in terms of such a set
provides little guidance in the design of computationally-efficient approximations.

Our approach addresses both of these issues. The key insight is to formulate
the optimization problem not over the set of all probability distributions, but
rather over a finite-dimensional set M of realizable mean parameters. This set is
convex in general, and it is a polytope in the case of discrete random variables.
There are several natural ways to approximate this convex set, and a broad range
of extant algorithms turn out to involve particular choices of approximations.
In particular, as we will show, the “loopy” form of the sum-product or belief
propagation algorithm involves an outer approximation to M, whereas the more
classical mean-field algorithms, on the other hand, involve an inner approximation
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to the set M. The characterization of belief propagation as an optimization over
an outer approximation of a certain convex set does not arise readily within the
standard formulation of variational methods. Indeed, given an optimization over
all possible probability distributions, it is difficult to see how to move “outside”
of such a set. Similarly, while the standard formulation does provide some insight
into the differences between belief propagation and mean-field methods (in that
they optimize different “free energies”), the standard formulation does not involve
the set M, and hence does not reveal the fundamental difference in terms of outer
versus inner approximations.

The core of the chapter is a variational characterization of the problem solved
by the junction tree algorithm—that of computing exact marginal probabilities
and expectations associated with subsets of nodes in a graphical model. These
probabilities are obtained as the maximizing arguments of an optimization over
the set M. Perhaps surprisingly, this problem is a convex optimization problem
for a broad class of graphical models. With this characterization in hand, we show
how variational methods arise as “relaxations”—that is, simplified optimization
problems that involve some approximation of the constraint set, the cost function
or both. We show how a variety of standard variational methods, ranging from
classical mean field to cluster variational methods, fit within this framework. We
also discuss new methods that emerge from this framework, including a relaxation
based on semidefinite constraints and a link between reweighted forms of the max-
product algorithm and linear programming.

The remainder of the chapter is organized as follows. The first two sections
are devoted to basics: Section 11.2 provides an overview of graphical models and
Section 11.3 is devoted to a brief discussion of exponential families. In Section 11.4,
we develop a general variational representation for computing marginal probabilities
and expectations in exponential families. Section 11.5 illustrates how various exact
methods can be understood from this perspective. The remainder of the chapter—
Sections 11.6 through 11.8—is devoted to the exploration of various relaxations of
this exact variational principle, which in turn yield various algorithms for computing
approximations to marginal probabilities and other expectations.

11.2 Background

11.2.1 Graphical models

A graphical model consists of a collection of probability distributions that factorize
according to the structure of an underlying graph. A graph G = (V,E) is formed
by a collection of vertices V , and a collection of edges E. An edge consists of a pair
of vertices, and may either be directed or undirected. Associated with each vertex
s ∈ V is a random variable xs taking values in some set Xs, which may either be
continuous (e.g., Xs = R) or discrete (e.g., Xs = {0, 1, . . . ,m − 1}). For any subset
A of the vertex set V , we define xA := {xs | s ∈ A}.
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Directed graphical models: In the directed case, each edge is directed from
parent to child. We let π(s) denote the set of all parents of given node s ∈ V . (If s has
no parents, then the set π(s) should be understood to be empty.) With this notation,
a directed graphical model consists of a collection of probability distributions that
factorize in the following way:

p(x) =
∏

s∈V

p(xs | xπ(s)). (11.1)

It can be verified that our use of notation is consistent, in that p(xs | xπ(s)) is, in
fact, the conditional distribution for the global distribution p(x) thus defined.

Undirected graphical models: In the undirected case, the probability distri-
bution factorizes according to functions defined on the cliques of the graph (i.e.,
fully-connected subsets of V ). In particular, associated with each clique C is a com-

patibility function ψC : Xn → R+ that depends only on the subvector xC . With
this notation, an undirected graphical model (also known as a Markov random field)
consists of a collection of distributions that factorize as

p(x) =
1

Z

∏

C

ψC(xC), (11.2)

where the product is taken over all cliques of the graph. The quantity Z is a
constant chosen to ensure that the distribution is normalized. In contrast to the
directed case (11.1), in general the compatibility functions ψC need not have any
obvious or direct relation to local marginal distributions.

Families of probability distributions as defined as in (11.1) or (11.2) also have a
characterization in terms of conditional independencies among subsets of random
variables. We will not use this characterization in this chapter, but refer the
interested reader to Lauritzen [ 1996] for a full treatment.

11.2.2 Inference problems and exact algorithms

Given a probability distribution p(·) defined by a graphical model, our focus will
be solving one or more of the following inference problems:

(a) computing the likelihood.

(b) computing the marginal distribution p(xA) over a particular subset A ⊂ V of
nodes.

(c) computing the conditional distribution p(xA | xB), for disjoint subsets A and
B, where A ∪B is in general a proper subset of V .

(d) computing a mode of the density (i.e., an element x̂ in the set arg maxx∈Xn p(x)).

Problem (a) is a special case of problem (b), because the likelihood is the marginal
probability of the observed data. The computation of a conditional probability in
(c) is similar in that it also requires marginalization steps, an initial one to obtain
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the numerator p(xA, xB), and a further step to obtain the denominator p(xB). In
contrast, the problem of computing modes stated in (d) is fundamentally different,
since it entails maximization rather than integration. Although problem (d) is
not the main focus of this chapter, there are important connections between the
problem of computing marginals and that of computing modes; these are discussed
in Section 11.8.2.

To understand the challenges inherent in these inference problems, consider the
case of a discrete random vector x ∈ X n, where Xs = {0, 1, . . . ,m − 1} for each
vertex s ∈ V . A naive approach to computing a marginal at a single node—say
p(xs)—entails summing over all configurations of the form {x′ | x′

s = xs}. Since
this set has mn−1 elements, it is clear that a brute force approach will rapidly
become intractable as n grows. Similarly, computing a mode entails solving an
integer programming problem over an exponential number of configurations. For
continuous random vectors, the problems are no easier1 and typically harder, since
they require computing a large number of integrals.

Both directed and undirected graphical models involve factorized expressions for
joint probabilities, and it should come as no surprise that exact inference algorithms
treat them in an essentially identical manner. Indeed, to permit a simple unified
treatment of inference algorithms, it is convenient to convert directed models to
undirected models and to work exclusively within the undirected formalism. Any
directed graph can be converted, via a process known as moralization [ Lauritzen
and Spiegelhalter (1988)], to an undirected graph that—at least for the purposes of
solving inference problems—is equivalent. Throughout the rest of the chapter, we
assume that this transformation has been carried out.

11.2.2.1 Message-passing on trees

For graphs without cycles—also known as trees—these inference problems can be
solved exactly by recursive “message-passing” algorithms of a dynamic program-
ming nature, with a computational complexity that scales only linearly in the num-
ber of nodes. In particular, for the case of computing marginals, the dynamic pro-
gramming solution takes the form of a general algorithm known as the sum-product

algorithm, whereas for the problem of computing modes it takes the form of an
analogous algorithm known as the max-product algorithm. Here we provide a brief
description of these algorithms; further details can be found in various sources [Aji
and McEliece (2000); Kschischang and Frey (1998); Lauritzen and Spiegelhalter
(1988); Loeliger (2004)].

We begin by observing that the cliques of a tree-structured graph T = (V,E(T ))
are simply the individual nodes and edges. As a consequence, any tree-structured

1. The Gaussian case is an important exception to this statement.
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graphical model has the following factorization:

p(x) =
1

Z

∏

s∈V

ψs(xs)
∏

(s,t)∈E(T )

ψst(xs, xt). (11.3)

Here we describe how the sum-product algorithm computes the marginal distribu-
tion µs(xs) :=

∑
{x′ | x′

s=xs}
p(x) for every node of a tree-structured graph. We will

focus on detail on the case of discrete random variables, with the understanding
that the computations carry over (at least in principle) to the continuous case by
replacing sums with integrals.

Sum-product algorithm: The essential principle underlying the sum-product
algorithm on trees is divide and conquer: we solve a large problem by breaking it
down into a sequence of simpler problems. The tree itself provides a natural way to
break down the problem as follows. For an arbitrary s ∈ V , consider the set of its
neighbors N (s) = {u ∈ V | (s, u) ∈ E}. For each u ∈ N (s), let Tu = (Vu, Eu) be the
subgraph formed by the set of nodes (and edges joining them) that can be reached
from u by paths that do not pass through node s. The key property of a tree is that
each such subgraph Tu is again a tree, and Tu and Tv are disjoint for u &= v. In this
way, each vertex u ∈ N (s) can be viewed as the root of a subtree Tu, as illustrated
in Figure 11.1(a). For each subtree Tt, we define xVt

:= {xu | u ∈ Vt}. Now consider
the collection of terms in equation (11.3) associated with vertices or edges in Tt:
collecting all of these terms yields a subproblem p(xVt

;Tt) for this subtree.
Now the conditional independence properties of a tree allow the computation of

the marginal at node µs to be broken down into a product of the form

µs(xs) ∝ ψs(xs)
∏

t∈N (s)

M∗
ts(xs). (11.4)

Each term M∗
ts(xs) in this product is the result of performing a partial summation

for the subproblem p(xVt
;Tt) in the following way:

M∗
ts(xs) =

∑

{x′

Tt
| x′

s=xs}

ψst(xs, x
′
t) p(x′

Tt
;Tt). (11.5)

For fixed xs, the subproblem defining M∗
ts(xs) is again a tree-structured summation,

albeit involving a subtree Tt smaller than the original tree T . Therefore, it too can
be broken down recursively in a similar fashion. In this way, the marginal at node
s can be computed by a series of recursive updates.

Rather than applying the procedure described above to each node separately, the
sum-product algorithm computes the marginals for all nodes simultaneously and in
parallel. At each iteration, each node t passes a “message” to each of its neighbors
u ∈ N (t). This message, which we denote by Mtu(xu), is a function of the possible
states xu ∈ Xu (i.e., a vector of length |Xu| for discrete random variables). On the
full graph, there are a total of 2|E| messages, one for each direction of each edge.
This full collection of messages is updated, typically in parallel, according to the
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following recursion:

Mts(xs) ← κ
∑

x′

t

{
ψst(xs, x

′
t)ψt(x

′
t)

∏

u∈N (t)/s

Mut(x
′
t)

}
, (11.6)

where κ > 0 is a normalization constant. It can be shown [ Pearl (1988)] that
for tree-structured graphs, iterates generated by the update (11.6) will converge
to a unique fixed point M∗ = {M∗

st,M
∗
ts, (s, t) ∈ E} after a finite number of

iterations. Moreover, component M ∗
ts of this fixed point is precisely equal, up to a

normalization constant, to the subproblem defined in equation (11.5), which justifies
our abuse of notation post hoc. Since the fixed point M ∗ specifies the solution to all
of the subproblems, the marginal µs at every node s ∈ V can be computed easily
via equation (11.4).

Max-product algorithm: Suppose that the summation in the update (11.6)
is replaced by a maximization. The resulting max-product algorithm solves the
problem of finding a mode of a tree-structured distribution p(x). In this sense, it
represents a generalization of the Viterbi algorithm [ Forney (1973)] from chains to
arbitrary tree-structured graphs. More specifically, the max-product updates will
converge to another unique fixed point M ∗—distinct, of course, from the sum-
product fixed point. This fixed point can be used to compute the max-marginal

νs(xs) := max{x′ | x′

s=xs} p(x′) at each node of the graph, in an analogous way
to the computation of ordinary sum-marginals. Given these max-marginals, it is
straightforward to compute a mode x̂ ∈ arg maxx p(x) of the distribution [ Dawid
(1992); Wainwright et al. (2004)]. More generally, updates of this form apply to
arbitrary commutative semirings on tree-structured graphs [ Dawid (1992); Aji and
McEliece (2000)]. The pairs “sum-product” and “max-product” are two particular
examples of such an algebraic structure.

11.2.2.2 Junction tree representation

We have seen that inference problems on trees can be solved exactly by recursive
message-passing algorithms. Given a graph with cycles, a natural idea is to cluster
its nodes so as to form a clique tree—that is, an acyclic graph whose nodes are
formed by cliques of G. Having done so, it is tempting to simply apply a standard
algorithm for inference on trees. However, the clique tree must satisfy an additional
restriction so as to ensure consistency of these computations. In particular, since
a given vertex s ∈ V may appear in multiple cliques (say C1 and C2), what is
required is a mechanism for enforcing consistency among the different appearances
of the random variable xs.

