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Abstract

We consider the counting rate estimation of an unknown radioactive source, which

emits photons at times modeled by an homogeneous Poisson process. A spectrometer

converts the energy of incoming photons into electrical pulses, whose number provides a

rough estimate of the intensity of the Poisson process. When the activity of the source

is high, a physical phenomenon known as pileup effect distorts direct measurements,

resulting in a significant bias to the standard estimators of the source activities used

so far in the field. We show in this paper that the problem of counting rate estimation

can be interpreted as a sparse regression problem. We suggest a post-processed, non-

negative, version of the Least Absolute Shrinkage and Selection Operator (LASSO)

to estimate the photon arrival times. The main difficulty in this problem is that no

theoretical conditions can guarantee consistency in sparsity of LASSO, because the

dictionary is not ideal and the signal is sampled. We therefore derive theoretical

conditions and bounds which illustrate that the proposed method can none the less

provide a good, close to the best attainable, estimate of the counting rate activity.

The good performances of the proposed approach are studied on simulations and real

datasets.

1 Introduction

Rate estimation of a point process is an important problem in nuclear spectroscopy. An

unknown radioactive source emits photons at random times, which are modeled by an ho-

mogeneous Poisson process. Each photon which interacts with a semiconductor detector

produces electron-hole pairs, whose migration generates an electrical pulse of finite dura-

tion. We can therefore estimate the activity of the source by counting the number of activity

periods of the detector. We refer the reader to [12] and [13] for further insights on the physi-

cal aspects in this framework. However, when the source is highly radioactive, the durations

of the electrical pulses may be longer than their interarrival times, thus the pulses can over-

lap. In gamma spectrometry, this phenomenon is referred to as pileup. Such a distortion
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induces an underestimation of the activity, which become more severe as the counting rate

increases. This issue is illustrated in Figure 1.

Figure 1: Example of a spectrometric signal. The red part is an example of piled up electrical

pulses.

In its mathematical form, the current intensity as a function of time can be modeled as

a general shot-noise process

y(t)
∆
=
∑
k≥1

EkΦk(t− Tk) , (1)

where {Ek, k ≥ 1} and {Φk(s), k ≥ 1} are respectively the energy and the shape of the

electrical pulse associated to the k-th photon, and y(t) defines the continuous time recorded

signal. The pulse shapes {Φk(s), k ≥ 1} are assumed to belong to a parametric family of

functions ΓΘ, Θ ⊂ Rn. The restriction of the signal to a maximal segment where it is

strictly positive is referred to as a busy period, and where it is 0 as idle period. In practice,

we observe of sampled version of (1) with additional noise, and wish to estimate from this

recorded digital signal the counting rate activity.

The problem of activity estimation has been extensively studied in the field of nuclear

instrumentation since the 1960’s (see [7] or [17] for a detailed review of these early contri-

butions; classical pileup rejection techniques are detailed in [1]). Early papers on pileup

correction focus specifically on activity correction methods, such as the VPG (Virtual Pulse

Generator) method described in [25, 26]. Moreover, it must be stressed that these techniques

are strongly related to the instrumentation used for the experiments. Recent offline methods
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are based on direct inversion techniques [20] or computationally intensive methods [4], and

are usually not fitted for very high counting rates. It is of interest to consider fast, event-by-

event pile-up correctors for real-time applications, as proposed in [22] for calorimetry and

in [18] for scintillators. One of the main advantages of the methods developed in [20] is that

they do not rely on any shape information of the time signal, but rather on the alternance

of the idle and busy periods of the detector. However, when the activity of the radioactive

source is too high, we observe very few transitions from busy to idle periods, thus making

this information statistically irrelevant.

In the latter case, it is therefore necessary to introduce additional assumptions on the

pulse shapes (e.g. to specify ΓΘ), and to estimate both the signal sample path on a relevant

basis. This can be formally viewed as a regression problem. However, due to the nature of

the physical phenomenon, and since Poisson processes usually represent occurrences of rare

events, the regressor chosen to estimate the signal must be sparse as well. Since the seminal

papers [19] and [9], representation of sparse signals has received a considerable attention, and

significant advances have been made both from the theoretical and applied point of view.

Several recent contributions [11] suggest efficent algorithms yielding estimators with good

statistical properties, thus making sparse regression estimators a possible option for real-

time processing. In this paper, we chose to use a modification of LASSO with a positivity

constraint [11].Indeed, LASSO provides a sparse solution close to the real signal for the `2-

norm. However, since we are not interested in the reconstruction of the signal for activity

estimation, but rather in the Poissonian arrival times, it is of interest to investigate the

consistency in selection of the sparsity pattern. Numerous recent works have been devoted

to this general question about LASSO, the first ones being [31] and [15]. Both papers

introduced independently the so-called irrepresentability condition as a necessary condition

for selection consistency. More recently, [24] developed the conditions under which the

irrepresentability condition is also a sufficient one. We also refer to [30], [16], [21] and for

recent results on consistency in the `2-sense for the signal estimation; note however that the

estimation of the activity of the source is related to the selection consistency issue, whereas

the consistency in the `2 sense should be used for energy spectrum reconstruction. The

problem we address in this paper shares also similarities with the reconstruction of sampled

signals with finite rate of innovation [23]. In the latter, the authors present a method based

on the use of the annihilator filter used in error-correction coding, which allows to reconstruct

perfectly a Poisson driven signal made of splines of piecewise polynomials, even when it is

not bandwidth limited. This leads to a purely algebraic reconstruction of the signal when

it can be decomposed on a known functional base. However, the cornerstone for algebraic

reconstruction is the full knowledge of this base, which is not the case in our framework.

The paper is organized as follows. Section 2 presents the model and the derivation of

the estimator of the counting rate. This estimation can be roughly seen as a post-processed

version of the non-negative LASSO. Though (1) is rather close to a standard linear regression

one, the presented problem is difficult to address, since the discrete signal stemming from

y(t) is not generated from a specific, known dictionary. Moreover, it is impossible to infer
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the exact number of Poissonian arrivals between two sampling points. Both considerations

imply that theoretical conditions (e.g. derived in [24]) which ensure consistency in sparsity

are not met in this case.. We therefore present in Section 3 theoretical results showing that

the activity of the source can be recovered almost as well as the best estimator we could build

from a full knowledge of the Poisson process and discrete observations with a high probability.

