
Modelling and Analysing Resilience as a Security Issue
within UML∗

Ricardo J. Rodríguez
Dpto. de Informática e
Ingeniería de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

rjrodriguez@unizar.es

José Merseguer
Dpto. de Informática e
Ingeniería de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

jmerse@unizar.es

Simona Bernardi
Dip. di Informatica
Università di Torino

Torino, Italy
bernardi@di.unito.it

ABSTRACT
Modelling system security is not common practise in soft-
ware projects yet. Among other problems, there is not a
widely accepted methodology which unifies the actual het-
erogeneity of security issues when addressing a whole secu-
rity specification. Certainly, the reality is even worse since
there is not an accepted or standard common notation for
carrying out the security specification. In this work, we
study how modelling security issues, specifically resilience,
could be integrated in the MARTE-DAM framework, which
allows the expression of performance and dependability re-
quirements in UML models. We base this claim on the close
relationship between security and dependability. Indeed,
MARTE proposes a framework for non-functional proper-
ties specification (NFP), while DAM exploits it for depend-
ability purposes. So, our goal is to take advantage of the
common NFP framework while the dependability and secu-
rity concerns are modelled in a unified view. On the other
hand, we consider that the resulting security specification
will be useful for developing model in which security related
properties, such as availability, will be analysed. We will
clarify these claims by means of an example.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; F.4.3 [Mathematical Logic and Formal Langua-

ges]: Formal Languages; K.6.5 [Computing Milieux]: Se-
curity and Protection

General Terms
Security, Performance, Measurement

∗This work has been partially supported by the European
Community’s Seventh Framework Programme under project
DISC (Grant Agreement n.INFSO-ICT-224498) and by the
project DPI2006-15390 of the Spanish Ministry of Science
and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SERENE’10, April 13–16, 2010, London, United Kingdom.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
UML profile, security, secure systems modelling, Petri net

1. INTRODUCTION
Some years ago Devanbu and Stubblebine [5] identified

that modelling security requirements has not ever been con-
sidered as a part of system modelling. Today, although some
advances have been made [9, 13], the problems of addressing
security modelling still remain. Indeed, they are aggravated
since every day security covers an increasingly broad range
of fields or communities that rarely interplay. For example, a
comprehensive system security specification should address,
among many other issues, hardware issues (e.g., vulnerable
networks and nodes), coding bugs, software components re-
porting denial of service or services at flooding risk.

In this sense, we consider it important to provide a com-
mon framework in which such heterogeneity can be addressed.
Such a framework will allow us to specify a broad range of
security requirements as non-functional properties (NFPs)
from different fields but in the same setting.

The Unified Modelling Language (UML) [17] is a well-
known solution and a comprehensive modelling language
that allows to specify from the architectural to the deploy-
ment system views. On the other hand, UML can be tai-
lored for analysis purposes through profiling. In particular,
MARTE [18] profile has enabled UML to specify and analyse
real-time (RT) and embedded systems. Although focussed
on RT, MARTE sub-profiles for performance and schedula-
bility have been proved useful for the modelling and analysis
of a wide range of application domains. Recently, the non-
standard profile for Dependability Analysis and Modelling
(DAM) [4] accomplished the same for dependability [3]. In-
deed, as DAM is a MARTE specialisation, they play to-
gether to specify different types of NFPs in UML models, so
jointly describing performance and dependability require-
ments. This approach could enlighten how to specify for
security.

On the other hand, the tight relation between depend-
ability and security was clearly given in [3], where depend-
ability encompasses different system attributes, concretely
reliability, availability, maintainability, integrity and safety.
Security is defined as composite of confidentiality, integrity
and availability. Now we recall some illustrative case about
this relation. For example, fault-tolerance techniques aim to
maintain system availability even in the presence of faults.
Lately such techniques are being investigated [23] to main-
tain availability also in the presence of malicious attacks.

So, it is difficult to keep separated the specification concerns
related to security and dependability. On the contrary, we
defend the synergy they provoke. Consequently, in this work
we start exploring how to fit the security non-functional
specification within the MARTE-DAM framework.

The MARTE-DAM solution proposes a set of stereotypes
and tagged values that allow the expression of NFPs, which
are eventually attached to those UML model elements they
affect. So, we propose to identify the minimum and neces-
sary set of stereotypes to express security NFPs in a UML
model. Such set will make up a profile, we name Secu-
rity Analysis and Modelling (SecAM), that has to fit into
the MARTE-DAM context to properly achieve the desired
dependability-security relationship. Considering that SecAM
will have to offer stereotypes and tags to cope with security
NFPs in the heterogeneous setting previously described this
is a real challenge we cannot completely address here. In this
work, we limit our study to describe a first SecAM package:
the one dealing with AVI properties (i.e., Attack, Vulnera-
bility and Intrusion). We will also describe how the whole
SecAM approach should fit within MARTE-DAM. There are
many examples of resilient systems that could be benefited
by our approach, such as those protecting critical infrastruc-
tures, e.g. banks, electronic commerce sites or networks of
power stations.