In order to enforce consistency, it turns out to be necessary to restrict attention
to those clique trees that satisfy a particular graph-theoretic property. In particular,
we say that a clique tree satisfies the running intersection property if for any two
clique nodes C1 and C2, all nodes on the unique path joining them contain the
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Figure 11.1 (a): Decomposition of a tree, rooted at node s, into subtrees. Each
neighbor (e.g., u) of node s is the root of a subtree (e.g., Tu). Subtrees Tu and Tv, for
t != u, are disconnected when node s is removed from the graph. (b), (c) Illustration
of junction tree construction. Top panel in (b) shows original graph: a 3 × 3 grid.
Bottom panel in (b) shows triangulated version of original graph. Note the two
4-cliques in the middle. (c) Corresponding junction tree for triangulated graph in
(b), with maximal cliques depicted within ellipses. The rectangles are separator
sets; these are intersections of neighboring cliques.

intersection C1∩C2. Any clique tree with this property is known as a junction tree.
For what type of graphs can one build junction trees? An important result

in graph theory asserts that a graph G has a junction tree if and only if it is
triangulated.2 This result underlies the junction tree algorithm [ Lauritzen and
Spiegelhalter (1988)] for exact inference on arbitrary graphs, which consists of the
following three steps:

1. Given a graph with cycles G, triangulate it by adding edges as necessary.

2. Form a junction tree associated with the triangulated graph.

3. Run a tree inference algorithm on the junction tree.

We illustrate these basic steps with an example.

Example 11.1

Consider the 3×3 grid shown in the top panel of Figure 11.1(b). The first step is to
form a triangulated version, as shown in the bottom panel of Figure 11.1(b). Note
that the graph would not be triangulated if the additional edge joining nodes 2 and
8 were not present. Without this edge, the 4-cycle (2 − 4 − 8 − 6 − 2) would lack

2. A graph is triangulated means that every cycle of length four or longer has a chord.
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a chord. Panel (c) shows a junction tree associated with this triangulated graph,
in which circles represent maximal cliques (i.e., fully-connected subsets of nodes
that cannot be augmented with an additional node and remain fully-connected),
and boxes represent separator sets (intersections of cliques adjacent in the junction
tree). ♦

An important by-product of the junction tree construction is an alternative repre-
sentation of the probability distribution defined by a graphical model. Let C denote
the set of all maximal cliques in the triangulated graph, and define S as the set of
all separator sets in the junction tree. For each separator set S ∈ S, let d(S) denote
the number of maximal cliques to which it is adjacent. The junction tree framework
guarantees that the distribution p(·) factorizes in the form

p(x) =

∏
C∈C µC(xC)

∏
S∈S [µS(xS)]d(S)−1

, (11.7)

where µC and µS are the marginal distributions over the cliques and separator
sets respectively. Observe that unlike the representation of equation (11.2), the
decomposition of equation (11.7) is directly in terms of marginal distributions, and
does not require a normalization constant (i.e., Z = 1).

Example 11.2 Markov chain

Consider the Markov chain p(x1, x2, x3) = p(x1) p(x2 |x1) p(x3 |x2). The cliques in
a graphical model representation are {1, 2} and {2, 3}, with separator {2}. Clearly
the distribution cannot be written as the product of marginals involving only the
cliques. However, if we include the separator, it can be factorized in terms of its
marginals—viz. p(x1, x2, x3) = p(x1,x2)p(x2,x3)

p(x2)
. ♦

To anticipate the development in the sequel, it is helpful to consider the following
“inverse” perspective on the junction tree representation. Suppose that we are given
a set of functions τC(xC) and τS(xS) associated with the cliques and separator sets
in the junction tree. What conditions are necessary to ensure that these functions
are valid marginals for some distribution? Suppose that the functions {τS , τC} are
locally consistent in the following sense:

∑

xS

τS(xS) = 1 normalization (11.8a)

∑

{x′

C | x′

S=xS}

τC(x′
C) = τS(xS) marginalization (11.8b)

The essence of the junction tree theory described above is that such local consistency
is both necessary and sufficient to ensure that these functions are valid marginals
for some distribution.

Finally, turning to the computational complexity of the junction tree algorithm,
the computational cost grows exponentially in the size of the maximal clique in
the junction tree. The size of the maximal clique over all possible triangulations
of a graph defines an important graph-theoretic quantity known as the treewidth
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of the graph. Thus, the complexity of the junction tree algorithm is exponential
in the treewidth. For certain classes of graphs, including chains and trees, the
treewidth is small and the junction tree algorithm provides an effective solution
to inference problems. Such families include many well-known graphical model
architectures, and the junction tree algorithm subsumes many classical recursive
algorithms, including the forward-backward algorithms for hidden Markov models [
Rabiner and Juang (1993)], the Kalman filtering-smoothing algorithms for state-
space models [ Kailath et al. (2000)], and the pruning and peeling algorithms from
computational genetics [ Felsenstein (1981)]. On the other hand, there are many
graphical models (e.g., grids) for which the treewidth is infeasibly large. Coping
with such models requires leaving behind the junction tree framework, and turning
to approximate inference algorithms.

11.2.3 Message-passing algorithms for approximate inference

In the remainder of the chapter, we present a general variational principle for
graphical models that can be used to derive a class of techniques known as
variational inference algorithms. To motivate our later development, we pause to
give a high-level description of two variational inference algorithms, with the goal
of highlighting their simple and intuitive nature.

The first variational algorithm that we consider is a so-called “loopy” form of
the sum-product algorithm (also referred to as the belief propagation algorithm).
Recall that the sum-product algorithm is designed as an exact method for trees;
from a purely algorithmic point of view, however, there is nothing to prevent one
from running the procedure on a graph with cycles. More specifically, the message
updates (11.6) can be applied at a given node while ignoring the presence of cycles—
essentially pretending that any given node is embedded in a tree. Intuitively, such an
algorithm might be expected to work well if the graph is suitably “tree-like,” such
that the effect of messages propagating around cycles is appropriately diminished.
This algorithm is in fact widely used in various applications that involve signal
processing, including image processing, computer vision, computational biology,
and error-control coding.

A second variational algorithm is the so-called naive mean field algorithm. For
concreteness, we describe it in application to a very special type of graphical model,
known as the Ising model. The Ising model is a Markov random field involving a
binary random vector x ∈ {0, 1}n, in which pairs of adjacent nodes are coupled
with a weight θst, and each node has an observation weight θs. (See Examples 11.4
and 11.11 for a more detailed description of this model.) To motivate the mean
field updates, we consider the Gibbs sampler for this model, in which the basic
update step is to choose a node s ∈ V randomly, and then to update the state
of the associated random variable according to the conditional probability with
neighboring states fixed. More precisely, denoting by N (s) the neighbors of a node
s ∈ V , and letting x(p)

N (s) denote the state of the neighbors of s at iteration p, the
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Gibbs update for xs takes the following form:

x(p+1)
s =

{
1 if u ≤ {1 + exp[−(θs +

∑
t∈N (s) θstx

(p)
t )]}−1

0 otherwise
, (11.9)

where u is a sample from a uniform distribution U(0, 1). It is well-known that this
procedure generates a sequence of configurations that converge (in a stochastic
sense) to a sample from the Ising model distribution.

In a dense graph, such that the cardinality of N (s) is large, we might attempt to
invoke a law of large numbers or some other concentration result for

∑
t∈N (s) θstx

(p)
t .

To the extent that such sums are concentrated, it might make sense to replace
sample values with expectations, which motivates the following averaged version of
equation (11.9):

µs ←

{
1 + exp

[
− (θs +

∑

t∈N (s)

θstµt)
]}−1

, (11.10)

in which µs denotes an estimate of the marginal probability p(xs = 1). Thus,
rather than flipping the random variable xs with a probability that depends on the
state of its neighbors, we update a parameter µs using a deterministic function of
the corresponding parameters {µt | t ∈ N (s)} at its neighbors. Equation (11.10)
defines the naive mean field algorithm for the Ising model, which can be viewed as
a message-passing algorithm on the graph.

At first sight, message-passing algorithms of this nature might seem rather
mysterious, and do raise some questions. Do the updates have fixed points? Do
the updates converge? What is the relation between the fixed points and the exact
quantities? The goal of the remainder of this chapter is to shed some light on such
issues. Ultimately, we will see that a broad class of message-passing algorithms,
including the mean field updates, the sum-product and max-product algorithms,
as well as various extensions of these methods can all be understood as solving
either exact or approximate versions of a certain variational principle for graphical
models.

11.3 Graphical models in exponential form

We begin by describing how many graphical models can be viewed as particular
types of exponential families. Further background can be found in the books by
Efron [ 1978] and Brown [ 1986]. This exponential family representation is the
foundation of our later development of the variational principle.

11.3.1 Maximum entropy

One way in which to motivate exponential family representations of graphical
models is through the principle of maximum entropy. The set-up for this principle
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is as follows: given a collection of functions φα : Xn → R, suppose that we have
observed their expected values—that is, we have

E[φα(x)] = µα for all α ∈ I, (11.11)

where µ =
{
µα | α ∈ I

}
is a real vector, I is an index set, and d := |I| is the length

of the vectors µ and φ :=
{
φα | α ∈ I

}
.

Our goal is use the observations to infer a full probability distribution. Let P
denote the set of all probability distributions p over the random vector x. Since
there are (in general) many distributions p ∈ P that are consistent with the ob-
servations (11.11), we need a principled method for choosing among them. The
principle of maximum entropy is to choose the distribution pME such that its en-

tropy, defined as H(p) := −
∑

x∈Xn p(x) log p(x), is maximized. More formally, the
maximum entropy solution pME is given by the following constrained optimization
problem:

pME := arg max
p∈P

H(p) subject to constraints (11.11). (11.12)

One interpretation of this principle is as choosing the distribution with maximal
uncertainty while remaining faithful to the data.

Presuming that problem (11.12) is feasible, it is straightforward to show using a
Lagrangian formulation that its optimal solution takes the form

p(x; θ) ∝ exp
{ ∑

α∈I

θθφα(x)
}
, (11.13)

which corresponds to a distribution in exponential form. Note that the exponential
decomposition (11.13) is analogous to the product decomposition (11.2) considered
earlier.

In the language of exponential families, the vector θ ∈ Rd is known as the canon-

ical parameter, and the collection of functions φ =
{
φα | α ∈ I

}
are known as

sufficient statistics. In the context of our current presentation, each canonical pa-
rameter θα has a very concrete interpretation as the Lagrange multiplier associated
with the constraint E[φα(x)] = µα.

11.3.2 Exponential families

We now define exponential families in more generality. Any exponential family
consists of a particular class of densities taken with respect to a fixed based
measure ν. The base measure is typically counting measure (as in our discrete
example above), or Lebesgue measure (e.g., for Gaussian families). Throughout
this chapter, we use 〈a, b〉 to denote the ordinary Euclidean inner product between
two vectors a and b of the same dimension. Thus, for each fixed x ∈ X n, the
quantity 〈θ, φ(x)〉 is the Euclidean inner product in Rd of the two vectors θ ∈ Rd

and φ(x) =
{
φα(x) | α ∈ I

}
.

With this notation, the exponential family associated with φ consists of the
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following parameterized collection of density functions:

p(x; θ) = exp
{
〈θ, φ(x)〉 − A(θ)

}
. (11.14)

The quantity A, known as the log partition function or cumulant generating func-

tion, is defined by the integral:

A(θ) = log

∫

Xn

exp〈θ, φ(x)〉ν(dx). (11.15)

Presuming that the integral is finite, this definition ensures that p(x; θ) is properly
normalized (i.e.,

∫
Xn p(x; θ)ν(dx) = 1). With the set of potentials φ fixed, each

parameter vector θ indexes a particular member p(x; θ) of the family. The canonical
parameters θ of interest belong to the set

Θ := {θ ∈ R
d | A(θ) < ∞}. (11.16)

Throughout this chapter, we deal exclusively with regular exponential families, for
which the set Θ is assumed to be open.

We summarize for future reference some well-known properties of A:

Lemma 11.1

The cumulant generating function A is convex in terms of θ. Moreover, it is infinitely
differentiable on Θ, and its derivatives correspond to cumulants.

As an important special case, the first derivatives of A take the form

∂A

∂θα
=

∫

Xn

φα(x)p(x; θ)ν(dx) = Eθ[φα(x)], (11.17)

and define a vector µ := Eθ[φ(x)] of mean parameters associated with the ex-
ponential family. There are important relations between the canonical and mean
parameters, and many inference problems can be formulated in terms of the mean
parameters. These correspondences and other properties of the cumulant generating
function are fundamental to our development of a variational principle for solving
inference problems.

11.3.3 Illustrative examples

In order to illustrate these definitions, we now discuss some particular classes of
graphical models that commonly arise in signal and image processing problems, and
how they can be represented in exponential form. In particular, we will see that
graphical structure is reflected in the choice of sufficient statistics, or equivalently
in terms of constraints on the canonical parameter vector.