Finally, section 4 illustrates on some applications the effectiveness of the proposed approach,

both on simulations and real data, with comments. Details of the calculations and proofs of

the presented results are detailed in the appendix.

2 Sparse regression based method for activity estima-

tion

2.1 Model and assumptions

We observe a signal uniformly sampled on some subdivision T
∆
= {0 = t0, t1, t2, . . . , tN−1}

with sampling period ∆t, stemming from a discrete version of (1):

yi =
M∑
n=1

EnΦn(ti − Tn) + εi, 0 ≤ i ≤ N − 1 , (2)

where {Tn , 1 ≤ n ≤M} is the sample path of an homogeneous Poisson process with constant

unknown intensity λ, {En, 1 ≤ n ≤ M} is a sequence of independent and identically dis-

tributed (iid) random variables representing the photons energies, with unknown probability

density function f , {Φn, 1 ≤ n ≤ M} is a sequence of functions to be defined later which

characterize the electric pulse shapes generated by the photons, and {εi, 0 ≤ i ≤ N − 1}
is a sequence of iid Gaussian random variables with zero mean and variance σ2 repre-

senting the additional noise of the input signal. Alternatively, when defining the matrix

Φ
∆
= [Φn(ti − Tn)]0≤i≤N−1,1≤n≤M and the vectors y

∆
= [y0, y1, . . . , yN−1]T , E

∆
= [E1, . . . , EM ]T

and ε
∆
= [ε0, . . . , εN−1]T ,(2) can be rewritten in a matricial form:

y = ΦE + ε . (3)

All along the paper, it is assumed for convenience that N is an even number. The problem

to address is the estimation of λ given y. However, no Tn belongs to T with probability 1.

We thus introduce the following integer subset related to the closest sample times from the

Poisson arrivals Tn:

P0
∆
= {bTn/∆tc; n = 1, . . . ,M}, (4)

where bxc denotes the closest integer to x. Note that provided λ∆t� 1, P0 is a sparse subset

of {0, 1, . . . , N − 1}. We further on denote by y the noise-free part of the signal (3), that is

y
∆
= ΦE. All along the paper, it is assumed that the random variables {En, 1 ≤ n ≤ M}
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are bounded by positive and known constants Emin, Emax:

0 < Emin ≤ En ≤ Emax, n = 1, . . . ,M . (5)

In practice, neither E nor Φ are known, so the problem cannot be seen as a standard regres-

sion problem. Nevertheless, a single electrical pulse Φn has a specific shape, characterized in

most detectors by a rapid growth created by the charge collection followed by an exponential

decay as the charges migrate to the detector electrodes. Thus, a natural idea is to rely on

some user predefined dictionary of truncated gamma shapes in order to obtain a modeliza-

tion of (3) we can work with. Since a gamma shape is parametrized by two scale and shape

parameters, we define a set of p pairs of such parameters by θ
∆
= {(θ(s)

1 , θ
(s)
2 ); s = 1, 2, · · · , p}.

For all s = 1, . . . , p, we define the following pulse shape:

Γs(t)
∆
= cs t

θ
(s)
1 exp(−θ(s)

2 t) 1(0 < t ≤ τ∆t),

where τ is a positive constant integer defining the common support of the pulse shapes, and

cs is a normalizing constant chosen so that 1
N

∑N−1
i=0 Γs(ti)

2 = 1. Accordingly, we define the

following N × p matrix Ak whose columns are sampled versions of the previously defined

pulse shapes, translated by tk:

Ak
∆
= [Γs(ti − tk)]0≤i≤N−1,1≤s≤p . (6)

We further on refer to Ak in (6) as the time block associated to the k-th point. We now

define a global dictionary A by concatenating these time blocks:

A = [A0 A1 · · · AN−1] . (7)

Note that (7) defines a N ×Np matrix with full rank N . Therefore, an equivalent version of

(3) consists in some linear decomposition of y along the columns of A, for some unknown

regressor β. Recall that with probability 1, no Tn belongs to T neither Φn is a column of

A. In that sense, we shall say that our dictionary A is incomplete. Therefore, the model

investigated throughout the rest of the paper is

y = Aβ + δ + ε, (8)

in which δ
∆
= y−Aβ denotes the discrepency between the decomposition on Φ and A, and

which Aβ belongs to the closed positive span C defined as

C
∆
=
{∑
i∈P0

Aixi ; xi ∈ Rp
+ such that

Emin ≤
1√
N
‖Aixi‖2 ≤ Emax

}
. (9)

Note that C parametrizes models supported on timeblocks indexed by P0 only. The reason

for bounding ‖Ai xi‖2 in (9) can be understood in light of (5). Since P0 contains essentially
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all the information one could ever retrieve from Tn, the set of all the Tn and ∆tP0 tend to

be identical as ∆t tends to 0. Since we expect the decomposition Aβ to be quite close to

the decomposition ΦE, it is rather natural to focus on the best discrepancy measure δ one

could ever get when imposing similar constraints on the energies encoded in the model Aβ.

Following (8), and since we want to focus on model with small discrepancy, we use in the

rest of the paper α
∆
= ‖δ‖2/

√
N as a standard discrepancy measure.

2.2 Additional notations

We introduce here for convenience the notations used in the following sections. Given any

finite discrete set I, we denote by |I| its cardinality. We denote by 1I , the column vector of

length |I| whose all coefficients are equal to 1. If u,v are two vectors of identical size, we

shall write u < v (respectively u ≤ v) when all entries of v − u are positive (nonnegative).

If n is any integer in {1, · · · , Np}, thus indexing a column of A, we shall refer to this

column by An; similarly for any regressor β ∈ RNp the nth entry is denoted by βn. Given I

a subset of {0, 1, . . . , N − 1}, we denote by AI the submatrix obtained by concatenation of

times blocks whose index belong to I, namely

AI
∆
= [· · · ,Ak, · · · ]k∈I . (10)

Given two subsets I, J of {0, 1, . . . , N − 1}, we define the Gram matrix of size p|I| × p|J |
associated to AI and AJ as

GI,J
∆
=

1

N
AT
I AJ , (11)

and whenever I = J and reduces to one singleton, we shall drop the dependency in I, J and

write more simply G, since by the very construction of A, the Gram matrix of one timeblock

is independent of the block index.