Once the security NFP specification is accomplished, there
is no doubt it has to be also exploited for security analysis of
the system. In this case, certification is another choice that
also could be addressed in this context. This paper focuses
on the security analysis issue. UML models have been used
in the literature to, by model transformation, get a variety of
formal models (e.g., fault trees, Petri nets) which are useful
for security analysis. In [10] can be found a summary of re-
silience model-based evaluation using analytical techniques.
In our opinion, the SecAM profile should not hamper the
reuse of such works in this new setting. In this work we
show, through an example, how a translation of UML state-
machines into Petri nets, from literature, can be tailored
to consider also the SecAM NFP annotation. The result-
ing Petri net, which effectively embeds the security NFP
annotation, allows to compute system availability metrics
supporting different security parameters.

Before considering the paper’s main contributions, it is
worth recalling the context in which SecAM fits. An ap-
proach like MARTE enables UML to specify and analyse
performance and schedulability. Actually, this specification
increments the software engineer design work. Besides, the
automatic generation and analysis of formal models, as a
“by-product”of the software designs, frees the engineer from
learning these usually complicated techniques. The loop will
eventually be closed with tools capable of showing analysis
results in the very same UML designs and capable of auto-
matically enhancing these designs. The approach is so pow-
erful that the inclusion of new specifications, in this case se-
curity, is possible and again complements the others, as will
be shown in the remainder of the paper through SecAM.

In the sequel, Section 2 reviews the basics of MARTE-
DAM. Section 3 presents our proposal for SecAM profile for
UML. Section 4 describes the example where SecAM is ap-
plied, while Section 5 summarises how a formal model is
obtained from UML-SecAM specification. Section 6 illus-
trates how some interesting results concerning system avail-
ability can be obtained from the formal model. The paper

ends up revising the related work and summarising research
directions in Section 7.

2. BACKGROUND
MARTE is a UML lightweight extension (i.e., through the

use of UML stereotypes and tagged-values) for the modelling
and analysis of real-time embedded systems. In particu-
lar, MARTE provides support for schedulability and perfor-
mance analysis, and allows one to specify NFPs in these two
fields, according to a well-defined Value Specification Lan-
guage (VSL) syntax. The DAM profile is a MARTE special-
isation for dependability analysis. Then, a MARTE-DAM
annotation stereotypes the design model element it affects in
the way UML proposes, i.e., by extending its semantics.

The entire set of MARTE stereotypes can be found in [18],
while the DAM stereotypes, as well as the set of UML meta-
classes that the stereotypes can be applied to, can be found
in [4]. Figure 1 depicts an excerpt of the MARTE (a) and
DAM stereotypes (b) and tagged values. According to UML,
each stereotype is made of a set of tags which define its
properties. For example, GaScenario stereotype has a host-
Demand tag which is used to specify the CPU demand - in
time units - for a scenario execution. Also a step execution
can be specified (observe that GaStep is a sub-stereotype
of GaScenario, then it inherits the tags of the latter). The
types of the tags are basic UML types (e.g., integer, enu-
meration), or MARTE NFP types (e.g., NFP Duration).

The DAM stereotypes specialise MARTE stereotypes (e.g.,
DaStep). Moreover, DAM enriches MARTE types library
with basic and complex dependability types (c). The latter
(e.g., DaFault) are composed of attributes that instead may
be MARTE NFP types (e.g., NFP Real), basic dependabil-
ity types (e.g., DaFrequency), or enumeration types (e.g.,
DaFrequencyUnitKind, StepKind).

MARTE NFP types are data-types of special importance
since they enable the description of relevant NFP aspects
using properties such as: value, a value or parameter name
(prefixed by the dollar symbol); expr, a VSL expression;
source, the origin of the NFP - such as an assumed input
parameter (assm), a requirement (req) or an estimated (est)
parameter; and statQ, the type of statistical measure (e.g.,
mean).

<<stereotype>>
DAM::GaStep

<<stereotype>>
DAM::DaStep

kind: StepKind
fault: DaFault
...

<<stereotype>>
GaWorkloadGenerator

pop: NFP_Integer

<<stereotype>>
GaScenario

hostDemand: NFP_Duration
....

(a) MARTE stereotypes (b) DAM stereotype

(c) DAM Library

<<tupleType>>
Complex_DA_Types::

DaFault

occurrenceProb: NFP_Real
occurrenceRate: DaFrequency
....

<<dataType.nfpType>>
Basic_DA_Types::

DaFrequency

unit: DaFrequencyUnitKind
precision: Real

<<enumeration>>
Basic_DA_Types::

StepKind

fault
error
failure
...

<<unit>> ft/s
<<unit>> ft/ms
.....

<<enumeration>>
Basic_DA_Types::

DaFrequencyUnitKind
DAM::Threats::

Fault

occurrenceRate
latency
occurrenceProb
occurrenceDist
persistency
duration

(d) Fault class

prob: NFP_Real
....

