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Abstract. Analogical reasoning can shed light on both of the two key
processes of creativity — generation and evaluation. Hence, it is a powerful
tool for creativity. We illustrate this with three historical case studies of
creative mathematical conjectures which were either found or evaluated
via analogies. We conclude by describing our ongoing efforts to build
computational realisations of these ideas.

1 Introduction

Analogical reasoning is an essential aspect of creativity [2] and computational
realisations such as [15; 20] have placed it firmly in the computational creativity
arena. However, investigation into analogical reasoning has been largely carried
out in the context of problem solving in scientific or everyday domains. In par-
ticular, very few historical case studies of analogy (excepting [16; 18]) and no
computational representations that we know of are in the mathematics domain.
There may be features that distinguish mathematics from other domains, such
as having a large number of objects as compared to relations, as opposed to do-
mains typically studied by analogy researchers [18], and recent work in analogy
[14] has suggested that current theories of analogical reasoning such as the struc-
ture mapping theory may require some modification if they are to generalise to
mathematics. This largely theoretical paper explores roles that analogical rea-
soning has played in historical episodes of creativity in mathematics. Towards
the end we also describe some computational aspects of our work.

2 A marriage of dimensions

Analogies between different geometrical dimensions, especially between two and
three dimensions, date back to Babylonian times and have been particularly
productive [16, p. 26]. The discovery of the Descartes—Euler conjecture, that
for any polyhedron, the number of vertices (V) minus the number of edges

* We are grateful to Alan Bundy for discussion on the continuity example in section
4. This work was supported by EPSRC grant EP/F035594/1.
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(E) plus the number of faces (F') is equal to two is one such example: there are
differing accounts of its discovery, but both involve analogy at some level. Euler’s
own account of his discovery suggests that analogy to two dimensional polygons
helped to guide his search for a problem: in a letter to Christian Goldbach, Nov
1750 he wrote ... “there is no doubt that general theorems can be found for
them [solids], just as for plane rectilinear figures ...” (our italics). The simple
relationship that V' = FE for two dimensional shapes prompted a search for an
analogous relationship between edges, faces and vertices in three dimensional
solids.

In Polya’s reconstruction of this discovery [16, pp. 35-41] he suggested that
the analogy was introduced to evaluate, as opposed to generate the conjecture.
He developed a technique for using analogies to evaluate a conjecture: given ana-
logical mappings and conjectures, Polya suggested that we adjust the representa-
tion in order to bring the relations closer [16, pp. 42-43]. In the Descartes—Euler
example, the re-representation works by noting that vertices are 0D, edges 1D,
faces 2D and polyhedron 3D, and then rewriting both conjectures in order of the
increasing dimensions. In the polygonal case, V = E then becomes V—-FE+1 =1,
and the polyhedral case V — E + F = 2 becomes V — E + F — 1 = 1. These
two equations now look much more similar: in both of them the number of di-
mensions starts at zero on the left hand side of the equation, increases by one
and has alternating signs. The right hand side is the same in both cases. Polya
then suggests that since the two relations are very close and the first relation,
for polygons, is true, then we have reason to think that the second relation may
be true, and is therefore worthy of a serious proof effort.

3 An extremely daring conjecture

The Basel problem is the problem of finding the sum of the reciprocals of the
squares of the natural numbers, i.e. finding the exact value of the infinite series
1+ % + % + % + % + % + .... In Euler’s time this was a well known and
difficult problem, thus in this example the initial problem already exists. Euler
used analogical reasoning to find his conjectured solution %2. To find this he
rearranged known facts about finite series and polynomials in order to draw
an analogy between finite and infinite series, and then applied a rule about
finite series to infinite series, thus discovering what is referred to by Polya as
an “extremely daring conjecture” [16, p. 18]. Euler then spent years evaluating

both this conjecture and his analogous rule.

4 A split in the real continuum

Cauchy’s conjecture and proof that “the limit of any convergent series of con-
tinuous functions is itself continuous” [3, p. 131] is another example in which a
rule for one area is analogously assumed to hold for another area. In this case
the source domain is series and the target limits, and the rule assumed to hold
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is that “what is true up to the limit is true at the limit”. Lakatos [9, p. 128§]
states that throughout the eighteenth century this rule was assumed to hold and
therefore any proof deemed unnecessary. However, this example is complicated:
Cauchy’s claim is generally regarded as obviously false, and the clarification of
what was wrong is usually taken to be part of the more rigorous formalisation
of the calculus developed by Weierstrass, involving the invention of the concept
of uniform convergence.