Given β a vector of size pN , it will be naturally decomposed along the timeblocks:

β = [βT0 ; · · · ;βTN−1]T , where for all i, βi ∈ Rp. We define the block pattern of β as

J(β)
∆
= {i ; βi 6= 0} . (12)

Given some integer k in {0, 1, . . . , N−1}, we define for all positive real α the α-neighborhood

of k as:

Vα(k)
∆
= [k − α ; k + α] ∩ {0, 1, . . . , N − 1}, (13)

and denotes his complement by Vα(k) = {0, 1, . . . , N − 1} \Vα(k). Alternatively, (13) can be

reformulated accordingly to the correlations between blocks, since the discrete correlation

between two shapes is a decreasing function of the distance between their time shifts, and is

zero whenever this distance is greater than τ . Therefore, given a integer k in {0, 1, . . . , N−1},
we define some neighbourhood of k accordingly to some specified correlation level 0 ≤ ρ ≤ 1:

Tρ(k)
∆
= {0, 1, . . . , N − 1} \ {j ; max |G{k},{j}| < ρ}. (14)
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In other words, j ∈ Tρ(k) if and only if every column in the j-th timeblock has a correlation

lower than ρ with every column in Ak, expressing the fact that tj is somehow ’distant’ from tk.

Due to these considerations, we can associate to ρ ∈ [0, 1] a real α such that Vα(k) = Tρ(k).

Obviously, when ρ
′ ≤ ρ one has Tρ(k) ⊂ Tρ′(k), that is α ≤ α′.

We eventually define two quantities which will appear in the theoretical bounds obtained.

If k is an integer such that τ ≤ k ≤ N − τ − 1, we shall define

G
∆
=

1

N

∑
l∈Vτ (k)

max
i,j

AT
kAl(i, j) (15)

as the sum of all maximal correlations per block with respect to the k-th timeblock (note

that G is independent of k), and

t(x)
∆
=

1

x
√

2π
e−x

2/2

2.3 Overview of the estimation procedure

Recall that our objective is to estimate λ given y. It is well known that if {Tn, 1 ≤ n ≤M}
are the points of an homogeneous Poisson process, the inter-arrival times are iid random

variables with common exponential distribution with parameter λ. Therefore, λ can be

consistently estimated by

λc
∆
=

M

TM
. (16)

However, y is a discrete-time signal, therefore (16) cannot be attained since we are restricted

to use only times in T. Therefore, the best estimate of λ attainable in practice is defined as

λopt
∆
=

|P0|
∆tmaxP0

. (17)

It is likely that λopt < λc, since |P0| < M ; however, provided λ∆t is small, λc and λopt should

remain close. The main idea of this paper is therefore to plug in (17) estimates of M and

TM , as now explained. If the signal is modelled by (8), the set J(β) still contains much fewer

elements than N . Thus, we would like to recover first J(β), and make use of a non-negative

LASSO estimator (NNLASSO) [19, 11]:

β̂(r) = arg min
{β∈RNp}

{ 1

2N

∥∥∥∥∥y −
N−1∑
m=0

Am βm

∥∥∥∥∥
2

2

+ r

N−1∑
m=0

|βm|`1
}

(18)

such that β ≥ 0,

where the tuning parameter r quantifies the tradeoff between sparsity and estimation pre-

cision. NNLASSO provides a sparse estimator [β̂
T

0 (r), · · · , β̂
T

N−1(r)]T such that the linear

model ŷ = Aβ̂(r) approximates accurately the signal y. In practice, (18) can be efficiently

computed by a modification of the LARS algorithm [11]. Note that the group-LASSO [29]
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also exploits the time blocks decomposition of β and provide a block-sparse regressor. How-

ever, in this paper, we cannot assume the groups to be fully known, due to the incompleteness

of A.

Assuming that the solution (18) is known, the estimation of λ should be carefully done.

It is tempting to estimate the arrival times with the set J(β̂(r)) and the total number

of occurrences by |J(β̂(r))|, then plug this data into (17). However J(β̂(r)) may contain

consecutive active time blocks which do not all correspond to real arrival times. This is not

surprising: since A is incomplete, J(β) may itself be distinct from P0 . In this paper we

suggest an additional thresholding step to the estimation of λ to circumvent this issue, that

is

1. solve (18) to obtain β̂(r).

2. set all the β̂m(r) such that ‖β̂m(r)‖1 < η to zero, where η is a user defined threshold

to be precised later;

3. estimate the arrival times recursively T̂n
∆
= min

k=0,...,N−1
{k∆t > T̂n−1 ; β̂k−1(r) = 0, β̂k(r) 6=

0}, and M̂
∆
= |{k ; β̂k−1(r) = 0, β̂k(r) 6= 0}|.

4. Estimate the activity as

λ̂(r, η)
∆
=

M̂

T̂M̂
(19)

We refer to steps 2 and 3 as ”post processing” steps. Both steps can be heuristically

understood as follows: step 2 in introduced since time blocks containing negligible weights

are probably selected to improve slightly the estimation, but are not related to pulses start;

indeed in realistic situations all the pulses considered, including the real ones, start with

similar sharp slopes, but decrease differently, which makes these ”negligible” time blocks

appear behind the pulse start. In step 3 we merge consecutive selected time blocks due to

high correlations between blocks and incompleteness of the dictionary, as mentioned above.

Clearly a good estimation of λ is conditioned by a careful choice of both sparsity and thresh-

olding parameters r and η. A reasonable a practical choice is to set them accordingly to the

noise variance, as seen in the applications section. Note also that the cornerstone of Step 2

is that λ is small enough with respect to the signal sampling frequency, so that consecutive

active blocks would unlikely correspond to two distinct events. Even if this thresholding fails

in case of extremely high counting rates, as seen in the application sections, we emphasize

that it covers most spectrometric applications, making it very relevant in practice.