Figure 1: MARTE-DAM extensions.

Figure 2: FEF and AVI chains.

3. SECAM PROFILE
The SecAM (Security Analysis and Modelling) profile aims

at a comprehensive modelling of security issues in UML de-
signs. As a general approach, we will define a domain model
for each relevant security aspect (e.g., confidentiality, re-
silience or integrity). In this work, we address only the Re-
silience package.

Some definitions concerning existing possible threats in a
system are needed before introducing the Resilience pack-
age. According to Avizienis et al.’s fault taxonomy [3], a
fault is an (internal or external) impairment which exists
in a system. When conditions needed for the activation of
a fault are taking place, then the fault causes an error, de-
fined as an internal detectable impairment. This error might
provoke a failure, which is defined as an external visible im-
pairment which causes a degradation in system functional-
ity (e.g., denial of service on a server). In the dependability
context, this causal relationship of fault, error and failure is
named as FEF chain. This FEF chain is represented by the
DAM::Threats package (see Figure 3 - top).

The Resilience package, shown in Figure 3 (bottom), has
been constructed by revising the well-known AVI concepts
in literature [1, 3, 8, 11]. The model is strongly supported
by the Fault class from DAM::Threats package, which is a
root for the whole AVI hierarchy. This means that vul-
nerabilities, intrusions and attacks are considered faults as
in [3]. However, an abstract class SecurityFault allows to
distinguish dependability faults (which are just faults) from
security faults. The AVI model [22] is seen as a refinement
of the FEF (fault/error/failure) chain [3]. In the AVI model
the intrusion is only possible in the context of an attack
that successfully exploits a system vulnerability, then the
intrusion leads to an error which can provoke a failure [11].
Figure 2 depicts the AVI model and FEF chain. We have
considered Resilience defined as the ability of a system to
deal with unexpected conditions (intrusions in security con-
text) without critical failures.

The Fault class (Figure 1(d)) has been extended with the
following new attributes, taken from [3], useful for both the
dependability and security domains:

• occurrencePhase: defines the phase of creation of the
fault, it may distinguish between developmental (cre-
ated during development phase) and operational (cre-
ated during use phase) faults;

• boundary: establishes the limit where the fault is cre-
ated. A fault is internal when created inside the system
boundaries, otherwise it is external;

• objective: defines the intention of the fault, i.e., mali-
cious (faults created with an intention of harming the

Figure 3: Resilience package.

system) or non-malicious;

• causedBy: defines the cause of the fault, i.e., a natural
or a human-made cause;

• intent: specifies whether the fault is deliberate or not;

• capability: specifies whether the fault is accidental or
it is due to incompetence.

The attributes added to the Fault class are of enumeration
type and their possible values are shown in Figure 4.

Vulnerability is defined as an internal fault, either devel-
opmental or operational, which is present in a system. It can
be either malicious or non-malicious, depending on whether
the fault was created intentionally or not. The attribute
degree provides a qualitative characterisation of the vulner-
ability, e.g., low, medium or high.

A vulnerability can be exploited by an attack, which is
defined as an external, malicious and operational fault. The
type of attack [8] can be active (e.g., Denial-of-Service or
directly breaking into systems) or passive (e.g., sniffing or
information gathering). Passive attacks do not try to gain
access to the system but to collect information, so they can
be a previous step for an active one.

DAM::DAM_Library:Basic_DA_Types::Enumeration_Types

<<enumeration>>

PhaseOfCreation

development

operational

<<enumeration>>

Boundary

internal

external

<<enumeration>>

Objective

malicious

non-malicious

<<enumeration>>

CausedBy

natural

human-made

<<enumeration>>

Capability

accidental

incompetence

<<enumeration>>

Intent

deliberate

non-deliberate

<<enumeration>>

StepKind

error

failure

hazard

reallocation

replacement

vulnerable

intrusion

Figure 4: Attributes added to DAM library.

When the attack is successful, then it leads to an intru-
sion. So, intrusion is the consequence of a successful attack
to an existing vulnerability in the system. We recall that
intrusion is the only kind of security fault that can lead to
an error, and this error can cause a failure in the system
(e.g., unavailability).

In literature, intrusion is defined as an intentionally mali-
cious operational and externally induced fault. Moreover, it
is also seen as a composite fault [1]. According to this, we
model an intrusion with a composite association with vulner-
ability and attack, so an intrusion only exists in the context
of a vulnerability and an attack. The successProb attribute
defines the probability of having a successful attack when
exploiting a certain vulnerability.