We begin with an important case—the Gaussian Markov random field— which
is widely used for modeling various types of imagery and spatial data [ Luettgen
et al. (1994); Szeliski (1990)].
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Example 11.3 Gaussian MRF

Consider a graph G = (V,E), such as that illustrated in Figure 11.2(a), and suppose
that each vertex s ∈ V has an associated Gaussian random variable xs. Any such
scalar Gaussian is a (two-dimensional) exponential family specified by sufficient
statistics xs and x2

s. Turning to the Gaussian random vector x :=
{
xs | s ∈ V

}
,

it has an exponential family representation in terms of the sufficient statistics
{xs, x2

s | s ∈ V } ∪ {xsxt | (s, t) ∈ E}, with associated canonical parameters{
θs, θss | s ∈ V

}
∪

{
θst | (s, t) ∈ E

}
. Here the additional cross-terms xsxt allow for

possible correlation between components xs and xt of the Gaussian random vector.
Note that there are a total of d = 2n + |E| sufficient statistics.
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Figure 11.2 (a) A simple Gaussian model based on a graph G with 5 vertices. (b)
The adjacency matrix of the graph G in (a), which specifies the sparsity pattern of
the matrix Z(θ).

The sufficient statistics and parameters can be represented compactly as (n +
1)× (n + 1) symmetric matrices:

X =

[
1

x

] [
1 x

]
U(θ) :=





0 θ1 θ2 . . . θn

θ1 θ11 θ12 . . . θ1n

θ2 θ21 θ22 . . . θ2n

...
...

...
...

...

θn θn1 θn2 . . . θnn





(11.18)

We use Z(θ) to denote the lower n × n block of U(θ); it is known as the precision

matrix. We say that x forms a Gaussian Markov random field if its probability
density function decomposes according to the graph G = (V,E). In terms of
our canonical parameterization, this condition translates to the requirement that
θst = 0 whenever (s, t) /∈ E. Alternatively stated, the precision matrix Z(θ) must
have the same zero-pattern as the adjacency matrix of the graph, as illustrated in
Figure 11.2(b).

For any two symmetric matrices C and D, it is convenient to define the inner
product 〈C, D〉 := trace(C D). Using this notation leads to a particularly compact
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representation of a Gaussian MRF:

p(x; θ) = exp
{
〈U(θ), X〉 −A(θ)

}
, (11.19)

where A(θ) := log
∫

Rn exp
[
〈U(θ), X〉

]
dx is the log cumulant generating function.

The integral defining A(θ) is finite only if the n×n precision matrix Z(θ) is negative
definite, so that the domain of A has the form Θ = {θ ∈ Rd | Z(θ) ≺ 0}.

Note that the mean parameters in the Gaussian model have a clear interpretation.
The singleton elements µs = Eθ[xs] are simply the Gaussian mean, whereas the
elements µss = Eθ[x2

s] and µst = Eθ[xsxt] are second-order moments. ♦

Markov random fields involving discrete random variables also arise in many
applications, including image processing, bioinformatics, and error-control coding [
Geman and Geman (1984); Kschischang et al. (2001); Loeliger (2004); Durbin et al.
(1998)]. As with the Gaussian case, this class of Markov random fields also has a
natural exponential representation.

Example 11.4 Multinomial MRF

Suppose that each xs is a multinomial random variable, taking values in the space
Xs = {0, 1, . . . ,ms − 1}. In order to represent a Markov random field over the vector
x =

{
xs | s ∈ V

}
in exponential form, we now introduce a particular set of

sufficient statistics that will be useful in the sequel. For each j ∈ Xs, let I j(xs) be
an indicator function for the event {xs = j}. Similarly, for each pair (j, k) ∈ Xs×Xt,
let I jk(xs, xt) be an indicator for the event {(xs, xt) = (j, k)}. These building blocks
yield the following set of sufficient statistics:

{
I j(xs) | s ∈ V, j ∈ Xs

}
∪

{
I j(xs)I k(xt) | (s, t) ∈ E, (j, k) ∈ Xs × Xt

}
. (11.20)

The corresponding canonical parameter θ has elements of the form

θ =
{
θs;j | s ∈ V, j ∈ Xs

}
∪

{
θst;jk | (s, t) ∈ E, (j, k) ∈ Xs × Xt

}
. (11.21)

It is convenient to combine the canonical parameters and indicator functions using
the shorthand notation θs(xs) :=

∑
j∈Xs

θs;jI j(xs); the quantity θst(xs, xt) can be
defined similarly.

With this notation, a multinomial MRF with pairwise interactions can be written
in exponential form as

p(x; θ) = exp
{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)−A(θ)
}
, (11.22)

where the cumulant generating function is given by the summation

A(θ) := log
∑

x∈Xn

exp
{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}
.

In signal processing applications of these models, the random vector x is often
viewed as hidden or partially observed (for instance, corresponding to the correct
segmentation of an image). Thus, it is frequently the case that the functions θs
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are determined by noisy observations, whereas the terms θst control the coupling
between variables xs and xt that are adjacent on the graph (e.g., reflecting spatial
continuity assumptions). See Figure 11.3(a) for an illustration of such a multino-
mial MRF defined on a two-dimensional lattice, which is a widely-used model in
statistical image processing [ Geman and Geman (1984)]. In the special case that
Xs = {0, 1} for all s ∈ V , the family (11.22) is known as the Ising model.

Note that the mean parameters associated with this model correspond to par-
ticular marginal probabilities. For instance, the mean parameters associated with
vertex s have the form µs;j = Eθ[I j(xs)] = p(xs = j; θ), and the mean param-
eters µst associated with edge (s, t) have an analogous interpretation as pairwise
marginal values.

♦
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Figure 11.3 (a) A multinomial MRF on a 2-D lattice model. (b) A hidden Markov
model (HMM) is a special case of a multinomial MRF for a chain-structured
graph. (c) The graphical representation of a scalar Gaussian mixture model: the
multinomial xs indexes components in the mixture, and ys is conditionally Gaussian
(with exponential parameters γs) given the mixture component xs.

Example 11.5 Hidden Markov model

A very important special case of the multinomial MRF is the hidden Markov model
(HMM), which is a chain-structured graphical model widely used for the modeling
of time series and other one-dimensional signals. It is conventional in the HMM
literature to refer to the multinomial random variables x =

{
xs | s ∈ V

}
as

“state variables.” As illustrated in Figure 11.3(b), the edge set E defines a chain
linking the state variables. The parameters θst(xs, xt) define the state transition

matrix ; if this transition matrix is the same for all pairs s and t, then we have
a homogeneous Markov chain. Associated with each multinomial state variable
xs is a noisy observation ys, defined by the conditional probability distribution
p(ys|xs). If we condition on the observed value of ys, this conditional probability
is simply a function of xs, which we denote by θs(xs). Given these definitions,
equation (11.22) describes the conditional probability distribution p(x |y) for the
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HMM. In Figure 11.3(b), this conditioning is captured by shading the corresponding
nodes in the graph. Note that the cumulant generating function A(θ) is, in fact,
equal to the log likelihood of the observed data. ♦

Graphical models are not limited to cases in which the random variables at each
node belong to the same exponential family. More generally, we can consider het-
erogeneous combinations of exponential family members. A very natural example,
which combines the two previous types of graphical model, is that of a Gaussian
mixture model. Such mixture models are widely used in modeling various classes of
data, including natural images, speech signals, and financial time series data; see
the book [ Titterington et al. (1986)] for further background.

Example 11.6 Mixture model

As shown in Figure 11.3(c), a scalar mixture model has a very simple graphical
interpretation. In particular, let xs be a multinomial variable, taking values in
Xs = {0, 1, 2, . . . ,ms − 1}, specified in exponential parameter form with a function
θs(xs). The role of xs is to specify the choice of mixture component in the mixture
model, so that our mixture model has ms components in total. We now let ys be
conditionally Gaussian given xs, so that the conditional distribution p(ys |xs; γs)
can be written in exponential family form with canonical parameters γs that are
a function of xs. Overall, the pair (xs, ys) form a very simple graphical model in
exponential form, as shown in Figure 11.3(c).

The pair (xs, ys) serves a basic block for building more sophisticated graphical
models. For example, one model is based on assuming that the mixture vector x
is a multinomial MRF defined on an underlying graph G = (V,E), whereas the
components of y are conditionally independent given the mixture vector x. These
assumptions lead to an exponential family p(y,x; θ, γ) of the form:

∏

s∈V

p(ys |xs; γs) exp
{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
]}

. (11.23)

For tree-structured graphs, Crouse et al. [ 1998] have applied this type of mixture
model to applications in wavelet-based signal processing. ♦

This type of mixture model is a particular example of a broad class of graphical
models that involve heterogeneous combinations of exponential family members
(e.g., hierarchical Bayesian models).

11.4 An exact variational principle for inference

With this set-up, we can now re-phrase inference problems in the language of
exponential families. In particular, this chapter focuses primarily on the following
two problems:

(a) computing the cumulant generating function A(θ)
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(b) computing the vector of mean parameters µ := Eθ[φ(x)]

In Section 11.8.2 we discuss a closely related problem—namely, that of computing
a mode of the distribution p(x; θ).

The problem of computing the cumulant generating function arises in a variety
of signal processing problems, including likelihood ratio tests (for classification and
detection problems) and parameter estimation. The computation of mean param-
eters is also fundamental, and takes different forms depending on the underlying
graphical model. For instance, it corresponds to computing means and covariances
in the Gaussian case, whereas for a multinomial MRF it corresponds to computing
marginal distributions.

The goal of this section is to show how both of these inference problems can be
represented variationally—as the solution of an optimization problem. The varia-
tional principle that we develop, though related to the classical “free energy” ap-
proach of statistical physics [ Yedidia et al. (2001)], also has important differences.
The classical principle yields a variational formulation for the cumulant generating
function (or log partition function) in terms of optimizing over the space of all dis-
tributions. In our approach, on the other hand, the optimization is not defined over
all distributions—a very high or infinite-dimensional space—but rather over the
much lower-dimensional space of mean parameters. As an important consequence,
solving this variational principle yields not only the cumulant generating function
but also the full set of mean parameters µ =

{
µα | α ∈ I

}
.

11.4.1 Conjugate duality

The cornerstone of our variational principle is the notion of conjugate duality. In
this section, we provide a brief introduction to this concept, and refer the interested
reader to the standard texts [Rockafellar (1970); Hiriart-Urruty and Lemaréchal
(1993)] for further details. As is standard in convex analysis, we consider extended

real-valued functions, meaning that they take values in the extended real line
R∗ := R ∪ {+∞}. Associated with any convex function f : Rd → R∗ is a conjugate
dual function f∗ : Rd → R∗, which is defined as follows:

f∗(y) := sup
x∈Rd

{
〈y, x〉 − f(x)

}
. (11.24)

This definition illustrates the concept of a variational definition: the function value
f∗(y) is specified as the solution of an optimization problem parameterized by the
vector y ∈ Rd.

As illustrated in Figure 11.4, the value f ∗(y) has a natural geometric inter-
pretation as the (negative) intercept of the hyperplane with normal (y,−1) that
supports the epigraph of f . In particular, consider the family of hyperplanes of the
form 〈y, x〉 − c, where y is a fixed normal direction and c ∈ R is the intercept to
be adjusted. Our goal is to find the smallest c such that the resulting hyperplane
supports the epigraph of f . Note that the hyperplane 〈y, x〉 − c lies below the
epigraph of f if and only if the inequality 〈y, x〉 − c ≤ f(x) holds for all x ∈ Rd.
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Figure 11.4 Interpretation of conjugate duality in terms of supporting hyper-
planes to the epigraph of f , defined as epi(f) := {(x, y) ∈ R

d × R | f(x) ≤ y}. The
dual function is obtained by translating the family of hyperplane with normal y

and intercept −c until it just supports the epigraph of f (the shaded region).

Moreover, it can be seen that the smallest c for which this inequality is valid is given
by c∗ = supx∈Rd

{
〈y, x〉 − f(x)

}
, which is precisely the value of the dual function.

As illustrated in Figure 11.4, the geometric interpretation is that of moving the
hyperplane (by adjusting the intercept c) until it is just tangent to the epigraph of
f .

For convex functions meeting certain technical conditions, taking the dual twice

recovers the original function. In analytical terms, this fact means that we can
generate a variational representation for convex f in terms of its dual function as
follows:

f(x) = sup
y∈Rd

{
〈x, y〉 − f∗(y)

}
. (11.25)

Our goal in the next few section is to apply conjugacy to the cumulant generating
function A associated with an exponential family, as defined in equation (11.15).
More specifically, its dual function takes the form

A∗(µ) := sup
θ∈Θ

{〈θ, µ〉 −A(θ)}, (11.26)

where we have used the fact that, by definition, the function value A(θ) is finite only
if θ ∈ Θ. Here µ ∈ Rd is a vector of so-called dual variables of the same dimension as
θ. Our choice of notation—using µ for the dual variables—is deliberately suggestive:
as we will see momentarily, these dual variables turn out to be precisely the mean
parameters defined in equation (11.17).