Note also that alternative methods to (18), which are based on iterative and reweight-

ing procedures, exist [8]. These methods seem appealing for higher activities, since they

are known to provide sparser solutions than NNLASSO. Similarly, sparse Bayesian learning

techniques [27, 28] are known to provide sparser results in the case of very correlated dic-

tionaries. Nevertheless, in practice, the fact that the spectrometric signal y does not stem
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directly from A cripples their performances, and the post-processing introduced in the latter

remains necessary even in this case, as seen later in the applications section.

3 Theoretical results

In order to guarantee some consistency in estimation as well as in selection, previous works

imposed conditions on the dictionary A: for instance low correlations between columns [10, 6,

14, 5] or positivity of minors of specific sizes [16, 6, 30]. The estimation procedure described

in this paper is close to [16], which suggest improvements of LASSO by hard-thresholding

coefficients, so that only representative variables are selected. In [31, 24], the so called

irrepresentability condition is introduced, and is proved to be necessary if we wish selection

consistency with high confidence. In our case remember we wish to recover P0, thus the

next subsection details an irrepresentability condition on max
‖z‖∞≤1

‖GP0,P0
G−1
P0,P0

z‖∞ so that

NNLASSO could theoretically select variables belonging only to P0. Nevertheless, this insight

is not relevant practically. Therefore, further theorems 1 and 2 do not use this assumption,

and rather compare the actual timeblock pattern and the one obtained with NNLASSO in

terms of intersecting neighborhoods.

3.1 Exact timeblock recovery and bounds for sparsity pattern ap-

proximation

For any value of the parameter r > 0, recall that we defined β̂(r) as the NNLASSO mini-

mizer (18). Next proposition is closely adapted from [24], and provides, under very specific

conditions on the dictionary A, some range of values of r such that the NNLASSO minimizer

selects only time blocks from P0.

Proposition 1 Assume that for all vectors z of length |P0| such that z ≤ 1P0 the following

assumption holds:

GP0,P0
G−1
P0,P0

z < (1− η0)1P0
(20)

for some 0 < η0 < 1. If the parameter r is chosen such that

r > max

{
2α

η0

;
2
√

2σ

η0

√
log(N − |P0|)p

N

}
, (21)

then β̂(r) is supported by P0 with probability tending to 1 as N tends to infinity.

Proof : See Appendix B.

Though similar to standard conditions which ensure the consistency of LASSO appearing

e.g. in [24], Proposition 1 is of little practical use, since the dictionary A does not satisfy

the latter conditions. In light of (21), we can also remark that a good choice of the sparsity

parameter depends on many terms (α, P0) unknown in practice. This illustrates the need of
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further results, since the question arose in this paper is whether and in which measure stan-

dard sparse methods could provide sufficiently good results even when theoretical conditions

are not met. The two main theorems are based on the following proposition2, whose aim is

to compare the true sparsity pattern with the NNLASSO one, for convenient choice of r, and

adequate block thresholding. The short technical lemma (1), which is a direct consequence

of the definition of C, see (9), will be used in the proof.

Proposition 2 Define the following threshold value

η
∆
=
E2

min mini,j G(i, j)1/2

4(2τ + 1)Emax

, (22)

and assume that r satisfies

r + α <
E2

min mini,j G(i, j)1/2

2Emax

. (23)

Then, there exists 0 ≤ ρ ≤ 1 (dependent on r and η, but independent of β) such that, for all

k in P0, there is an integer m in Tρ(k) so that ‖β̂m‖1 ≥ η with probability greater than

1− pt
(√

N
E2

min mini,j G(i, j)1/2

4Emax σ

)
− p(2τ + 1)t

(√
N
r − α
σ

)
. (24)

Conversely, there exists 0 ≤ µ ≤ 1 (dependent on η, but independent from β and r) such

that, for any k satisfying ‖β̂k‖1 ≥ η we have:

Pr(P0 ∩ Tµ(k) 6= ∅) > 1− ‖β̂k‖0 t

(√
N
r − α
σ

)
. (25)

Proof : See Appendix C.

Proposition 2 is of practical interest. Roughly speaking, it states that provided the

threshold parameter of the post-processing steps and the sparsity parameter are set accord-

ingly to (22) and (23), then any element of the close to optimal sparsity pattern P0 has in

his close vincinity an integer k so that ‖β̂k‖1 is selected in step 2 of our algorithm, and

conversely. Therefore, the latter result closely relates J(β̂) after post-processing to P0, thus

connecting λ̂(r, η) to λopt. It is clear that in practice, the value of α is unknown. However,

the results still stands for smaller values of η, such as the one selected in the application

section.

3.2 Confidence bounds for counting rate estimators

The two next theorems are strongly based on Proposition 2. They provide computable

bounds of confidence intervals for λ̂(r, η) − λopt, where λ̂(r, η) and λopt were respectively
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defined in (19) and (17). Recall that only the blocks of β̂(r) selected by the criterion

‖β̂k(r)‖1 > η are used to estimate the arrival times. In the next theorems, we define for

brevity β̂(r, η) as the obtained vector after post-processing, that is

β̂(r, η)
∆
= [β̂

T

k (r)1(‖β̂k(r)‖1 > η)]T0≤k≤N−1

and for any subset X of {0, 1, . . . , N − 1} defined as a union of discrete intervals, we denote

by I(X) the number of these intervals.

Theorem 1 Under the same assumptions and settings as in Proposition 2, and define aρ, aµ
as the integers satisfying Vaρ(k) = Tρ(k), Vaµ(k) = Tµ(k), for any integer k in [τ,N − 1− τ ]

(to avoid interval truncature). We get that

λ̂(r, η)− λopt ≤ λ(r, η)

×

1−
T̂M̂/∆t

aρ + max J(β̂(r, η))

I
( ⋃

1≤j≤M̂
Vaµ(T̂j)

)
M̂

 (26)

with probability greater than

1− pt
(√

N
E2

min mini,j G(i, j)1/2

4Emax σ

)
− p(2τ + 1)t

(√
N
r − α
σ

)
− ‖β̂(r)‖0 t

(√
N
r − α
σ

)
Proof : See appendix D.