Once the domain model is constructed, then we have to
define the stereotypes and tagged values that will make up
the SecAM Resilience package. We accomplished this task
following the rules in [12, 21]. Moreover, we wanted to be
sparing with the number of stereotypes since the goal is to
provide the minimum number of artefacts to annotate the
model. An overview of the SecAM profile is depicted in Fig-
ure 5, together with the import relations between SecAM,
DAM and MARTE profiles. SecAM profile is composed of
two main packages: a model library, that contains security-
specific types, and the proper UML security extensions (i.e.,
stereotypes, attributes and constraints) that map the con-
tents of the SecAM domain model previously presented.

The SecAM library, that includes the data-types used in
the definition of the profile, is detailed in Figure 6. Each
security fault class of the Resilience package is mapped into
a complex data-type; to keep trace of the mapping, the lat-
ter is named with the name of the corresponding class pre-
fixed by Seca. So complex type SecaVulnerable maps class
Vulnerable, SecaAttack maps Attack and SecaIntrusion the
Intrusion class. Regarding the latter, we remark the tags
origin of type SecaVunerable and cause of type SecaAttack,
since they map the corresponding vulnerability and attack.

In contrast with [12], we avoided to add a tagged value
and an OCL constraint to represent the association-end be-
tween Attack and Vulnerable classes. We chose this solution
because the association is implicit in the SecaIntrusion com-
plex type through its attributes origin and cause.

Figure 5: SecAM profile overview.

Figure 6: SecAM library.

The SecAM extensions are shown in Figure 7. A new
stereotype called ≪SecaAttackGenerator≫, with tag attack
of type SecaAttack, models attack faults and will be useful
to point out, in the UML design, the sources of attack. It ex-
tends the same UML meta-classes as its super-stereotypes
(i.e., the DAM stereotype ≪DaFaultGenerator≫ and the
MARTE stereotype ≪DaWorkloadGenerator≫) since it is
a specialisation of the latter. We have also specialised the
DAM stereotype ≪DaStep≫ in a new one, ≪SecaStep≫,
with two tagged values: vulnerability of type SecaVulnerable
and intrusion of type SecaIntrusion. The SecAM stereotypes
can be applied to a wide set of behaviour-related elements
covered by some UML meta-classes, such as: actions, activ-
ities, trigger events, transitions, and states in state charts
diagrams, messages and interaction fragments in interaction
diagrams. This small set of stereotypes, in conjunction with
MARTE and DAM ones, enables a designer to annotate a
UML design allowing to obtain a model that accounts for
dependability-security parameters.

<<profile>>

SecAM::SecAM_UML_Extensions

<<stereotype>>

DAM::DaStep

kind : StepKind

<<stereotype>>

SecaStep

vulnerability : SecaVulnerable

intrusion : SecaIntrusion

<<stereotype>>

MARTE::GQAM::

GQAM_Workload::WorkloadGenerator

pop : NFP_Integer

MARTE::GQAM::

GaWorkloadEvent

pattern : ArrivalPattern

<<stereotype>>

SecaAttackGenerator

attack : SecaAttack

<<stereotype>>

DAM::DaFaultGenerator

0..1

generator
<<stereotype>>

Figure 7: SecAM UML extensions.

4. EXAMPLE
In this section, we aim to illustrate, through an exam-

ple, how the stereotypes and tagged values in the SecAM’s
Resilience package should be used from a practitioner point
of view. The example will be eventually useful to obtain a
formal model and analysis figures to better understand the
system availability.

We have supposed a system composed of an advanced fire-
wall that integrates a controller (or monitor) internal de-
vice in charge of monitoring the behaviour of the firewall.
The firewall is exposed to attacks from untrusted networks,
which can be either WAN or external LAN. These attacks
have an external origin and the objective is to harm the
system, either compromising its availability (one of the at-
tributes of security according to [3]) or gaining illegal access
to the protected LAN (which could compromise system con-
fidentiality and integrity, the other two attributes of security,
also according to [3]). Each time a new message is received
from the untrusted network, a process inside the firewall
component is in charge of attending it. There exists a limit
in the number of processes created by the firewall.

Currently, the kind of critical information systems ex-
posed to attacks are of much interest in literature (e.g.,
MAFTIA [1], CRUTIAL [23] or SITAR [24]). However, con-
sider that we do not pretend to model intricacies of these
kind of systems but only to exemplify the use of the Re-
silience package.

In contrast with the firewall, which is vulnerable, the mon-
itor is invulnerable. It can be seen as an embedded system
which is tamper-proof and it cannot be intentionally modi-
fied. Its mission is to activate a time-out to eventually check
the firewall processes and to clean up those hung.

Figures 9 and 10 show the monitor state-chart and the
process state-chart, respectively. Both state-charts have been

Process

create() : void

destroy() : void

attendMessage() : void

processMessage() : void

Monitor

create() : void

setTimeOut() : void

countDown() : void

timeOut : int observer

1..*

proc

Figure 8: Class diagram.

Figure 9: Monitor state-chart diagram.

annotated with MARTE and SecAM profiles. The structural
view of the system is depicted in Figure 8.