Example 11.7

To illustrate the computation of a dual function, consider a scalar Bernoulli random
variable x ∈ {0, 1}, whose distribution can be written in the exponential family
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form as p(x; θ) = exp{θx − A(θ)}. The cumulant generating function is given by
A(θ) = log[1 + exp(θ)], and there is a single dual variable µ = Eθ[x]. Thus, the
variational problem (11.26) defining A∗ takes the form:

A∗(µ) = sup
θ∈R

{
θµ− log[1 + exp(θ)]

}
. (11.27)

If µ ∈ (0, 1), then taking derivatives shows that the supremum is attained at
the unique θ ∈ R satisfying the well-known logistic relation θ = log[µ/(1 − µ)].
Substituting this logistic relation into equation (11.27) yields that for µ ∈ (0, 1), we
have A∗(µ) = µ log µ + (1 − µ) log(1 − µ). By taking limits µ → 1− and µ → 0+,
it can be seen that this expression is valid for µ in the closed interval [0, 1].
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Figure 11.5 Behavior of the supremum defining A∗(µ) for (a) µ < 0 and (b)
µ > 1. The value of the dual function corresponds to the negative intercept of the
supporting hyperplane to epi A with slope µ.

Figure 11.5 illustrates the behavior of the supremum (11.27) for µ /∈ [0, 1]. From
our geometric interpretation of the value A∗(µ) in terms of supporting hyperplanes,
the dual value is +∞ if no supporting hyperplane can be found. In this particular
case, the log partition function A(θ) = log[1+ exp(θ)] is bounded below by the line
θ = 0. Therefore, as illustrated in Figure 11.5(a), any slope µ < 0 cannot support
epiA, which implies that A∗(µ) = +∞. A similar picture holds for the case µ > 1,
as shown in Figure 11.5(b). Consequently, the dual function is equal to +∞ for
µ /∈ [0, 1]. ♦

As the preceding example illustrates, there are two aspects to characterizing the
dual function A∗:

(a) determining its domain (i.e., the set on which it takes a finite value)

(b) specifying its precise functional form on the domain.

In Example 11.7, the domain of A∗ is simply the closed interval [0, 1], and its
functional form on its domain is that of the binary entropy function. In the following
two sections, we consider each of these aspects in more detail for general graphical
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models in exponential form.

11.4.2 Sets of realizable mean parameters

For a given µ ∈ Rd, consider the optimization problem on the right-hand side of
equation (11.26): since the cost function is differentiable, a first step in the solution
is to take the derivative with respect to θ and set it equal to zero. Doing so yields
the zero-gradient condition:

µ = ∇A(θ) = Eθ[φ(x)], (11.28)

where the second equality follows from the standard properties of A given in
Lemma 11.1.

We now need to determine the set of µ ∈ Rd for which equation (11.28)
has a solution. Observe that any µ ∈ Rd satisfying this equation has a natural
interpretation as a globally realizable mean parameter—i.e., a vector that can be
realized by taking expectations of the sufficient statistic vector φ. This observation
motivates defining the following set

M :=
{

µ ∈ R
d

∣∣ ∃ p(·) such that

∫
φ(x)p(x)ν(dx) = µ

}
, (11.29)

which corresponds to all realizable mean parameters associated with the set of
sufficient statistics φ.

Example 11.8 Gaussian mean parameters

The Gaussian MRF, first introduced in Example 11.3, provides a simple illustration
of the set M. Given the sufficient statistics that define a Gaussian, the associated
mean parameters are either first-order moments (e.g., µs = E[xs]), or second-
order moments (e.g., µss = E[x2

s] and µst = E[xsxt]). This full collection of mean
parameters can be compactly represented in matrix form:

W (µ) := Eθ

[
1

x

] [
1 x

]
=





1 µ1 µ2 . . . µn

µ1 µ11 µ12 . . . µ1n

µ2 µ21 µ22 . . . µ2n

...
...

...
...

...

µn µn1 µn2 . . . µnn





(11.30)

The Schur product lemma [ Horn and Johnson (1985)] implies that detW (µ) =
det cov(x), so that a mean parameter vector µ =

{
µs | s ∈ V

}
∪

{
µst | (s, t) ∈ E

}

is globally realizable if and only if the matrix W (µ) is strictly positive definite.
Thus, the set M is straightforward to characterize in the Gaussian case. ♦

Example 11.9 Marginal polytopes

We now consider the case of a multinomial MRF, first introduced in Example 11.4.
With the choice of sufficient statistics (11.20), the associated mean parameters are
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simply local marginal probabilities—viz.:

µs;j := p(xs = j; θ) ∀ s ∈ V, µst;jk := p((xs, xt) = (j, k); θ) ∀ (s, t) ∈ E (11.31)

In analogy to our earlier definition of θs(xs), we define functional versions of the
mean parameters as follows:

µs(xs) :=
∑

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
∑

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt). (11.32)

With this notation, the set M consists of all singleton marginals µs (as s ranges
over V ) and pairwise marginals µst (for edges (s, t) in the edge set E) that can
be realized by a distribution with support on X n. Since the space X n has a finite
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Figure 11.6 Geometrical illustration of a marginal polytope. Each vertex corre-
sponds to the mean parameter µe := φ(e) realized by the distribution δe(x) that
puts all of its mass on the configuration e ∈ X n. The faces of the marginal polytope
are specified by hyperplane constraints 〈aj , µ〉 ≤ bj .

number of elements, the set M is formed by taking the convex hull of a finite
number of vectors. As a consequence, it must be a polytope, meaning that it can be
described by a finite number of linear inequality constraints. In this discrete case,
we refer to M as a marginal polytope, denoted by MARG(G); see Figure 11.6 for
an idealized illustration.

As discussed in Section 11.5.2, it is straightforward to specify a set of necessary
conditions, expressed in terms of local constraints, that any element of MARG(G)
must satisfy. However—and in sharp contrast to the Gaussian case—characterizing
the marginal polytope exactly for a general graph is intractable, as it must require
an exponential number of linear inequality constraints. Indeed, if it were possi-
ble to characterize MARG(G) with polynomial-sized set of constraints, then this
would imply the polynomial-time solvability of various NP-complete problems (see
Section (11.8.2) for further discussion of this point). ♦
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11.4.3 Entropy in terms of mean parameters

We now turn to the second aspect of the characterization of the conjugate dual
function A∗—that of specifying its precise functional form on its domain M. As
might be expected from our discussion of maximum entropy in Section 11.3.1, the
form of the dual function A∗ turns out to be closely related to entropy. Accordingly,
we begin by defining the entropy in a bit more generality: Given a density function
p taken with respect to base measure ν, its entropy is given by

H(p) = −

∫

Xn

p(x) log [p(x)]ν(dx) = −Ep[log p(x)]. (11.33)

With this set-up, now suppose that µ belongs to the interior of M. Under this
assumption, it can be shown [ Brown (1986); Wainwright and Jordan (2003a)] that
there exists an canonical parameter θ(µ) ∈ Θ such that

Eθ(µ)[φ(x)] = µ. (11.34)

Substituting this relation into the definition (11.26) of the dual function yields

A∗(µ) = 〈µ, θ(µ)〉 −A(θ(µ)) = Eθ(µ)

[
log p(x; θ(µ))

]
,

which we recognize as the negative entropy −H(p(x; θ(µ))), where µ and θ(µ) are
dually coupled via equation (11.34).

Summarizing our development thus far, we have established that the dual func-
tion A∗ has the following form:

A∗(µ) =

{
−H(p(x; θ(µ))) if µ belongs to the interior of M

+∞ if µ is outside the closure of M.
(11.35)

An alternative way to interpret this dual function A∗ is by returning to the maxi-
mum entropy problem originally considered in Section 11.3.1. More specifically, sup-
pose that we consider the optimal value of the maximum entropy problem (11.12),
considered parametrically as a function of the constraints µ. Essentially, what we
have established that the parametric form of this optimal value function is the dual
function—that is:

A∗(µ) = max
p∈P

H(p) such that Ep[φα(x)] = µα for all α ∈ I. (11.36)

In this context, the property that A∗(µ) = +∞ for a constraint vector µ outside
of M has a concrete interpretation: it corresponds to infeasibility of the maximum
entropy problem (11.12).

11.4.3.1 Exact variational principle

Given the form (11.35) of the dual function, we can now use the conjugate dual
relation (11.25) to express A in terms of an optimization problem involving its dual
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function and the mean parameters:

A(θ) = sup
µ∈M

{
〈θ, µ〉 −A∗(µ)

}
. (11.37)

Note that the optimization is restricted to the set M of globally realizable mean
parameters, since the dual function A∗ is infinite outside of this set. Thus, we
have expressed the cumulant generating function as the solution of an optimization
problem that is convex (since it entails maximizing a concave function over the
convex set M), and low-dimensional (since it is expressed in terms of the mean
parameters µ ∈ Rd).

In addition to representing the value A(θ) of the cumulant generating function,
the variational principle (11.35) also has another important property. More specif-
ically, the nature of our dual construction ensures that the optimum is always at-
tained at the vector of mean parameters µ = Eθ[φ(x)]. Consequently, solving this
optimization problem yields both the value of the cumulant generating function as

well as the full set of mean parameters. In this way, the variational principle (11.37)
based on exponential families differs fundamentally from the classical free energy
principle from statistical physics.

11.5 Exact inference in variational form

In order to illustrate the general variational principle (11.37), it is worthwhile
considering important cases in which it can be solved exactly. Accordingly, this
section treats in some detail the case of a Gaussian MRF on an arbitrary graph—
for which we re-derive the normal equations— as well as the case of a multinomial
MRF on a tree, for which we sketch out a derivation of the sum-product algorithm
from a variational perspective. In addition to providing a novel perspective on exact
methods, the variational principle (11.37) also underlies a variety of methods for
approximate inference, as we will see in Section 11.6.

11.5.1 Exact inference in Gaussian MRFs

We begin by considering the case of a Gaussian Markov random field (MRF) on an
arbitrary graph, as discussed in Examples 11.3 and 11.8. In particular, we showed
in the latter example that the set MGauss of realizable Gaussian mean parameters
µ is determined by a positive definiteness constraint on the matrix W (µ) of mean
parameters defined in equation (11.30).

We now consider the form of the dual function A∗(µ). It is well-known [Cover
and Thomas (1991)] that the entropy of a multivariate Gaussian random vector can
be written as

H(p) =
1

2
log det cov(x) +

n

2
log 2πe,
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where cov(x) is the n×n covariance matrix of x. By recalling the definition (11.30)
of W (µ) and applying the Schur complement formula [ Horn and Johnson (1985)],
we see that det cov(x) = detW (µ), which implies that the dual function for a
Gaussian can be written in the form

A∗
Gauss(µ) = −

1

2
log detW (µ) −

n

2
log 2πe, (11.38)

valid for all µ ∈ MGauss. (To understand the negative signs, recall from equa-
tion (11.35) that A∗ is equal to the negative entropy for µ ∈ MGauss.) Combining
this exact expression for A∗

Gauss with our characterization of MGauss leads to

AGauss(θ) = sup
W (µ)&0, W11(µ)=1

{
〈U(θ), W (µ)〉+

1

2
log detW (µ) +

n

2
log 2πe

}
,

(11.39)
which corresponds to the variational principle (11.37) specialized to the Gaussian
case.

We now show how solving the optimization problem (11.39) leads to the normal

equations for Gaussian inference. In order to do so, it is convenient to introduce
the following notation for different blocks of the matrices W (µ) and U(θ):

W (µ) =

[
1 zT (µ)

z(µ) Z(µ)

]

, U(θ) =

[
0 zT (θ)

z(θ) Z(θ)

]

. (11.40)

In this definition, the submatrices Z(µ) and Z(θ) are n×n, whereas z(µ) and z(θ)
are n× 1 vectors.

Now if W (µ) 4 0 were the only constraint in problem (11.39), then, using the fact
that ∇ log detW = W−1 for any symmetric positive matrix W , the optimal solution
to problem (11.39) would simply be W (µ) = −2[U(θ)]−1. Accordingly, if we enforce
the constraint [W (µ)]11 = 1 using a Lagrange multiplier λ, then it follows from the
Karush-Kuhn-Tucker conditions [ Bertsekas (1995)] that the optimal solution will
assume the form W (µ) = −2[U(θ) + λ∗E11]−1, where λ∗ is the optimal setting of
the Lagrange multiplier and E11 is an (n + 1) × (n + 1) matrix with a one in the
upper left hand corner, and zero in all other entries. Using the standard formula
for the inverse of a block-partitioned matrix [ Horn and Johnson (1985)], it is
straightforward to verify that the blocks in the optimal W (µ) are related to the
blocks of U(θ) by the relations:

Z(µ)− z(µ)zT (µ) = −2[Z(θ)]−1 (11.41a)

z(µ) = −[Z(θ)]−1 z(θ) (11.41b)

(The multiplier λ∗ turns out not to be involved in these particular blocks.) In order
to interpret these relations, it is helpful to return to the definition of U(θ) given in
equation (11.18), and the Gaussian density of equation (11.19). In this way, we see
that the first part of equation (11.41) corresponds to the fact that the covariance
matrix is the inverse of the precision matrix, whereas the second part corresponds
to the normal equations for the mean z(µ) of a Gaussian. Thus, as a special case of
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the general variational principle (11.37), we have re-derived the familiar equations
for Gaussian inference.