Roughly speaking, Theorem 1 gives a lower bound to λ̂(r, η) − λopt in terms of the

NNLASSO sparsity block pattern, making it numerically computable. It is straightforward

to see that the term between brackets in the lower bound of (26) is positive. The integers

T̂M̂/∆t, max J(β̂(r, η)) are the extremities of the last interval in J(β̂(r, η)), thus the shorter

this interval is the less underestimated λopt is. Moreover, the term M̂−1I
(⋃

1≤j≤M̂ Vaµ(T̂j)
)

is

equal to one as soon as T̂i− T̂i−1 > aµ for all 1 < i ≤ M̂ , that is when the estimated times are

sufficiently spaced. Note that this justifies our choice to define the T̂i’s as the beginnings of

the open components, since times belonging to such an open component are not likely to have

separated aµ−neighbourhoods. Thus, in the most favorable case, T̂M̂ = ∆tmax J(β̂(r, η))

and the number of components is equal to M̂ , in other words

λ̂(r, η)− λopt ≤ λ(r, η)

(
1 +

max J(β̂(r, η))

aρ

)−1

,

thus showing that λ̂(r, η) is close to λopt with a high probability. The asymptotic study

as well as theoretical insights on the lengths of intervals inside the NNLASSO timeblock

pattern, in terms of r and other quantities involved in the problem, are beyond the scope of

the present paper. The next theorem provides a computable lower bound for λ̂(r, η)− λopt.

11



Theorem 2 Under the same assumptions and conventions used in Theorem 1, suppose

moreover that

(λ∆t)2N aρ < 1. (27)

Then

λ̂(r, η)− λopt ≥ λ̂(r, η)

×

[
1− |J(β̂(r, η))|

M̂
·

T̂M̂/∆t

max J(β̂(r, η))− aµ

]
(28)

with probability greater than

1− (λ∆t)2N aρ − |P0|

[
pt
(√

N
E2

min mini,j G(i, j)1/2

4Emax σ

)
− (p(2τ + 1) + ‖β̂(r)‖0)t

(√
N
r − α
σ

)]
.

Proof : See appendix D.

In the latter, the quotient |J(β̂(r,η))|
M̂

in (28) can be interpreted as some average number

of active consecutive blocks after thresholding. Note that the probability given here is lower

than the one in Theorem 1.

4 Applications

We present in this section results on realistic simulations, which emphasize the effectiveness

of the proposed approach when compared to a standard method (comparison to a fixed

threshold and estimation of λ by means of the idle times of the detector, see [20]). The

proposed algorithm for counting rate estimation is then studied on a real dataset.

4.1 Results on simulations

4.1.1 Experimental settings

The performances of the proposed approach are investigated for 50 points of an homogeneous

Poisson process whose intensity λ varies from 0.1 to 0.4, which corresponds to physical

activities from 1.106 and up to 4.106 photons per second when the signal is sampled to 10

MHz. Those numbers are related to high or very high radioactive activities, as mentioned

for example in [1]. The energies {En, n ≥ 0} are drawn accordingly to a Gaussian density

truncated at 0, with mean 50 and variance 5. We present both results in the case of a good

Signal Noise Ratio (σ = 1), as can be found in Gamma spectrometry applications.

Assuming that we observe N points of the sample signal, the j-th column of the dictionary

A is build accordingly to (7). The grid θ is taken uniform on (0, 10]2, with subdivision step

12



0.1. In order to check the robustness of the approach and its practical implementation for

real-time instrumentation, the signals are simulated in two different settings:

• for each point of the Poisson process, a shape is taken randomly from the dictionary

A; this case will later on be denoted by (I).

• for each point of the Poisson process, a shifted Gamma is created with randomly

chosen parameters θ1, θ2. In our experiments, both parameters are drawn uniformly

accordingly to θ1 ∼ U([0; 10]) and θ2 ∼ U([0; 2]) (case denoted by (II))

It is obvious that the standard framework for regression is (I); however, as mentioned earlier,

we also want to investigate how the algorithm behaves when the dictionary is not rich enough

to cover all the possible shapes, and check the effectiveness of the additional post-processing

step introduced in the latter sections. This allows to use the proposed approach on real-

world experiments where fast algorithms and small dictionaries for real-time implementations

must be used. For one given activity, the estimator is computed 10000 times by means of the

proposed method, and by means of the standard method aforementioned, both in (I) and

(II) cases. Ideally, the parameters η and r should be chosen accordingly to (22) and (23);

however, these bounds are unknown in a real-life experiment, for the radioactive source is

generally unknown (and, consequently, so are Emin and Emax). Both on simulations and real

data validations, we found out that taking the parameter η = 3σ, and setting the parameter

r so that ‖y−Aβ̂(r)‖2 ≤ σ
√
N provided a good compromise between sparsity and good `2

precision.

4.1.2 Simulation results and discussion

Figure 2 represents a portion of the simulated signal in case (II) for λ = 1, as well as

the provided estimation and estimated time arrivals. We can observe that the obtained

regressor fits well the incoming signal, and that a careful choice of rN allows to find most of

the arrival times. The boxplots displayed in Figures 3(a) and 3(b) represent the distribution

of the estimators of λ (the actual value of λ is displayed in the x-axis) when using the

standard method counting rate estimation, and the results obtained by our method are

given in Figures 3(c) and 3(d). It can be seen from these results that the proposed algorithm

provides an estimator with smaller variance, thus making it more appropriate for counting

rate estimation.

The high variance in the standard thresholding method can be easily explained. As λ

increases, so does the number of pileups, hence the number of individual pulses and arrival

times are underestimated. Both phenomena yield a poor estimate of λ. Regarding the

estimator obtained with the proposed algorithm, the results obtained in cases where λ is

high (e.g. greater than 0.15) are much better than those of the standard method: we

observe a much smaller variance, and for the intensities 0.1 to 0.2 the obtained results are

very close to the actual counting rate.

13



Figure 2: Simulated signal (blue) and NNLASSO regressor (red), with associated time ar-

rivals.