This episode was treated by Lakatos in two different ways. Cauchy claimed
that the function defined by pointwise limits of continuous functions must be
continuous [3]. In fact, what we take to be counter-examples were already known
when Cauchy made his claim, as Lakatos points out in his earlier analysis of
the evolution of ideas involved [9, Appendix 1]. After discussion with Abraham
Robinson, Lakatos then saw that there was an alternative analysis. Robinson
was the founder of non-standard analysis, which found a way to rehabilitate talk
of infinitesimals (for example, positive numbers greater than zero, but less than
any “standard” real number (see [17], first edition 1966). Lakatos’s alternative
reading, presented in [10], is that Cauchy’s proof was correct, but that his notion
of (real) number was different from that adopted by mainstream analysis to this
day. In analogy terminology, people who had different conceptions of the source
domain were critiquing the target domain which Cauchy developed.

5 Computational considerations

We are exploring these ideas computationally in two ways. Firstly, we are using
Lakoff and Nufiez’s notion of mathematical metaphor [11]. Lakoff and Ninez
consider that the different notions of “continuum” outlined in §4 correspond to
a discretised Number-Line blend (in the case of the Dedekind-Weierstrass reals);
a discretised line as the result of “Spaces are Sets of Points” metaphor, where
all the points on the line are represented (in the case where infinitesimals are
present); or by a naturally continuous (physical) line [11, p. 288]. This approach
provides promising avenues for the understanding of the relationships between
the written representation of the mathematical theories, in this case mostly in
natural language, the mathematical structures under consideration, and the ge-
ometrical or physical notions that informed the mathematical development. We
are using the framework of Information Flow [1] to be more precise about what
constitutes metaphors (and blends), by looking at the possible metaphorical re-
lationships in terms of infomorphisms between domains. In [7; 8] we show how
Information Flow theory [1] can be used to formalise the basic metaphors for
arithmetic that ground the notions in embodied human experience (grounding
metaphors). This gives us a form of implementation of aspects of the theory
evolution involved here. We are extending this to Fauconnier and Turner’s con-
ceptual blending [4] and Goguen’s Unified Concept theory [6].

Secondly, Schwering et al. have developed a mathematically sound frame-
work for analogy making and a symbolic analogy model; heuristic-driven theory
projection (HDTP) [19]. Analogies are established via a generalisation of source
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and target domain. Anti-unification is used to compare formulae of source and
target for structural commonalities, then terms with a common generalisation
are associated in the analogical mapping. HDTP matches functions and pred-
icates with same and different labels as well matching formulae with different
structure. In particular, one of its features is a mechanism for re-representing a
domain in order to build an analogy. We are using this system to generate the
domain of basic arithmetic from Lakoff and Nunez’s four grounding metaphors.

6 Conclusions

Analogy was used in the first example to find, or generate a problem, for which
values could subsequently be conjectured. Also, importantly, it was used to aid
evaluation (thus forming an essential tool in McGraw’s “central loop of creativ-
ity” [13]). This is particularly interesting given that humans are not very good
at making judgements, particularly in historically creative domains, and is not
a generally noted use of analogy. The importance of re-representation in order
to make a more convincing analogy, making sure that any preconditions for the
re-representation are satisfied is also clear in all of these examples. In our second
case study the original problem, to find an exact value for the sum of the recipro-
cals of the squares, was invented independently of the analogy which was used to
solve it. Euler then tested his application of the rule he used, and this rule itself,
rather than the solution to the Basel problem, became the major contribution
of Euler’s work in this area. The freedom with which one can apply a rule from
one domain to another depends on the extent to which the second domain has
already been developed. In Euler’s time, while the modern mathematical con-
cept of infinity was not developed, infinite series were an established concept,
and thus Euler’s work with infinite series had to fit with the structure already
developed. In other examples, the target domain is much less developed and the
analogiser may be able to define the domain such that a desired rule holds. Ex-
amples include the operations of addition/subtraction on the reals as analogous
to multiplication/division: both are commutative and associative, both have an
identity (though a different one) and both admit an inverse operation. Alterna-
tively, it may not be possible to define a target domain such that a particular
rule from a source domain holds: in Hamilton’s development of quaternions he
wanted to develop a new type of number which was analogous to complex num-
bers but consisted of triples. He was unable to define multiplication on triples,
but did discover a way of defining it for quadruples as i = j2 = k? = ijk = —1.
However, his multiplication was non-commutative, although it was still associa-
tive and distributive. Another possibility is that an analogiser may actively wish
to create a target domain in which a rule from a source domain is broken. One
example is the development by Martinez [12] of a system in which the tradi-
tional rule that (—1)(—1) = +1 is changed to (—1)(—1) = —1, resulting in a new
mathematical system.

Focusing on analogy as a way of developing new mathematical ideas raises
questions about how novel these ideas can be. By definition, an analogy-generated
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idea must share some sort of similarity with another domain, familiar to the cre-
ator. Thus the criterion of novelty, accepted as necessary for creative output
seems to be under threat. In this paper we leave aside such considerations: since
we consider the examples we give to be both unambiguously creative and un-
ambiguously based on analogy, it seems that any definition of novelty must not
exclude analogy. We intend to address this question in a future paper.
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