It is worthwhile noting that the derivation did not exploit any particular features
of the graph structure. The Gaussian case is remarkable in this regard, in that
both the dual function A∗ and the set M of realizable mean parameters can be
characterized simply for an arbitrary graph. However, many methods for solving
the normal equations (11.41) as efficiently as possible, including Kalman filtering
on trees [ Willsky (2002)], make heavy use of the underlying graphical structure.

11.5.2 Exact inference on trees

We now turn to the case of tree-structured Markov random fields, focusing for con-
creteness on the multinomial case, first introduced in Example 11.4 and treated in
more depth in Example 11.9. Recall from the latter example that for a multinomial
MRF, the set M of realizable mean parameters corresponds to a marginal polytope,
which we denote by MARG(G).

There is an obvious set of local constraints that any member of MARG(G) must
satisfy. For instance, given their interpretation as local marginal distributions, the
vectors µs and µst must of course be non-negative. In addition, they must satisfy
normalization conditions (i.e.,

∑
xs

µs(xs) = 1), and the pairwise marginalization
conditions (i.e.,

∑
xt

µst(xs, xt) = µs(xs)). Accordingly, we define for any graph G
the following constraint set:

LOCAL(G) := { µ ≥ 0 |
∑

xs

µs(xs) = 1,
∑

xt

µst(xs, xt) = µs(xs) ∀(s, t) ∈ E}.

(11.42)
Since any set of singleton and pairwise marginals (regardless of the underlying graph
structure) must satisfy these local consistency constraints, we are guaranteed that
MARG(G) ⊆ LOCAL(G) for any graph G. This fact plays a significant role in
our later discussion in Section 11.7 of the Bethe variational principle and sum-
product on graphs with cycles. Of most importance to the current development is
the following consequence of the junction tree theorem (see Section 11.2.2.2): when
the graph G is tree-structured, then LOCAL(T ) = MARG(T ). Thus, the marginal
polytope MARG(T ) for trees has a very simple description (11.42).

The second component of the exact variational principle (11.37) is the dual func-
tion A∗. Here the junction tree framework is useful again: in particular specializing
representation (11.7) to a tree yields the following factorization

p(x;µ) =
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
(11.43)

for a tree-structured distribution in terms of its mean parameters µs and µst.
From this decomposition, it is straightforward to compute the entropy purely

as a function of the mean parameters by taking the logarithm, expectations and
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simplifying. Doing so yields the expression

−A∗(µ) =
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst) (11.44)

where the singleton entropy Hs and mutual information Ist are given by

Hs(µs) := −
∑

xs

µs(xs) log µs(xs), Ist(µst) :=
∑

xs,xt

µst(xs, xt) log
µst(xs, xt)

µs(xs)µt(xt)
,

respectively. Putting the pieces together, the general variational principle (11.37)
takes the following particular form:

A(θ) = max
µ∈LOCAL(T )

{
〈θ, µ〉 +

∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst)

}
. (11.45)

There is an important link between this variational principle for multinomial MRFs
on trees, and the sum-product updates (11.6). In particular, the sum-product
updates can be derived as an iterative algorithm for solving a Lagrangian dual
formulation of the problem (11.45). This will be clarified in our discussion of the
Bethe variational principle in Section 11.7.

11.6 Approximate inference in variational form

Thus far, we have seen how well-known methods for exact inference—specifically,
the computation of means and covariances in the Gaussian case and the com-
putation of local marginal distributions by the sum-product algorithm for tree-
structured problems—can be re-derived from the general variational princi-
ple (11.37). It is worthwhile isolating the properties that permit an exact solution
of the variational principle. First, for both of the preceding cases, it is possible to
characterize the set M of globally realizable mean parameters in a straightforward
manner. Second, the entropy can be expressed as a closed-form function of the
mean parameters µ, so that the dual function A∗(µ) has an explicit form.

Neither of these two properties hold for a general graphical model in exponential
form. As a consequence, there are significant challenges associated with exploiting
the variational representation. More precisely, in contrast to the simple cases
discussed thus far, many graphical models of interest have the following properties:

(a) the constraint set M of realizable mean parameters is extremely difficult to
characterize in an explicit manner.

(b) the negative entropy function A∗ is defined indirectly—in a variational
manner—so that it too typically lacks an explicit form.

These difficulties motivate the use of approximations to M and A∗. Indeed, a broad
class of methods for approximate inference—ranging from mean field theory to
cluster variational methods—are based on this strategy. Accordingly, the remainder
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of the chapter is devoted to discussion of approximate methods based on relaxations
of the exact variational principle.

11.6.1 Mean field theory

We begin our discussion of approximate algorithms with mean field methods,
a set of algorithms with roots in statistical physics [Chandler (1987)]. Working
from the variational principle (11.37), we show that mean field methods can be
understood as solving an approximation thereof, with the essential restriction that
the optimization is limited to a subset of distributions for which the dual function
A∗ is relatively easy to characterize. Throughout this section, we will refer to a
distribution with this property as a tractable distribution.

11.6.1.1 Tractable families

Let H represent a subgraph of G over which it feasible to perform exact calculations
(e.g., a graph with small treewidth); we refer to any such H as a tractable subgraph.
In an exponential formulation, the set of all distributions that respect the structure
of H can be represented by a linear subspace of canonical parameters. More
specifically, letting I(H) denote the subset of indices associated with cliques in H,
the set of canonical parameters corresponding to distributions structured according
to H is given by:

E(H) := {θ ∈ Θ | θα = 0 ∀ α ∈ I\I(H)}. (11.46)

We consider some examples to illustrate:

Example 11.10 Tractable subgraphs

The simplest instance of a tractable subgraph is the completely disconnected graph
H0 = (V, ∅) (see Figure 11.7(b)). Permissible parameters belong to the subspace
E(H0) := {θ ∈ Θ | θst = 0 ∀ (s, t) ∈ E}, where θst refers to the collection of
canonical parameters associated with edge (s, t). The associated distributions are
of the product form p(x; θ) =

∏
s∈V p(xs; θs) where θs refers to the collection of

canonical parameters associated with vertex s.
To obtain a more structured approximation, one could choose a spanning tree

T = (V,E(T )), as illustrated in Figure 11.7(c). In this case, we are free to choose the
canonical parameters corresponding to vertices and edges in T , but we must set to
zero any canonical parameters corresponding to edges not in the tree. Accordingly,
the subspace of tree-structured distributions is given by E(T ) = {θ | θst =
0 ∀ (s, t) /∈ E(T )}. ♦

For a given subgraph H, consider the set of all possible mean parameters that
are realizable by tractable distributions:

Mtract(G;H) := {µ ∈ R
d | µ = Eθ[φ(x)] for some θ ∈ E(H)}. (11.47)
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The notation Mtract(G;H) indicates that mean parameters in this set arise from
taking expectations of sufficient statistics associated with the graph G, but that
they must be realizable by a tractable distribution—i.e., one that respects the
structure of H. See Example 11.11 for an explicit illustration of this set when
the tractable subgraph H is the fully disconnected graph. Since any µ that arises
from a tractable distribution is certainly a valid mean parameter, the inclusion
Mtract(G;H) ⊆ M(G) always holds. In this sense, Mtract is an inner approxima-

tion to the set M of realizable mean parameters.

11.6.1.2 Optimization and lower bounds

We now have the necessary ingredients to develop the mean field approach to ap-
proximate inference. Let p(x; θ) denote the target distribution that we are interested
in approximating. The basis of the mean field method is the following fact: any valid
mean parameter specifies a lower bound on the cumulant generating function. In-
deed, as an immediate consequence of the variational principle (11.37), we have:

A(θ) ≥ 〈θ, µ〉 −A∗(µ). (11.48)

for any µ ∈ M. This inequality can also be established by applying Jensen’s
inequality [Jordan et al. (1999)].

Since the dual function A∗ typically lacks an explicit form, it is not possible,
at least in general, to compute the lower bound (11.48). The mean field approach
circumvents this difficulty by restricting the choice of µ to the tractable subset
Mtract(G;H), for which the dual function has an explicit form A∗

H . As long as µ
belongs to Mtract(G;H), then the lower bound (11.48) will be computable.

Of course, for a non-trivial class of tractable distributions, there are many such
bounds. The goal of the mean field method is the natural one: find the best
approximation µMF, as measured in terms of the tightness of the bound. This
optimal approximation is specified as the solution of the optimization problem

sup
µ∈Mtract(G;H)

{
〈µ, θ〉 −A∗

H(µ)
}
, (11.49)

which is a relaxation of the exact variational principle (11.37). The optimal value
specifies a lower bound on A(θ), and it is (by definition) the best one that can be
obtained by using a distribution from the tractable class.

An important alternative interpretation of the mean field approach is in terms
of minimizing the Kullback-Leibler (KL) divergence between the approximating
(tractable) distribution and the target distribution. Given two densities p and q,
the KL divergence is given by

D(p ‖ q) =

∫

Xn

log
p(x)

q(x)
p(x)ν(dx). (11.50)

To see the link to our derivation of mean field, consider for a given mean parameter
µ ∈ Mtract(G;H), the difference between the log partition function A(θ) and the
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(a) (b) (c)

Figure 11.7 Graphical illustration of the mean field approximation. (a) Original
graph is a 7 × 7 grid. (b) Fully disconnected graph, corresponding to a naive mean
field approximation. (c) A more structured approximation based on a spanning tree.

quantity 〈µ, θ〉 −A∗
H(µ):

D(µ ‖ θ) = A(θ) + A∗
H(µ) − 〈µ, θ〉.

A bit of algebra shows that this difference is equal to the KL divergence (11.50)
with q = p(x; θ) and p = p(x;µ) (i.e., the exponential family member with
mean parameter µ). Therefore, solving the mean field variational problem (11.49)
is equivalent to minimizing the KL divergence subject to the constraint that µ
belongs to tractable set of mean parameters, or equivalently that p is a tractable
distribution.

11.6.2 Naive mean field updates

The naive mean field approach corresponds to choosing a fully factorized or product
distribution in order to approximate the original distribution. The naive mean field
updates are a particular set of recursions for finding a stationary point of the
resulting optimization problem.

Example 11.11

As an illustration, we derive the naive mean field updates for the Ising model,
which is a special case of the multinomial MRF defined in Example 11.4. It involves
binary variables, so that Xs = {0, 1} for all vertices s ∈ V . Moreover, the canonical
parameters are of the form θs(xs) = θsxs and θst(xs, xt) = θstxsxt for real numbers
θs and θst. Consequently, the exponential representation of the Ising model has the
form

p(x; θ) ∝ exp
{ ∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}
.

Letting H0 denote the fully disconnected graph (i.e., without any edges), the
tractable set Mtract(G;H0) consists of all mean parameters {µs, µst} that arise



Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/04 21:55

11.6 Approximate inference in variational form 51

from a product distribution. Explicitly, in this binary case, we have

Mtract(G;H0) := {(µs, µst) | 0 ≤ µs ≤ 1, µst = µs µt }.

Moreover, the negative entropy of a product distribution over binary random
variables decomposes into the sum A∗

H0
(µ) =

∑
s∈V

[
µs log µs+(1−µs) log(1−µs)

]
.

Accordingly, the associated naive mean field problem takes the form

max
µ∈Mtract(G;H0)

{
〈µ, θ〉 −A∗

H0
(µ)

}
.

In this particular case, it is convenient to eliminate µst by replacing it by the
product µsµt. Doing so leads to a reduced form of the problem:

max
{µs}∈[0,1]n

{ ∑

s∈V

θsµs +
∑

(s,t)∈E

θstµsµt −
∑

s∈V

[
µs log µs + (1− µs) log(1− µs)

]}
.

(11.51)
Let F denote the function of µ within curly braces in equation (11.51). It can be
seen that the function F is strictly concave in a given fixed coordinate µs when all
the other coordinates are held fixed. Moreover, it is straightforward to show that
the maximum over µs with µt, t &= s fixed is attained in the interior (0, 1), and can
be found by taking the gradient and setting it equal to zero. Doing so yields the
following update for µs:

µs ← σ
(
θs +

∑

t∈N (s)

θstµt

)
, (11.52)

where σ(z) := [1 + exp(−z)]−1 is the logistic function. Applying equation (11.52)
iteratively to each node in succession amounts to performing coordinate ascent in
the objective function for the mean field variational problem (11.51). Thus, we have
derived the update equation presented earlier in equation (11.10). ♦

Similarly, it is straightforward to apply the naive mean field approximation to
other types of graphical models, as we illustrate for a multivariate Gaussian.