When λ becomes higher, several pulses are likely to start between two consecutive sam-

pling points. Thus, the suggested algorithm may be misled in treating both as one single

impulse, which explains why λ is underestimated. However the data is obtained from a sam-

pled signal, therefore the actual λ cannot be well estimated when λ∆t is too high. Indeed,

a better insight is obtained when comparing the values of our estimate with λopt instead of

λ. This is done in Figures 4(a) and 4(b). We observe an almost linear fit between both esti-

mators, in accordance with Theorems 1 and 2, thus showing numerically that the proposed

approach provides values similar to λopt, which is the best estimate we could build from a

full knowledge of Tn and of the sampled signal.

4.2 Applications on real data

We applied the proposed method for counting rate estimation on real spectrometric data

from the ADONIS system described in [3], which is sampled to 10 MHz. The actual activity

is 400000 photons per second, which corresponds to an intermediate activity. Figure 5 shows

the use of the proposed algorithm on a real dataset. It can be observed from the latter figures

14
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(c) Estimated versus actual values of λ for the

proposed method - case (I)
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(d) Estimated versus actual values of λ for the

proposed method - case (II)

Figure 3: Distribution of the obtained counting rate estimators.

that a very incomplete dictionary is more than sufficient to retrieve the starting points of each

individual pulses. However, the post-processing step we suggest in this paper is required to

estimate the activity of the radioactive source. The obtained estimated activity is 3.99 .104,

which conforms both to the simulations and the knowledge of the dataset.

We illustrate the importance of the post-processing steps for real data in Figure 6, and

compare the performances of NNLASSO, the sparse Bayesian learning (SBL) of [27] and

the reweighted `1 procedure described in [8]. We observe that SBL seems to provide a

better “inner-block sparsity”, in the sense that SBL provides active blocks with fewer active

coefficients. This is due to the fact that SBL performs usually better than NNLASSO when

the columns of A are highly correlated. However, as it can be seen from the repartition of

the coefficients, particularly for the coefficients indexes ranging from 1000 to 3000, singles

pulses are always reconstructed by means of several active consecutive blocks of A, even
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(b) Proposed estimate of λ versus λopt - case (II)

Figure 4: Comparison of λ̂ with λopt.
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Figure 5: Results on real data: input discrete signal (blue), and active/inactive blocks (red).

We observe several well-separated pileups.

with methods providing sparser solutions than NNLASSO. This illustrates that in practice,

the post-processing steps cannot be circumvented by improving sparsity.
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(b) β̂(r) obtained with NNLASSO
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(c) β̂(r) obtained with SBL [27]
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(d) β̂(r) obtained with Reweighted Basis Pursuit

Denoising [8]

Figure 6: Comparison of different sparse regression algorithms on real data

5 Conclusion

We presented in this paper a method based on sparse representation of a sampled spectro-

metric signal to estimate the activity of an unknown radioactive source. Based on a crude

dictionary, we suggest a post-processed variation of a non-negative LASSO to estimate the

number of individual electrical pulses and their arrival times. Results on simulations and

real data both emphasize the efficiency of the method, and the small size of the dictionary

make the implement for real-time applications accessible. It was theoretically shown that

although the standard conditions are not met per se for NNLASSO to estimate the actual

P0, we can derive some conditions which guarantee that the number of individual pulses

and arrival times are well estimated nevertheless. This is made possible by the fact that

we do not wish to reconstruct the input signal, but rather find some partial information.

Further aspects should focus on the joint estimation of λ and the energy distribution, as
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well as the estimation of the activity in a nonhomogeneous case, and should appear in future

contributions.

A Technical lemmas

Lemma 1 If Aβ ∈ C then for all index m ∈ J(β) we have:

‖βm‖1 ≤
Emax

mini,j G(i, j)1/2

and

min
i,j

G(i, j)1/2 E
2
min

Emax

≤ ‖Gβm‖∞

Proof : For all m ∈ J(β) we have E2
min ≤ βTmGβm ≤ E2

max, and on the other hand

min
i,j

G(i, j) · ‖βm‖
2
1 ≤ β

T
mGβm ≤ E2

max

so the first assertion follows. The second is proved by using the previous result in the

following way

E2
min ≤ βTmGβm ≤ ‖βm‖1 ‖Gβm‖∞

≤ Emax

mini,j G(i, j)1/2
‖Gβm‖∞ ,

This concludes the proof.

Lemma 2 Suppose a homogeneous Poisson process of intensity λ is observed in the interval

[0, T ], and let δ > 0 such that λ2Tδ < 1. The probability that all interarrival times are

greater than δ is bounded from below by 1− λ2Tδ.

Proof : We compute the probability that one interarrival time is smaller than δ. Denote

by Tn the n-th point of the process sample path, and by Nt the number of points on [0, t].

It is known (see e.g. [2]) that

f((T1,··· ,Tn) |NT=n)(u1, · · · , un)

= f(U(1),U(2),...,U(n))(u1, u2, ..., un) =
n!

T n
10=u0≤u1≤···≤un≤T ,

where {U(i), i = 1 . . . n} are the order statistics of n independent random variables uniformly

distributed on [0, T ]. We get for n ≥ 2 and 2 ≤ i ≤ n that

P (Ti − Ti−1 ≤ δ|NT = n) =
n!