The monitor, Figure 9, starts by setting a time-out with
period TOdelay milliseconds. The countDown() activity has
been annotated with MARTE stereotype ≪gaStep≫ to in-
dicate its duration with tag hostDemand.

Regarding the firewall (Figure 10), we have assumed a lim-
itation in the population of processes, which is represented
using variable nProcesses. An open workload generates mes-
sages (e.g., the message is coming through the WAN net-
work) with an inter-arrival time defined as an exponential
distribution with mean equal to netLoad milliseconds. In-
coming messages are also stereotyped as ≪secaAttackGenera-
tor≫, to specify that the message could be an attack. This
attack is active (type tagged value) and it has been charac-
terised with a certain occurrence probability (attack). The
activity processing a message (the do-activity in Process-
ing state) takes, on average, Tprocess milliseconds. It has
been stereotyped as ≪secaStep≫ since it is the vulnerable
part of the process, with a high degree of vulnerability. The
state Processing owns two immediate outgoing transitions,
the annotations attached to the latter are meant to resolve
this conflict. When the incoming message is a successful at-
tack, then an intrusion arises that leads to a process crash.
Otherwise, the process comes back to the Idle state again.
The transition from Processing to Crash is specified as an
intrusion step and annotated with the probability of a suc-
cessful attack (success).

Finally, we have supposed that when an intrusion succeeds
(state Crash), the process starts some malicious activity.

5. OBTAINING A FORMAL MODEL
We will work out the UML state-charts (UML-SC) de-

picted in Figures 9 and 10 to obtain a formal model that
will allow us to get some security metrics also considering
performance parameters.

5.1 Conversion of UML-SC into Petri Nets
The topic of translating UML-SC into Petri nets has been

extensively addressed in the literature. In this work, we fol-
low the translation proposed in [15], but since it was given
for performance analysis purposes then some minor changes
will arise. The algorithm in [15] has been implemented in
the ArgoSPE [6] tool and it takes as input a UML-SC anno-
tated with SPT [16] (Schedulability, Performance and Time

Figure 10: Process state-chart diagram.

profile, precursor of MARTE). In the following, we recall the
translation approach in [15].

For each SC simple state, a PN place represents its en-
trance. The latter is followed by two causally connected
PN transitions which represent, respectively, the entry ac-
tion and the do-activity of the SC state. Entry actions are
modelled by immediate PN transitions, since their execu-
tion time is assumed to be negligible. Do-activities are rep-
resented, instead, by timed PN transitions, which are char-
acterised by one output place (i.e., the completion place)
modelling the SC completion state. Each SC outgoing im-
mediate transition is translated into a PN immediate tran-
sition with the completion place as its input place. For con-
flicting outgoing transitions, as it happens in Figure 10 in
the Processing state, the algorithm adds immediate transi-
tions with probabilities to stochastically resolve the choice.
In this case, the probabilities are taken from the annota-
tions attached to the transitions. The PN subnets derived
from the translation of the SC simple states together with
their outgoing transitions are then composed over interface
places to get the PN of the whole SC. Finally, since the
UML-SCs communicate via events, the final analysable PN
model, such as the one in Figure 11, is obtained by com-
posing the PN models of the different UML-SCs over places
that model event mailboxes.

Since ArgoSPE does not deal with MARTE, nor DAM
nor SecAM annotations, we have worked out the Petri net
to incorporate such annotations. Chiefly, these annotations
are converted into the net parameters, they are described in
Table 1. However, it deserves special attention the gaWork-

loadEvent annotation in Figure 10, since from it we have
manually produced the subnet representing the open work-
load in Figure 11. As the reader can observe, we have also
considerably simplified the other subnets in Figure 11 from

the ones automatically obtained, so to gain readability while
the behaviour is preserved.

5.2 Discussion of the Obtained Petri Net
The DSPN [2] (Deterministic and Stochastic Petri Net)

depicted in Figure 11 has been obtained joining the three
previously referred subnets: the open workload (that is, the
incoming messages to the firewall), the behaviour of the each
process and the monitor subnet.

The pattern of arrival for messages (event attendMessage,
in Figure 10) is an open workload with an exponentially
distributed inter-arrival time of mean value netLoad. In the
DSPN, transition T1|NetworkLoad models it with a firing
rate equal to 1

netLoad
.

The limit number of processes created by the firewall (pa-
rameter nProcesses of the pop tag, annotated to the initial
state in Figure 10) corresponds to the initial marking of
place P4|ProcessIdle. The firing of transition t2|attend Mes-
sage represents the change of state from Idle to Processing.
Transition T3|processMessage models the do-activity in Pro-
cessing state; its firing rate is set to the inverse of the pa-
rameter assigned to the hostDemand tag, i.e., 1/Tprocess.