Example 11.12 Gaussian mean field

The mean parameters for a multivariate Gaussian are of the form µs = E[xs],
µss = E[x2

s] and µst = E[xsxt] for s &= t. Using only Gaussians in product form, the
set of tractable mean parameters takes the form

Mtract(G;H0) = {µ ∈ R
d | µst = µsµt ∀s &= t, µss − µ2

s > 0 }.

As with naive mean field on the Ising model, the constraints µst = µsµt for
s &= t can be imposed directly, thereby leaving only the inequality µss − µ2

s > 0
for each node. The negative entropy of a Gaussian in product form can be written
as A∗

Gauss(µ) = −
∑n

s=1
1
2 log(µss − µ2

s) −
n
2 log 2πe. Combining A∗

Gauss with the
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constraints leads to the naive MF problem for a multivariate Gaussian:

sup
{(µs,µss) | µss−µ2

s>0}

{
〈U(θ), W (µ)〉 +

n∑

s=1

1

2
log(µss − µ2

s) +
n

2
log 2πe

}
,

where the matrices U(θ) and W (µ) are defined in equation (11.40). Here it should
be understood that any terms µst, s &= t contained in W (µ) are replaced with the
product µsµt.

Taking derivatives with respect to µss and µs and re-arranging yields the station-
ary conditions 1

2(µss−µ2
s) = −θss and µs

2(µss−µ2
s) = θs +

∑
t∈N (s) θstµt. Since θss < 0,

we can combine both equations into the update µs ← − 1
θss

{
θs +

∑
t∈N (s) θstµt

}
.

In fact, the resulting algorithm is equivalent to the Gauss-Jacobi method for solv-
ing the normal equations, and so is guaranteed to converge under suitable con-
ditions [Demmel (1997)], in which case the algorithm computes the correct mean
vector [µ1 . . . µn]. ♦

11.6.3 Structured mean field and other extensions

Of course, the essential principles underlying the mean field approach are not
limited to fully factorized distributions. More generally, one can consider classes of
tractable distributions that incorporate additional structure. This structured mean

field approach was first proposed by Saul and Jordan [ 1996], and further developed
by various researchers. In this section, we discuss only particular example in order
to illustrate the basic idea, and refer the interested reader elsewhere [ Wiegerinck
(2000); Wainwright and Jordan (2003a)] for further details.

Example 11.13 Structured MF for factorial HMMs

The factorial hidden Markov model, as described in Ghahramani and Jordan [ 1997],
has the form shown in Figure 11.8(a). It consists of a set of M Markov chains (M = 3
in this diagram), which share at each time a common observation (shaded nodes).
Such models are useful, for example, in modeling the joint dependencies between
speech and video signals over time.

Although the separate chains are independent a priori, the common observation
induces an effective coupling between all nodes at each time (a coupling which is
captured by the moralization process mentioned earlier). Thus, an equivalent model
is shown in panel (b), where the dotted ellipses represent the induced coupling of
each observation.

A natural choice of approximating distribution in this case is based on the
subgraph H consisting of the decoupled set of M chains, as illustrated in panel
(c). The decoupled nature of the approximation yields valuable savings on the
computational side. In particular, it can be shown [ Saul and Jordan (1996);
Wainwright and Jordan (2003a)] that all intermediate quantities necessary for
implementing the structured mean field updates can be calculated by applying the
forward-backward algorithm (i.e., the sum-product updates as an exact method) to
each chain separately. ♦
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Figure 11.8 Structured mean field approximation for a factorial HMM. (a) Orig-
inal model consists of a set of hidden Markov models (defined on chains), coupled
at each time by a common observation. (b) An equivalent model, where the ellipses
represent interactions among all nodes at a fixed time, induced by the common ob-
servation. (c) Approximating distribution formed by a product of chain-structured
models. Here µα and µδ are the sets of mean parameters associated with the indi-
cated vertex and edge respectively.

In addition to structured mean field, there are various other extensions to naive
mean field, which we mention only in passing here. A large class of techniques,
including linear response theory and the TAP method [ Plefka (1982); Kappen
and Rodriguez (1998); Opper and Saad (2001)], seek to improve the mean field
approximation by introducing higher-order correction terms. Although the lower
bound on the log partition function is not usually preserved by these higher-order
methods, Leisinck and Kappen [ 2001] demonstrated how to generate tighter lower
bounds based on higher-order expansions.

11.6.4 Geometric view of mean field

An important fact about the mean field approach is that the variational prob-
lem (11.49) may be non-convex, so that there may be local minima, and the mean
field updates can have multiple solutions.

One way to understand this non-convexity is in terms of the set of tractable mean
parameters: under fairly mild conditions, it can be shown [ Wainwright and Jordan
(2003a)] that the set Mtract(G;H) is non-convex. Figure 11.9 provides a geometric
illustration for the case of a multinomial MRF, for which the set M is a marginal
polytope.

A practical consequence of this non-convexity is that the mean field updates
are often sensitive to the initial conditions. Moreover, the mean field method can
exhibit “spontaneous symmetry breaking,” wherein the mean field approximation is
asymmetric even though the original problem is perfectly symmetric; see Jaakkola [
2001] for an illustration of this phenomenon. Despite this non-convexity, the mean
field approximation becomes exact for certain types of models as the number of
nodes n grows to infinity [ Baxter, 1982].
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Figure 11.9 The set Mtract(G; H) of mean parameters that arise from tractable
distributions is a non-convex inner bound on M(G). Illustrated here is the multi-
nomial case where M(G) ≡ MARG(G) is a polytope. The circles correspond to
mean parameters that arise from delta distributions with all their mass on a single
configuration , and belong to both M(G) and Mtract(G; H).

11.6.5 Parameter estimation and variational EM

Mean field methods also play an important role in the problem of parameter es-
timation, in which the goal is to estimate model parameters on the basis of par-
tial observations. The expectation-maximization (EM) algorithm [ Dempster et al.
(1977)] provides a general approach to maximum likelihood parameter estimation
in the case in which some subset of variables are observed whereas others are unob-
served. Although the EM algorithm is often presented as an alternation between an
expectation step (E step) and a maximization step (M step), it is also possible to
take a variational perspective on EM, and view both steps as maximization steps [
Csiszár and Tusnády (1984); Neal and Hinton (1999)]. More concretely, in the expo-
nential family setting, the E step reduces to the computation of expected sufficient
statistics—i.e., mean parameters. As we have seen, the variational framework pro-
vides a general class of methods for computing approximations of mean parameters.
This observation suggests a general class of variational EM algorithms, in which the
approximation provided by a variational inference algorithm is substituted for the
mean parameters in the E step. In general, as a consequence of making such a
substitution, one loses the guarantees that are associated with the EM algorithm.
In the specific case of mean field algorithms, however, a convergence guarantee is
retained: in particular, the algorithm will converge to a stationary point of a lower
bound for the likelihood function [Wainwright and Jordan (2003a)].

11.7 Bethe entropy approximation and sum-product algorithm

In this section, we turn to another important message-passing algorithm for approx-
imate inference, known either as belief propagation, or the sum-product algorithm. In
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Section 11.5.2, we described the use of the sum-product algorithm for trees, in which
context it is guaranteed to converge and perform exact inference. When the same
message-passing updates are applied to graphs with cycles, in contrast, there are
no such guarantees; nonetheless, this “loopy” form of the sum-product algorithm is
widely used to compute approximate marginals in various signal processing appli-
cations, including phase unwrapping [Frey et al. (2001)], low-level vision [Freeman
et al. (2000)], and channel decoding [Richardson and Urbanke (2001)].

The main idea of this section is the connection between the sum-product updates
and the Bethe variational principle. The presentation given here differs from the
original work of Yedidia et al. [2001], in that we formulate the problem purely in
terms of mean parameters and marginal polytopes. This perspective highlights a key
point: mean field and sum-product, though similar as message-passing algorithms,
are fundamentally different at the variational level. In particular, whereas the
essence of mean field is to restrict optimization to a limited class of distributions
for which the negative entropy and mean parameters can be characterized exactly,
the the sum-product algorithm, in contrast, is based on enlarging the constraint set
and approximating the entropy function.

The standard Bethe approximation applies to an undirected graphical model
with potential functions involving at most pairs of variables, which we refer to as
a pairwise Markov random field. In principle, by selectively introducing auxiliary
variables, any undirected graphical model can be converted into an equivalent
pairwise form to which the Bethe approximation can be applied; see Freeman and
Weiss [2000] for a detailed description of this procedure. Moreover, although the
Bethe approximation can be developed more generally, we also limit our discussion
to a multinomial MRF, as discussed earlier in Examples 11.4 and 11.9. We also
make use of the local marginal functions µs(xs) and µst(xs, xt), as defined in
equation (11.32). As discussed in Example 11.9, the set M associated with a
multinomial MRF is the marginal polytope MARG(G).

Recall that there are two components to the general variational principle (11.37):
the set of realizable mean parameters (given by a marginal polytope in this case),
and the dual function A∗. Developing an approximation to the general principle
requires approximations to both of these components, which we discuss in turn in
the following sections.

11.7.1 Bethe entropy approximation

From equation (11.35), recall that dual function A∗ corresponds to the maximum
entropy distribution consistent with a given set of mean parameters; as such, it
typically lacks a closed form expression. An important exception to this general
rule is the case of a tree-structured distribution: as discussed in Section 11.5.2, the
function A∗ for a tree-structured distribution has a closed-form expression that is
straightforward to compute; see, in particular, equation (11.44).

Of course, the entropy of a distribution defined by a graph with cycles will not,
in general, decompose additively like that of a tree. Nonetheless, one can imagine
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using the decomposition in equation (11.44) as an approximation to the entropy.
Doing so yields an expression known as the Bethe approximation to the entropy on
a graph with cycles:

HBethe(µ) :=
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst). (11.53)

To be clear, the quantity HBethe(µ) is an approximation to the negative dual
function −A∗(µ). Moreover, our development in Section 11.5.2 shows that this
approximation is exact when the graph is tree-structured.

An alternative form of the Bethe entropy approximation can be derived by writing
mutual information in terms of entropies as Ist(µst) = Hs(µs)+Ht(µt)−Hst(µst). In
particular, expanding the mutual information terms in this way, and then collecting
all the single node entropy terms yields HBethe(µ) =

∑
s∈V (1 − ds)Hs(µs) +∑

(s,t)∈E Hst(µst), where ds denotes the number of neighbors of node s. This
representation is the form of the Bethe entropy introduced by Yedidia et al. [ 2001];
however, the form given in equation (11.53) turns out to be more convenient for
our purposes.

11.7.2 Tree-based outer bound

Note that the Bethe entropy approximation HBethe is certainly well-defined for
any µ ∈ MARG(G). However, as discussed earlier, characterizing this polytope of
realizable marginals is a very challenging problem. Accordingly, a natural approach
is to specify a subset of necessary constraints, which leads to an outer bound on
MARG(G). Let τs(xs) and τst(xs, xt) be a set of candidate marginal distributions.
In Section 11.5.2, we considered the following constraint set:

LOCAL(G) = { τ ≥ 0 |
∑

xs

τs(xs) = 1,
∑

xs

τst(xs, xt) = τt(xt) }. (11.54)

Although LOCAL(G) is an exact description of the marginal polytope for a tree-
structured graph, it is only an outer bound for graphs with cycles. (We demon-
strate this fact more concretely in Example 11.14.) For this reason, our change
in notation—i.e., from µ to τ—is quite deliberate, with the goal of emphasizing
that members τ of LOCAL(G) need not be realizable. We refer to members of
LOCAL(G) as pseudomarginals (these are sometimes referred to as “beliefs”).

Example 11.14 Pseudomarginals

We illustrate using a binary random vector on the simplest possible graph for which
LOCAL(G) is not an exact description of MARG(G)—namely, a single cycle with
three nodes. Consider candidate marginal distributions {τs, τst} of the form

τs :=
[
0.5 0.5

]
, τst :=

[
βst 0.5 − βst

0.5 − βst βst

]

, (11.55)
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where βst ∈ [0, 0.5] is a parameter to be specified independently for each edge (s, t).
It is straightforward to verify that {τs, τst} belong to LOCAL(G) for any choice of
βst ∈ [0, 0.5].

3

2

1 3

2

1
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MARG(G)
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Figure 11.10 (a), (b): Illustration of the marginal polytope for a single cycle graph
on three nodes. Setting βst = 0.4 for all three edges gives a globally consistent set of
marginals. (b) With β13 perturbed to 0.1, the marginals (though locally consistent)
are no longer globally so. (c) For a more general graph, an idealized illustration of
the tree-based constraint set LOCAL(G) as an outer bound on the marginal polytope
MARG(G).