T n
Vol(Ωi)

18



where Ωi
∆
= {0 ≤ u1 ≤ · · · ≤ un ≤ T ; ui − ui−1 ≤ δ} and Vol denotes the volume of the

latter space. For all 1 ≤ k ≤ n we set incrk = uk − uk−1 (and u0 = 0), so it is equivalent to

write

Ωi = {incrk ≥ 0, 1 ≤ k ≤ n;

incri ≤ δ and
n∑
k=1

incrk ≤ T}

We have now the decomposition of Ωi along the (disjoint) slices defined by incri = t, 0 ≤
t ≤ δ:

Ωi =
⋃

0≤t≤δ

Ω̃i(t);

Ω̃i(t)
∆
= {incrj ≥ 0, for all j 6= i, incri = t;

∑
j 6=i

incrj ≤ T − t}

Integrating now along the variable t we obtain:

Vol(Ωi) =

∫ δ

0

Vol(Ω̃i(t)) dt

=

∫ δ

0

(T − t)n−1

(n− 1)!
dt =

1

n!
[T n − (T − δ)n]

Hence we have P ({Ti−Ti−1 ≤ δ} |Nt = n) = 1−
(
1− δ

T

)n
therefore we get for all n ≥ 2 that

P (Ti − Ti−1 ≤ δ for some 2 ≤ i ≤ n |Nt = n)

≤ (n− 1)

[
1−

(
1− δ

T

)n]
We can of course write that the same probability is equal to 0 as n = 0, 1. Due to the

equality
∑
n≥2

(n−1)
xn

n!
= (x−1) exp(x)+1, we get by conditioning that the probability that

one interarrival time is smaller than δ is not greater than

exp(−λT )
∑
n≥2

λnT n

n!
(n− 1)

[
1−

(
1− δ

T

)n]
= λT − [λ(T − δ)− 1] exp(−λ δ)− 1

The lemma follows from Taylor inequality.

B Proof of Proposition 1

In its very essence, the proof follows [24] with mild modifications. We introduce β̂0(r) as the

minimizer of the NNLASSO problem with sparsity parameter r > 0 under the additional
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constraint J(β̂0(r)) ⊆ P0. The aim is to prove that, under the conditions stated in the

result, this vector is a global minimizer of the unconstrained problem. Due to (18), the

KKT conditions with the additional constraint are:

AT
P0

N

[
AP0 β + δ + ε−AP0 β̂0(r)

]
= r zP0 (29)

zP0 ∈ (−∞ , 1]p|P0|

We deduce from (29) the equality β − β̂0(r) = G−1
P0,P0

[
r zP0 − 1

N
AT
P0

(δ + ε)
]
. Using this

equality, β̂0(r) will be a global minimizer of NNLASSO as soon as

AT
P0

N

[
AP0 G−1

P0,P0

(
r zP0 −

AT
P0

(δ + ε)

N

)
+ δ + ε

]
< r 1P0

,

or, equivalently, when[
AP0√
N
− AP0√

N
G−1
P0,P0

GP0,P0

]T
(δ + ε)√

N

< r
[
1P0
− GP0,P0

G−1
P0,P0

zP0

]
. (30)

For convenience, we now define

H
∆
=

AP0√
N
− AP0√

N
G−1
P0,P0

GP0,P0
,

and denote by Hi the i-th column of H. Note that H can be rewritten as

H =

(
I −

(
AP0√
N

)
G−1
P0,P0

(
AP0√
N

)T)T
1√
N

AP0
,

showing that the columns of H are the projections of the normalized columns of AP0
onto

the orthogonal complement of the columns of AP0 . It thus follows that all columns the Hi’s

have normalized `2-norm bounded by 1 since this is true for AP0
. Due to assumption (20),

it is sufficient that the following condition holds to get (30):

max
i

1√
N
HT
i (δ + ε) < r η0 ; (31)

we now use the fact that the random variable HT
i ε is Gaussian of variance less than σ2,

consequently:

P

(
max
i

1√
N
HT
i ε ≥

r η0

2

)
≤
∑
i

P

(
HT
i ε ≥

√
N r η0

2

)

≤ p(N − |P |) t

(√
N r η0

2σ

)
(32)
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In order to make (32) tend to 0, we need that

r ≥ 2
√

2σ

η0

√
log(N − |P |) p

N
.

Now we have also 1√
N
HT
i δ ≤ α by Cauchy-Schwarz inequality, and we have α < rη0/2 as

soon as r > 2α/η0. The result follows.

C Proof of Proposition 2

We keep the same notations as in Appendix B. Let r > 0 be any sparsity parameter, and

β̂(r) be the corresponding NNLASSO regressor, denoted shortly by β̂ in the rest of this

proof. The KKT conditions, combined with the inequality derived from Cauchy-Schwarz
1
N

ATδ ≤ α1pN , yields

AT

N

[
A(β − β̂) + δ + ε

]
≤ r1pN ,

or, equivalently,
ATA

N
β − (r + α)1pN +

ATε

N
≤ ATA

N
β̂. (33)

For some k in P0, it follows from (33) that

‖Gβk‖∞ − (r + α)− 1

N
‖AT

k ε‖∞ ≤ ‖Gk,Vτ (k)β̂Vτ (k)‖∞.

Define 0 ≤ ρ ≤ 1; since all the coefficients of the Gram matrices considered are bounded by

1, we have

‖Gβk‖∞ − (r + α)− 1

N
‖AT

k ε‖∞

≤ (1− ρ)
∑

l∈Tρ(k)

‖β̂l‖1 + ρ‖β̂Vτ (k)‖1 . (34)

We can say now two things: first, when r + α < ‖Gβk‖∞, we have

Pr

(
1

N
‖AT

k ε‖∞ >
‖Gβk‖∞ − (r + α)

2

)
< pt

(√
N
‖Gβk‖∞ − (r + α)

2σ

)
;

secondly, for any columnAn of A which is active in β̂, (33) reduces to the equality ATn
N

(Aβ + δ + ε)−
r = ATn

N
Aβ̂, and since β̂ has non negative entries it follows that β̂n is smaller than 1

N
ATn (Aβ + δ + ε)−

r; now summing up these inequalities overall such n ∈ Supp(β̂Vτ (k)) yields

‖β̂Vτ (k)‖1 ≤
1

N
‖AT

Vτ (k)Aβ‖1+ ∑
n∈Supp(β̂Vτ (k))

( 1

N
ATnε− r + α

)
. (35)
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Since every n ∈ Supp(β̂Vτ (k)) can be expressed as n = pl + s with l in Vτ (k) ∩ J(β̂) and

s ≤ p, we have

Pr
( ∑
n∈Supp(β̂Vτ (k))

( 1

N
ATnε− r + α

)
> 0
)

≤ p(2τ + 1)t
(√

N
r − α
σ

)
,

thus (35) yields

Pr
(
‖β̂Vτ (k)‖1 ≤

1

N
‖AT

Vτ (k)Aβ‖1

)
> 1− p(2τ + 1)t

(√
N
r − α
σ

)
. (36)

So far, we showed that

1

(1− ρ)|Tρ(k)|

[‖Gβk‖∞ − (r + α)

2
− ρ 1

N
‖AT

Vτ (k)Aβ‖1

]
≤ max

l∈Tρ(k)
‖β̂l‖1 (37)

with probability greater than

1− p t
(√

N
‖Gβk‖∞ − (r + α)

2σ

)
− p(2τ + 1)t

(√
N
r − α
σ

)
.