Once the do-activity has finished, the process changes
state. The choice of the target state will depend on the
processed message. Transition t4|Intrusion models the case
of a successful attack. The latter can occur with proba-
bility attack · success, where attack is the probability that
the message is an attack (attack.occurrenceProb tagged value
of ≪secaAttackGenerator≫ stereotype), and success is the
probability that the attack succeeds (successProb tagged-
value of ≪secaStep≫ stereotype). If an attack is successful
then the process has been intruded and, consequently, moves
to the Crash state (place P5|Crash). Otherwise, the process

Figure 11: DSPN obtained from UML state-charts.

moves back to its idle state (place P4|ProcessIdle). This last
choice is modeled by transition t5|NonIntrusion and it will
occur with a probability 1 − attack · success.

Place P5|Crash abstracts the do-activity malicious of the
process in Crash state (Figure 10), with a mean duration
crash. The crashed process will be instantaneously recovered
once the monitor starts its cleaning activity. Therefore, the
crash tagged value is the mean sojourn time in Crash state,
that in our example corresponds to the “Mean Time to De-
tect an Intrusion” (MTTDI). In the Section 6 we have cal-

culated the steady state availability as
MTTF

MTTF + MTTDI
,

where MTTF corresponds to the mean sojourn time in the
“up” states of the process (Idle and Processing states).

Regarding the monitor net, the initial marking in place
P8|MonitorIdle represents the only monitor.

Transition T8|TimeOut represents the do-activity count-
Down in Idle state (Figure 9) and it is characterised by
a deterministic duration equal to TOdelay (value of the
hostDemand tag). Once it has fired, the cleaning activity
starts: a token is set in place P6|IteratingAndClearning and
the token in place P7 is consumed. As place P7 is empty,
then transition t7|Cleaning is enabled and can fire if there
are tokens in P5|Crash . This transition is abstracting the

Place Initial marking Value

P4|Idle nProcesses 6

Transition Parameter (type) Value(s)

T1|NetworkLoad 1/netLoad (rate) 0.01,
0.05, 0.1/ms

T3|processMessage 1/Tprocess (rate) 0.2/ms
T8|TimeOut TOdelay (delay) 1, 100ms
t4|Intrusion attack · success (weight)
t5|NonIntrusion 1 − attack · success (weight)

Parameter Values

attack [0.01 . . . 0.5]
success [0.01 . . . 0.5]

Table 1: DSPN parameters.

cleaning process made by the monitor (that is, the destruc-
tion and creation of any hung process): it is an immediate
transition since we have assumed the duration of such an
activity to be negligible. Once the cleaning of hunged pro-
cesses has finished (that is, no tokens in place P5|Crash),
then transition t6 is enabled and can fire, so the monitor
moves back to the Idle state (place P8|MonitorIdle) start-
ing the count down again.

A summary of DSPN parameters is shown in Table 1.

6. EXPERIMENTS AND RESULTS
We have analysed one aspect of the firewall system secu-

rity, that is the availability, in steady state, of processes able
to attend the incoming messages from the untrusted net-
work. The DSPN model in Figure 11 has been then used to
compute the steady state availability. Such metric, at DSPN

model level, is defined as MTTF

MTTF+MTTDI
= 1 − E[P5|Crash]

N
,

where E[P5|Crash] is the mean number of tokens in place
P5|Crash (which represents the unavailable state of the pro-
cess) and N is the total number of firewall processes. We
have used the simulator implemented in GreatSPN [7] to
analyse the DSPN model.

The objective of the experiments is to study the system
availability under different assumptions of probability of at-
tacks and probability of successful attacks, considering dif-
ferent types of workload and time-out durations. The model
input parameters are summarised in Table 1 and the results
are shown in Figure 12.

The six figures plot the availability trend by varying the
probability of attack and of successful attack from 1% up
to 50%. Each figure shows the steady state availability un-
der a different combination of workload rate and time-out
duration. In particular, we assumed three types of network
workload:

• low, i.e., 0.01/ms (Figures 12(a,b)),

• high, i.e, 0.05/ms (Figures 12(c,d)), and

• very high, i.e., 0.1/ms (Figures 12(e,f))

and, two types of time-out durations:

• short, i.e, 1ms (Figures 12(a,c,e)), and

• long, i.e., 100ms (Figures 12(b,d,f)).

(a) low workload, short time-out (b) low workload, long time-out

(c) high workload, short time-out (d) high workload, long time-out

(e) very high workload, short time-out (f) very high workload, long time-out

Figure 12: Steady state availability under different workload and time-out assumptions.

In all the experiments, as expected, the system availabil-
ity is in inverse proportion to the probability of attacks and
of successful attacks. The main difference among the fig-
ures is the slope of the surfaces that provides information on
the availability decreasing factor, meaning that the system
availability is sensitive to the network workload and monitor
time-out assumptions. In particular, the decreasing factor is
higher for higher workloads and for longer time-out duration.
For example, it is equal to 0.021%, in case of low network
workload and short time-out duration (Figure 12(a)), while
it reaches 20.9% when very high network workload and long
time-out duration are assumed (Figure 12(f)). Indeed, the
messages incoming to the firewall are potential attack car-
riers, so the frequency of attacks increases from low to very
high network workload (e.g., compare Figures 12(b,d,f)). On
the other hand, when a short time-out duration is set (Fig-
ures 12(a,c,e)), the monitor is able to detect promptly an
attack to the firewall and, then, immediately to recover by
destroying the crashed process and creating a new one.