First, consider the setting βst = 0.4 for all edges (s, t), as illustrated in panel (a).
It is not difficult to show that the resulting marginals thus defined are realizable; in
fact, they can be obtained from the distribution that places probability 0.35 on each
of the configurations [0 0 0] and [1 1 1], and probability 0.05 on each of the remaining
six configurations. Now suppose that we perturb one of the pairwise marginals—say
τ13—by setting β13 = 0.1. The resulting problem is illustrated in panel (b). Observe
that there are now strong (positive) dependencies between the pairs of variables
(x1, x2) and (x2, x3): both pairs are quite likely to agree (with probability 0.8).
In contrast, the pair (x1, x3) can only share the same value relatively infrequently
(with probability 0.2). This arrangement should provoke some doubt. Indeed, it can
be shown that τ /∈ MARG(G) by attempting but failing to construct a distribution
that realizes τ , or alternatively and much more directly using the idea of semidefinite
constraints (see Example 11.15). ♦

More generally, Figure 11.10(c) provides an idealized illustration of the constraint
set LOCAL(G), and its relation to the exact marginal polytope MARG(G). Observe
that the set LOCAL(G) is another polytope that is a convex outer approximation to
MARG(G). It is worthwhile contrasting with the non-convex inner approximation

used by a mean field approximation, as illustrated in Figure 11.9.
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11.7.3 Bethe variational problem and sum-product

Note that the Bethe entropy is also well-defined for any pseudomarginal in
LOCAL(G). Therefore, it is valid to consider a constrained optimization prob-
lem over the set LOCAL(G) in which the cost function involves the Bethe entropy
approximation HBethe. Indeed, doing so leads to the so-called Bethe variational

problem:

max
τ∈LOCAL(G)

{
〈θ, τ〉 +

∑

s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst)
}
. (11.56)

Although ostensibly similar to a (structured) mean field approach, the Bethe
variational problem (BVP) is fundamentally different in a number of ways. First, as
discussed in Section 11.6.1, a mean field method is based on an exact representation
of the entropy, albeit over a limited class of distributions. In contrast, with the
exception of tree-structured graphs, the Bethe entropy is a bona fide approximation

to the entropy. For instance, it is not difficult to see that it can be negative, which
of course can never happen for an exact entropy. Second, the mean field approach
entails optimizing over an inner bound on the marginal polytope, which ensures
that any mean field solution is always globally consistent with respect to at least
one distribution, and that it yields a lower bound on the log partition function. In
contrast, since LOCAL(G) is a strict outer bound on the set of realizable marginals
MARG(G), the optimizing pseudomarginals τ ∗ of the BVP may not be globally
consistent with any distribution.

11.7.4 Solving the Bethe variational problem

Having formulated the Bethe variational problem, we now consider iterative meth-
ods for solving it. Observe that the set LOCAL(G) is a polytope defined by
O(n + |E|) constraints. A natural approach to solving the BVP, then, is to at-
tach Lagrange multipliers to these constraints, and find stationary points of the
Lagrangian. A remarkable fact, established by Yedidia et al. [ 2001], is that sum-
product updates (11.6) can be re-derived as a method for trying to find such La-
grangian stationary points.

A bit more formally, for each xs ∈ Xs, let λst(xs) be a Lagrange multiplier asso-
ciated with the constraint Cts(xs) = 0, where Cts(xs) := τs(xs) −

∑
xt
τst(xs, xt).

Our approach is to consider the following partial Lagrangian corresponding to the
Bethe variational problem (11.56):

L(τ ;λ) := 〈θ, τ〉 + HBethe(τ) +
∑

(s,t)∈E

[ ∑

xs

λts(xs)Cts(xs) +
∑

xt

λst(xt)Cst(xt)
]
.

The key insight of Yedidia et al. [ 2001] is that any fixed point of the sum-product
updates specifies a pair (τ ∗,λ∗) such that:

∇τL(τ∗;λ∗) = 0, ∇λL(τ∗;λ∗) = 0 (11.57)
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In particular, the Lagrange multipliers can be used to specify messages of the form
Mts(xs) = exp(λts(xs)). After taking derivatives of the Lagrangian and equating
them to zero, some algebra then yields the familiar message-update rule:

Mts(xs) = κ
∑

xt

exp
{
θst(xs, xt) + θt(xt)

} ∏

u∈N (t)\s

Mut(xt). (11.58)

We refer the reader to Yedidia et al. [ 2001] or Wainwright and Jordan [ 2003a]
for further details of this derivation. By construction, any fixed point M ∗ of these
updates specifies a pair (τ ∗,λ∗) that satisfies the stationary3 conditions (11.57).

This variational formulation of the sum-product updates—namely, as an algo-
rithm for solving a constrained optimization problem—has a number of important
consequences. First of all, it can be used to guarantee the existence of sum-product
fixed points. Observe that the cost function in the Bethe variational problem (11.56)
is continuous and bounded above, and the constraint set LOCAL(G) is non-empty
and compact; therefore, at least some (possibly local) maximum is attained. More-
over, since the constraints are linear, there will always be a set of Lagrange mul-
tipliers associated with any local maximum [ Bertsekas (1995)]. For any optimum
in the relative interior of LOCAL(G), these Lagrange multipliers can be used to
construct a fixed point of the sum-product updates.

For graphs with cycles, this Lagrangian formulation provides no guarantees on
the convergence of the sum-product updates; indeed, whether or not the algorithm
converges depends both on the potential strengths and the topology of the graph.
Several researchers [ Yuille (2002); Welling and Teh (2001); Heskes et al. (2003)]
have proposed alternatives to sum-product that are guaranteed to converge, albeit
at the price of increased computational cost. It should also be noted that with
the exception of trees and other special cases [ Pakzad and Anantharam (2002);
McEliece and Yildirim (2002)], the BVP is usually a non-convex problem, in that
HBethe fails to be concave. As a consequence, there may be multiple local optima
to the BVP, and there are no guarantees that sum-product (or other iterative
algorithms) will find a global optimum.

As illustrated in Figure 11.10(c), the constraint set LOCAL(G) of the Bethe
variational problem is a strict outer bound on the marginal polytope MARG(G).
Since the exact marginals of p(x; θ) must always lie in the marginal polytope, a
natural question is whether solutions to the Bethe variational problem ever fall
into the region LOCAL(G)\MARG(G). There turns out be a straightforward
answer to this question, stemming from an alternative reparameterization-based
characterization of sum-product fixed points [ Wainwright et al. (2003b)]. One
consequence of this characterization is that for any vector τ of pseudomarginals
in the interior of LOCAL(G), it is possible to specify a distribution for which τ is
a sum-product fixed point. As a particular example, it is possible to construct a

3. Some care is required in dealing with the boundary conditions τs(xs) ≥ 0 and
τst(xs, xt) ≥ 0; see Yedidia et al. for further discussion.
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distribution p(x; θ) such that the pseudomarginal τ discussed in Example 11.14 is
a fixed point of the sum-product updates.

11.7.5 Extensions based on clustering and hypertrees

From our development in the previous section, it is clear that there are two distinct

components to the Bethe variational principle: (a) the entropy approximation
HBethe, and (b) the approximation LOCAL(G) to the set of realizable marginal
parameters. In principle, the BVP could be strengthened by improving either one,
or both, of these components. One natural generalization of the BVP, first proposed
by Yedidia et al. [ 2002] and further explored by various researchers [ Heskes et al.
(2003); McEliece and Yildirim (2002); Minka (2001)], is based on working with
clusters of variables. The approximations in the Bethe approach are based on trees,
which are special cases of junction trees based on cliques of size two. A natural
strategy, then, is to strengthen the approximations by exploiting more complex
junction trees, also known as hypertrees. Our description of this procedure is very
brief, but further details can be found in various sources [ Yedidia et al. (2002);
Wainwright and Jordan (2003a)].

Recall that the essential ingredients in Bethe variational principle are local
(pseudo)marginal distributions on nodes and edges (i.e., pairs of nodes). These
distributions, subject to edge-wise marginalization conditions, are used to spec-
ify the Bethe entropy approximation. One way to improve the Bethe approach,
which is based on pairs of nodes, is to build entropy approximations and impose
marginalization constraints on larger clusters of nodes. To illustrate, suppose that
the original graph is simply the 3 × 3 grid shown in Figure 11.11(a). A particular
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Figure 11.11 (a) Ordinary 3 × 3 grid. (b) Clustering of the vertices into groups
of 4, known as Kikuchi 4-plaque clustering. (c) Poset diagram of the clusters as
well as their overlaps. Pseudomarginals on these subsets must satisfy certain local
consistency conditions, and are used to define a higher-order entropy approximation.

grouping of the nodes, which is known as Kikuchi 4-plaque clustering in statistical
physics [ Yedidia et al. (2002)], is illustrated in panel (b). This operation creates
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four new “supernodes” or clusters, each consisting of four nodes from the original
graph. These clusters, as well as their overlaps—which turn out to be critical to
track for certain technical reasons [ Yedidia et al. (2002)])—are illustrated in panel
(c).

Given a clustering of this type, we now consider a set of marginal distributions
τh, where h ranges over the clusters. As with the singleton τs and pairwise τst

that define the Bethe approximation, we require that these higher-order cluster
marginals are suitably normalized (i.e.,

∑
x′

h
τh(x′

h) = 1), and are consistent with
one another whenever they overlap. More precisely, for any pair g ⊆ h, the following
marginalization condition

∑
{x′

h | x′

g=xg}
τh(x′

h) = τg(xg) must hold. Imposing
these normalization and marginalization conditions leads to a higher-order analog
of the constraint LOCAL(G) previously defined in equation (11.54).

In analogy to the Bethe entropy approximation, we can also consider a hypertree-
based approximation to the entropy. There are certain technical aspects to specify-
ing such entropy approximations, in that it turns out to be critical to ensure that the
local entropies are weighted with certain “over-counting” numbers [Yedidia et al.
(2002); Wainwright and Jordan (2003a)]. Without going into these details here,
the outcome is another relaxed variational principle, which can be understood as a
higher-level analog of the Bethe variational principle.

11.8 From the exact principle to new approximations

The preceding sections have illustrated how a variety of known methods—both
exact and approximate—can be understood in an unified manner on the basis of
the general variational principle (11.37). In this final section, we turn to a brief
discussion of several new approximate methods that also emerge from this same
variational principle. Given space constraints, our discussion in this chapter is
necessarily brief, but we refer to reader to the papers [Wainwright and Jordan
(2003a,b); Wainwright et al. (2002, 2003a)] for further details.

11.8.1 Exploiting semidefinite constraints for approximate inference

As discussed in Section 11.6, one key component in any relaxation of the exact
variational principle is an approximation of the set M of realizable mean param-
eters. Recall that for graphical models that involve discrete random variables, we
refer to this set as a marginal polytope. Since any polytope is specified by a finite
collection of halfspace constraints (see Figure 11.6), one very natural way in which
to generate an outer approximation is by including only a subset of these halfspace
constraints. Indeed, as we have seen in Section 11.7, it is precisely this route that
the Bethe approximation and its clustering-based extensions follow.

However, such polyhedral relaxations are not the only way in which to generate
outer approximations to marginal polytopes. Recognizing that elements of the
marginal polytope are essentially moments leads very naturally to the idea of a
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semidefinite relaxation. Indeed, the use of semidefinite constraints for characterizing
moments has a very rich history, both with classical work [Karlin and Studden
(1966)] on scalar random variables, and more recent work [Lasserre (2001); Parrilo
(2003)] on the multivariate case.

11.8.1.1 Semidefinite outer bounds on marginal polytopes

We use the case of a multinomial MRF defined by a graph G = (V,E), as discussed
in Example 11.4, in order to illustrate the use of semidefinite constraints. Although
the basic idea is quite generally applicable [Wainwright and Jordan (2003a)]),
herein we restrict ourselves to binary variables (i.e., Xs = {0, 1}) so as to simplify
the exposition. Recall that the sufficient statistics in a binary MRF take the
form of certain indicator functions, as defined in equation (11.20). In fact, this
representation is overcomplete (in that there are linear dependencies among the
indicator functions); in the binary case, it suffices to consider only the sufficient
statistics xs = I 1(xs) and xsxt = I 11(xs, xt). Our goal, then, is to characterize the
set of all first- and second-order moments, defined by µs = E[xs] and µst = E[xsxt]
respectively, that arise from taking expectations with a distribution with its support
restricted to {0, 1}n. Rather than focusing on just the pairs µst for edges (s, t) ∈ E,
it is convenient to consider the full collection of pairwise moments {µst | s, t ∈ V }.

Suppose that we are given a vector µ ∈ Rd (where d = n +
(n
2

)
), and wish to

assess whether or not it is a globally realizable moment vector (i.e., whether there
exists some distribution p(x) such that µs =

∑
x

p(x) xs and µst =
∑

x
p(x) xsxt).

In order to derive a necessary condition, we suppose that such a distribution p
exists, and then consider the following (n + 1)× (n + 1) moment matrix:

Ep

{[
1

x

] [
1 x

]}

=





1 µ1 µ2 · · · µn−1 µn

µ1 µ1 µ12 · · · · · · µ1n

µ2 µ21 µ2 · · · · · · µ2n

...
...