Now, choosing r accordingly to (23) and using Lemma 1 yields

‖Gβk‖∞ − (r + α)

2
>
E2

min mini,j G(i, j)1/2

4Emax

,

and if ρ is taken equal to 0 the LHS of (37) is greater than η as chosen in (22). On the other

hand, the term 1
N
‖AT

Vτ (k)Aβ‖1 can be bounded by means of Lemma 1 as follows:

1

N
‖AT

Vτ (k)Aβ‖1 ≤
∑

l∈Vτ (k)

∑
m∈Vτ ({l})

‖G{l},{m} βm‖1

≤ p
∑

l∈Vτ (k)

∑
m∈Vτ ({l})

(max
i,j

G{l},{m}(i, j))‖βm‖1

≤ (2τ + 1)GpEmax

mini,j G(i, j)1/2
.

Therefore, if (23) holds, we introduce

Cr,ρ
∆
=
E2

min mini,j G(i, j)1/2

Emax
− α− r − (2τ + 1)GpEmax

mini,j G(i, j)1/2
ρ
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and

ρr
∆
= sup

{
ρ ∈ [0, 1] ; η ≤ Cr,ρ

(1− ρ)|Tρ(k)|

}
, (38)

thus inequality (37) shows that if k ∈ P0 then there exists m ∈ Tρr(k) such that

Pr(‖β̂m‖1 ≥ η) > 1− pt
(√

N
E2

min mini,j G(i, j)1/2

4Emax σ

)
− (2τ + 1)pt

(√
N
r − α
σ

)
,

which completes the proof of the first part of Proposition 2. The converse part is proved

using a similar argument as follows. For any k, we denote by Supp(β̂k) the set of indices of

the non-zero entries in the vector β̂k. For k chosen such that ‖β̂k‖1 ≥ η, then for all n in

Supp(β̂k) we have 1
N
ATnAβ = r + 1

N
ATnAβ̂ − 1

N
ATn (δ + ε). Considerations analog to those

yielding (35),(36) allow to obtain:∑
n∈Supp(β̂k)

1

N
ATnAβ ≥

∑
n∈Supp(β̂k)

[
r − α− 1

N
ATnε

]
+

∑
n∈Supp(β̂k)

1

N
ATnAkβ̂k

hence

Pr

( ∑
n∈Supp(β̂k)

1

N
ATnAβ > min

i,j
G(i, j)‖β̂k‖0 η

)
> 1− ‖β̂k‖0 t

(√
N
r − α
σ

)
. (39)

Now let ρ in [0, 1], we can write similarly to (34)∑
n∈Supp(β̂k)

1

N
ATnAβ

=
∑

n∈Supp(β̂k)

1

N
ATnA(βTρ(k) + βTρ(k))

< ‖β̂k‖0

(
‖βTρ(k)‖1 + ρ‖βTρ(k)∩Vτ (k)‖1

)
. (40)

Since by Lemma 1 we have

‖βTρ(k)∩Vτ (k)‖1 ≤
|Tρ(k) ∩ Vτ (k)|Emax

mini,j G(i, j))1/2
,

(39) leads to introduce the next correlation level, similarly to (38):

µ
∆
= sup

{
ρ ∈ [0; 1] ; ρ |Tρ(k) ∩ Vτ (k)|

≤ η ·mini,j G(i, j)3/2

Emax

}
.
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Thus, (39) implies that whenever ‖β̂k‖1 ≥ η, one has

Pr(P0 ∩ Tµ(k) 6= ∅) > 1− ‖β̂k‖0 t
(√

N
r − α
σ

)
,

which completes the proof.

D Proofs of Theorem 1 and Theorem 2

We first prove Theorem 1 : by Proposition 2, we have

Pr
(

maxP0 − aρ ≤ max J(β̂(r, η))
)
> 1

− pt
(√

N
E2

min mini,j G(i, j)1/2

4Emax σ

)
− p(2τ + 1)t

(√
N
r − α
σ

)
and moreover each of the maximal distinct intervals contained in

⋃
1≤j≤M̂ Vaµ(T̂j) intersects

P0 under probability greater than

1−
∑

k∈J(β̂(r,η))

‖β̂k(r)‖0t
(√

N
r − α
σ

)
≥ 1− ‖β̂(r)‖0t

(√
N
r − α
σ

)
thus under the same probability we have I(

⋃
1≤j≤M̂ Vaµ(T̂j)) ≤ |P0|, and combining these

two results we obtain the lower bound

λopt ≥
1

∆t

I
(⋃

1≤j≤M̂ Tµ(T̂j)
)

aρ + max J(β̂(r, η))
,

which is equivalent to (26) after factorization by λ̂(r, η).

Theorem 2 is proved in a similar manner. Using again Proposition. (2), we have

Pr(max J(β̂(r, η))− aµ ≤ maxP0)

> 1− ‖β̂max J(β̂(r,η))‖0t
(√

N
r − α
σ

)
.

Using the same argument as above, we also get that

|J(β̂(r, η))| ≥ I

(⋃
k∈P0

Vaρ(k)

)
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with probability greater than

1− |P0|

[
pt

(√
N
E2

min mini,j G(i, j)1/2

4Emax σ

)

− p(2τ + 1)t

(√
N
r − α
σ

)]

Now the aρ−neighbourhoods Vaρ(k) for k ∈ P0 are all disjoint with probability bounded as

in Lemma 2 when taking T = N∆t; the result follows

References

[1] ANSI. American National Standard for Calibration and Use of Germanium Spectrom-

eters for the Measurement of Gamma-Ray Emission Rates of Radionuclides. American

National Standards Institute, 1999.
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