Observe that the isolated hills close to 100% availability,
in Figure 12(a), are due to the simulation accuracy used.
Nevertheless, their height is lower than 0.01%.

It is worth noting that, in the firewall example, false alarms
(i.e., the time-out expires and no process is crashed), which
often occur when short time-out duration is set, do not pro-
voke side effects in the system. A different behaviour, and
then availability trend, could be observed if timed activi-
ties, such as system integrity checks, have to be carried out
as consequence of time-out expiration. The effect of false
alarms on the system availability deserves further analysis
which we aim to carry out as part of our future work.

7. RELATED WORK AND CONCLUSIONS
The closest related works are those approaches that in re-

cent years have worked out the security specification in the
UML framework, mainly [9, 13]. In some sense our proposal
builds on them while it tries to embrace the more recent
UML advances on non-functional specification. Moreover
our proposal differs from them since we have also devised
the need and interest on a joint dependability-security spec-
ification and analysis. SecureUML [13] focuses and makes
an effort on annotating static UML design models, however
behavioural models, such as state machines, where not ad-
dressed. In profiling approaches, such as MARTE, stereo-
types are applied to meta-classes and this modelling fea-
ture supports their reuse through UML diagrams. For in-
stance, our example has annotated only state machines, but
our stereotypes, e.g. SecaStep, can be applied to Action

UML meta-class since it inherits from DaStep. As a con-
clusion, also Activity diagrams, Sequence diagrams or Use
Cases could be annotated with SecaStep.

The other approach, UMLsec [9], permits to stereotype
a UML model to indicate some interesting security aspects
and also to specify the static concept of security underlying
in the UML model. However, it does not worry about how
security aspects could have an influence on the throughput
of the system, for example. Consider that our approach
could hold these aspects since MARTE allows to specify the
performance view. Another interesting aspect of both ap-
proaches is that they focus on the design phase and allow to
check the models, for example, using a model checker.

Another work close to ours is [19]. Here, the authors
analyse the performance of different security solutions while

using the “aspects” modelling technique. This work is not
focussed on giving a unified framework for security and per-
formance specification, however the use of “aspects” helps to
address together these crosscutting concerns.

Regarding derivation of UML dependability models into
stochastic Petri nets, it is worth mentioning the works pre-
sented in [14, 20]. However, the approach in [20] is exclu-
sively for the dependability field, without considering secu-
rity issues, and likely very bound to AADL (Architecture
Analysis & Design Language). In [14], which is closer to
ours, Bondavalli et al. identify dependability attributes in
early design phases of the system and construct a depend-
ability model (as a Timed Petri Net) using graph transfor-
mation techniques in structural UML diagrams.

As a conclusion we think that our approach should bring
UML annotated models where to carry out analysis of rel-
evant dependability-security aspects. These analyses will
also consider the system performance characteristics (activ-
ities durations or routing rates) which in some cases are very
relevant for security, for example, allowing to measure the
real impact of introducing more security layers (software or
hardware).

As a future work, tools supporting the approach are nec-
essary. However, using a standardised approach based on
UML and MARTE is one way to ease reuse of existing tools
(modelling tools but also analysis tools that are currently
being developed for MARTE). Therefore, effort is only fo-
cused on the security analysis on top of existing tool sets.
On the other hand, it has to also be pointed out that a lot of
effort is necessary to adequately bring most of the security
fields to this framework.

Acknowledgements
The authors would like to thank the anonymous referees who
reviewed this paper and helped to improve it.

8. REFERENCES
[1] A. Adelsbach, C. Cachin, S. Creese, Y. Deswarte,

K. Kursawe, J. Laprie, D. Powell, B. Randell,
J. Riodan, P. Ryan, and Others. Conceptual Model
and Architecture of MAFTIA. Technical report,
Department of Informatics, University of Lisbon,
Lisbon, 2003.

[2] M. Ajmone Marsan and G. Chiola. On Petri nets with
deterministic and exponentially distributed firing
times. In Advances in Petri Nets 1987, 7th European
Workshop on Applications and Theory of Petri Nets,
pages 132–145, London, UK, 1987. Springer-Verlag.

[3] A. Avizienis, J. C. Laprie, B. Randell, and
C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[4] S. Bernardi, J. Merseguer, and D. Petriu. A
Dependability Profile within MARTE. Journal of
Software and Systems Modeling, 2009. DOI:
10.1007/s10270-009-0128-1.

[5] P. T. Devanbu and S. G. Stubblebine. Software
engineering for security: a roadmap. In International
Conference on Software Engineering (ICSE) - Future
of Software Engineering Track, pages 227–239, 2000.