...
...

...
...

µn−1

...
...

...
... µn,(n−1)

µn µn1 µn2 · · · µ(n−1),n µn





, (11.59)

which we denote by M1[µ]. Note that in calculating the form of this moment matrix,
we have made use of the relation µs = µss, which holds because xs = x2

s for any
binary-valued quantity.

We now observe that any such moment matrix is necessarily positive semidefinite,
which we denote by M1[µ] 9 0. (This positive semidefiniteness can be verified as
follows: letting y := (1, x), then for any vector a ∈ Rn+1, we have aT M1[µ]a =
aT E[yyT ]a = E[‖aT y‖2], which is certainly non-negative). Therefore, we conclude
that the semidefinite constraint set SDEF1 := {µ ∈ Rd |M1[µ] 9 0} is an outer
bound on the exact marginal polytope.
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Example 11.15

To illustrate the use of the outer bound SDEF1, recall the pseudomarginal vector τ
that we constructed in Example 11.14 for the single cycle on three nodes. In terms
of our reduced representation (involving only expectations of the singletons xs and
pairwise functions xsxt), this pseudomarginal can be written as follows:

τs = 0.5 for s = 1, 2, 3, τ12 = τ23 = 0.4, τ13 = 0.1.

Suppose that we now construct the matrix M1 for this trial set of mean parameters;
it takes the following form:

M1[τ ] =





1 0.5 0.5 0.5

0.5 0.5 0.4 0.1

0.5 0.4 0.5 0.4

0.5 0.1 0.4 0.5




.

A simple calculation shows that it is not positive definite, so that τ /∈ SDEF1.
Since SDEF1 is an outer bound on the marginal polytope, this reasoning shows—in
a very quick and direct manner— that τ is not a globally valid moment vector.

In fact, the semidefinite constraint set SDEF1 can be viewed as the first in a
sequence of progressively tighter relaxations on the marginal polytope.

11.8.1.2 Log-determinant relaxation

We now show how to use such semidefinite constraints in approximate inference.
Our approach is based on combining the first-order semidefinite outer bound SDEF1

with Gaussian-based entropy approximation. The end result is a log-determinant
problem that represents another relaxation of the exact variational principle [
Wainwright and Jordan (2003b)]. In contrast to the Bethe/Kikuchi approaches, this
relaxation is convex (and hence has a unique optimum), and moreover provides an
upper bound on the cumulant generating function.

Our starting point is the familiar interpretation of the Gaussian as the maximum
entropy distribution subject to covariance constraints [ Cover and Thomas (1991)].
In particular, given a continuous random vector x̃, its differential entropy h(x̃) is
always upper bounded by the entropy of a Gaussian with matched covariance, or
in analytical terms

h(x̃) ≤
1

2
log det cov(x̃) +

n

2
log(2πe), (11.60)

where cov(x̃) is the covariance matrix of x̃. The upper bound (11.60) is not directly
applicable to a random vector taking values in a discrete space (since differential
entropy in this case diverges to minus infinity). However, a straightforward dis-
cretization argument shows that for any discrete random vector x ∈ {0, 1}n, its
(ordinary) discrete entropy can be upper bounded in terms of the matrix M1[µ] of
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mean parameters as

H(x) = −A∗(µ) ≤
1

2
log det

{
M1[µ] +

1

12
blkdiag[0, In]

}
+

n

2
log(2πe). (11.61)

where blkdiag[0, In] is a (n + 1) × (n + 1) block-diagonal matrix with a 1 × 1 zero
block, and an n× n identity block.

Finally, putting all the pieces together leads to the following result [ Wainwright
and Jordan (2003b)]: the cumulant generating function A(θ) is upper bounded by
the solution of the following log-determinant optimization problem:

A(θ) ≤ max
τ∈SDEF1

{
〈θ, µ〉+

1

2
log det

[
M1(τ) +

1

12
blkdiag[0, In]

]}
+

n

2
log(2πe).

(11.62)
Note that the constraint τ ∈ SDEF1 ensures that M1(τ) 9 0, and hence a fortiori
that M1(τ) + 1

12 blkdiag[0, In] is positive definite. Moreover, an important fact is
that the optimization problem in equation (11.62) is a determinant maximization
problem, for which efficient interior point methods have been developed [ Vanden-
berghe et al. (1998)].

Just as the Bethe variational principle (11.56) is a tree-based approximation,
the log-determinant relaxation (11.62) is a Gaussian-based approximation. In par-
ticular, it is worthwhile comparing the structure of the log-determinant relax-
ation (11.62) to the exact variational principle for a multivariate Gaussian, as de-
scribed in Section 11.5.1. In contrast to the Bethe variational principle, in which
all of the constraints defining the relaxation are local, this new principle (11.62)
imposes some quite global constraints on the mean parameters. Empirically, these
global constraints are important for strongly coupled problems, in which the per-
formance log-determinant relaxation appears is much more robust then the sum-
product algorithm [ Wainwright and Jordan (2003b)]. In summary, starting from
the exact variational principle (11.37), we have derived a new relaxation, whose
properties are rather different than the Bethe and Kikuchi variational principles.

11.8.2 Relaxations for computing modes

Recall from our introductory comments in Section 11.2.2 that, in addition to the
problem of computing expectations and likelihoods, it is also frequently of interest
to compute the mode of a distribution. This section is devoted to a brief discussion of
mode computation, and more concretely how the exact variational principle (11.37),
as well as relaxations thereof, again turns out to play an important role.

11.8.2.1 Zero-temperature limits

In order to understand the role of the exact variational principle (11.37) in com-
puting modes, consider a multinomial MRF of the form p(x; θ), as discussed
in Example 11.4. Of interest to us is the 1-parameter family of distributions
{p(x;βθ) |β > 0}, where β is the real number to be varied. At one extreme, if
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β = 0, then there is no coupling, and the distribution is simply uniform over all
possible configurations. The other extreme, as β → +∞, is more interesting; in this
limit, the distribution concentrates all of its mass on the configuration (or subset
of configurations) that are modes of the distribution. Taking this limit β → +∞
is known as “zero-temperature” limit, since the parameter β is typically viewed as
inverse temperature in statistical physics. This argument suggests that there should
be a link between computing modes and the limiting behavior of the marginalization
problem as β → +∞.

In order to develop this idea a bit more formally, we begin by observing that the
exact variational principle (11.37) holds for the distribution p(x;βθ) for any value
of β ≥ 0. It can be shown [ Wainwright and Jordan (2003a)] that if we actually
take a suitably scaled limit of this exact variational principle as β → +∞, then we
recover the following variational principle for computing modes:

max
x∈Xn

〈θ, φ(x)〉 = max
µ∈MARG(G)

〈θ, µ〉 (11.63)

Since the log probability log p(x; θ) is equal to 〈θ, φ(x)〉 (up to an additive con-
stant), the left-hand side is simply the problem of computing the mode of the
distribution p(x; θ). On the right-hand side, we simply have a linear program, since
the constraint set MARG(G) is a polytope, and the cost function 〈θ, µ〉 is linear
in µ (with θ fixed). This equivalence means that, at least in principle, we can com-
pute a mode of the distribution by solving a linear program (LP) over the marginal
polytope. The geometric interpretation is also clear: as illustrated in Figure 11.6,
vertices of the marginal polytope are in one-to-one correspondence with configura-
tions x. Since any LP achieves its optimum at a vertex [ Bertsimas and Tsitsikilis
(1997)], solving the LP is equivalent to finding the mode.

11.8.2.2 Linear programming and tree-reweighted max-product

Of course, the LP-based reformulation (11.63) is not practically useful for precisely
the same reasons as before—it is extremely challenging to characterize the marginal
polytope MARG(G) for a general graph. Many computationally intractable op-
timization problems (e.g., MAX-CUT) can be reformulated as an LP over the
marginal polytope, as in equation (11.63), which underscores the inherent complex-
ity of characterizing marginal polytopes. Nonetheless, this variational formulation
motivates the idea of forming relaxations using outer bounds on the marginal poly-
tope. For various classes of problems in combinatorial optimization, both linear
programming and semidefinite relaxations of this flavor have been studied exten-
sively.

Here we briefly describe an LP relaxation that is very natural given our develop-
ment of the Bethe variational principle in Section 11.7. In particular, we consider
using the local constraint set LOCAL(G), as defined in equation (11.54), as an
outer bound of the marginal polytope MARG(G). Doing so leads to the following
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LP relaxation for the problem of computing the mode of a multinomial MRF:

max
x∈Xn

〈θ, φ(x)〉 = max
µ∈MARG(G)

〈θ, µ〉 ≤ max
τ∈LOCAL(G)

〈θ, µ〉. (11.64)

Since the relaxed constraint set LOCAL(G)—like the original set MARG(G)—is
a polytope, the relaxation on the right-hand side of equation (11.64) is a linear
program. Consequently, the optimum of the relaxed problem must be attained at
a vertex (possibly more than one) of the polytope LOCAL(G).

PSfrag replacements

θ1

MARG(G) PSfrag replacements

θ2

MARG(G)

Figure 11.12 The constraint set LOCAL(G) is an outer bound on the exact
marginal polytope. Its vertex set includes all the vertices of MARG(G), which are
in one-to-one correspondence with optimal solutions of the integer program. It also
includes additional fractional vertices, which are not vertices of MARG(G).

We say that a vertex of LOCAL(G) is integral if all of its components are zero
or one, and fractional otherwise. The distinction between fractional and integral
vertices is crucial, because it determines whether or not the LP relaxation (11.64)
specified by LOCAL(G) is tight. In particular, there are only two possible outcomes
to solving the relaxation:

(a) the optimum is attained at a vertex of MARG(G), in which case the upper
bound in equation (11.64) is tight, and a mode can be obtained.

(b) the optimum is attained only at one or more fractional vertices of LOCAL(G),
which lie strictly outside MARG(G). In this case, the upper bound of equa-
tion (11.64) is loose, and the relaxation does not output the optimal configuration.

Figure 11.12 illustrates both of these possibilities. The vector θ1 corresponds to
case (a), in which the optimum is attained at a vertex of MARG(G). The vector
θ2 represents a less fortunate setting, in which the optimum is attained only at a
fractional vertex of LOCAL(G). In simple cases, one can explicitly demonstrate a
fractional vertex of the polytope LOCAL(G).

Given the link between the sum-product algorithm and the Bethe variational
principle, it would be natural to conjecture that the max-product algorithm can
be derived as an algorithm for solving the LP relaxation (11.64). For trees (in
which case the LP (11.64) is exact), this conjecture is true: more precisely, it can
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be shown [ Wainwright et al. (2003a)] that the max-product algorithm (or the
Viterbi algorithm) is an iterative method for solving the dual of the LP (11.64).
However, this statement is false for graphs with cycles, since it is straightforward to
construct problems (on graphs with cycles) for which the max-product algorithm
will output a non-optimal configuration. Consequently, the max-product algorithm
does not specify solutions to the dual problem, since any LP relaxation will either
output a configuration with a guarantee of correctness, or a fractional vertex.
However, Wainwright et al. [2003a] derive a tree-reweighted analog of the max-
product algorithm, which does have provable connections to dual optimal solutions
of the tree-based relaxation (11.64).

11.9 Conclusion

A fundamental problem that arises in applications of graphical models—whether
in signal processing, machine learning, bioinformatics, communication theory, or
other fields—is that of computing likelihoods, marginal probabilities, and other
expectations. We have presented a variational characterization of the problem of
computing likelihoods and expectations in general exponential-family graphical
models. Our characterization focuses attention both on the constraint set and
the objective function. In particular, for exponential-family graphical models, the
constraint set M is a convex subset in a finite-dimensional space, consisting of all
realizable mean parameters. The objective function is the sum of a linear function
and an entropy function. The latter is a concave function, and thus the overall
problem—that of maximizing the objective function over M—is a convex problem.
In this chapter, we discussed how the junction tree algorithm and other exact
inference algorithms can be understood as particular methods for solving this
convex optimization problem. In addition, we showed that a variety of approximate
inference algorithms—including loopy belief propagation, general cluster variational
methods and mean-field methods—can be understood as methods for solving
particular relaxations of the general variational principle. More concretely, we saw
that belief propagation involves an outer approximation of M whereas mean field
methods involve an inner approximation of M. In addition, this variational principle
suggests a number of new inference algorithms, as we briefly discussed.

It is worth noting certain limitations inherent to the variational framework as
presented in this chapter. In particular, we have not discussed curved exponential
families, but instead limited our treatment to regular families. Curved exponential
families are useful in the context of directed graphical models, and further research
is required to develop a general variational treatment of such models. Similarly, we
have dealt exclusively with exponential family models, and not treated nonparamet-
ric models. One approach to exploiting variational ideas for nonparametric models
is through exponential family approximations of nonparametric distributions; for
example, Blei and Jordan [2004] have presented inference methods for Dirichlet
process mixtures that are based on the variational framework presented here.
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