[6] E. Gómez-Mart́ınez and J. Merseguer. ArgoSPE:
Model-Based Software Performance Engineering. In
S. Donatelli and P. S. Thiagarajan, editors, ICATPN,
volume 4024 of Lecture Notes in Computer Science,
pages 401–410. Springer, 2006.

[7] The GreatSPN tool
http://www.di.unitorino.it/~greatspn, 2002.
University of Torino.

[8] T. HoneyNet Project, editor. Know Your Enemy:
Learning about Security Threats. Addison Wesley
Publishing, 2nd edition, 2004.

[9] J. Jürjens. UMLsec: Extending UML for Secure
Systems Development. In UML ’02: Proceedings of the
5th International Conference on The Unified Modeling
Language, pages 412–425, London, UK, 2002.
Springer-Verlag.

[10] M. Kaâniche, P. Lollini, A. Bondavalli, and
K. Kanoun. Modeling the Resilience of Large and
Evolving Systems. International Journal of
Performability Engineering, 4(2):153–168, April 2008.

[11] R. Khan and K. Mustafa. From threat to security
indexing: a causal chain. Computer Fraud & Security,
2009:9–12, 2009.

[12] F. Lagarde, H. Espinoza, F. Terrier, and S. Gérard.
Improving UML Profile Design Practices by
Leveraging Conceptual Domain Models. In ASE ’07:
Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pages
445–448, New York, NY, USA, November 2007. ACM.

[13] T. Lodderstedt, D. A. Basin, and J. Doser.
SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In UML ’02: Proceedings of
the 5th International Conference on The Unified
Modeling Language, pages 426–441, London, UK,
2002. Springer-Verlag.

[14] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic
Dependability Analysis of System Architecture Based
on UML Models. In R. De Lemos, C. Gacek, and
A. Romanovsky, editors, Architecting Dependable
Systems, LNCS 2677, Lecture Notes in Computer
Science, pages 219–244. Springer-Verlag, Berlin,
Heidelberg, New York, 2003.

[15] J. Merseguer, S. Bernardi, J. Campos, and
S. Donatelli. A Compositional Semantics for UML
State Machines Aimed at Performance Evaluation. In
A. Giua and M. Silva, editors, Proceedings of the 6th
International Workshop on Discrete Event Systems,

pages 295–302, Zaragoza, Spain, October 2002. IEEE
Computer Society Press.

[16] Object Management Group. UML Profile for
Schedulability, Performance and Time Specification,
January 2005. V1.1, f/05-01-02.

[17] Object Management Group. Unified Modelling
Language: Superstructure, July 2005. Version 2.0,
formal/05-07-04.

[18] Object Management Group. A UML profile for
Modeling and Analysis of Real Time Embedded
Systems (MARTE), November 2009. Version 1.0,
formal/2009-11-02.

[19] D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu,
T. Israr, G. Georg, R. France, J. M. Bieman, S. H.
Houmb, and J. Jürjens. Performance analysis of
security aspects in UML models. In WOSP ’07:
Proceedings of the 6th International Workshop on
Software and Performance, pages 91–102, New York,
NY, USA, 2007. ACM.

[20] A. E. Rugina, K. Kanoun, and M. Kaâniche. A
System Dependability Modeling Framework Using
AADL and GSPNs. In R. de Lemos, C. Gacek, and
A. B. Romanovsky, editors, WADS, volume 4615 of
Lecture Notes in Computer Science, pages 14–38.
Springer, 2006.

[21] B. Selic. A Systematic Approach to Domain-Specific
Language Design Using UML. In 10th IEEE Int.l
Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’07), pages
2–9. IEEE Computer Society, 2007.

[22] P. Veŕıssimo, N. Neves, and M. Correia.
Intrusion-Tolerant Architectures: Concepts and
Design. Lecture Notes in Computer Science,
11583:3–36, 2003.

[23] P. Veŕıssimo, N. F. Neves, M. Correia, Y. Deswarte,
A. A. E. Kalam, A. Bondavalli, and A. Daidone. The
CRUTIAL Architecture for Critical Information
Infrastructures. In R. de Lemos, F. D. Giandomenico,
C. Gacek, H. Muccini, and M. Vieira, editors, WADS,
volume 5135 of Lecture Notes in Computer Science,
pages 1–27. Springer, 2007.

[24] F. Wang, F. Jou, F. Gong, C. Sargor,
K. Goseva-Popstojanova, and K. Trivedi. SITAR: A
Scalable Intrusion-Tolerant Architecture for
Distributed Services. In Foundations of Intrusion
Tolerant Systems, 2003, pages 359–367, 2003.

http://www.di.unitorino.it/~greatspn

	Introduction
	Background
	SecAM Profile
	Example
	Obtaining a Formal Model
	Conversion of UML-SC into Petri Nets
	Discussion of the Obtained Petri Net

	Experiments and Results
	Related Work and Conclusions
	References

