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Abstract
Oil-film interferometry is rapidly becoming the preferred method for direct measurement of
wall shear stress in studies of wall-bounded turbulent flows. Although being widely accepted
as the most accurate technique, it does have inherent measurement uncertainties, one of which
is associated with determining the fringe spacing. This is the focus of this paper. Conventional
analysis methods involve a certain level of user input and thus some subjectivity. In this paper,
we consider empirical mode decomposition (EMD) and the Hilbert transform as an alternative
tool for analyzing oil-film interferograms. In contrast to the commonly used Fourier-based
techniques, this new method is less subjective and, as it is based on the Hilbert transform, is
superior for treating amplitude and frequency modulated data. This makes it particularly
robust to wide differences in the quality of interferograms.

Keywords: oil-film interferometry, Hilbert–Huang transforms, empirical mode decomposition

1. Introduction

Wall shear stress, τw, in wall-bounded flows is an important
quantity that needs to be measured in studies of drag
characteristics, scaling of mean flow and other turbulence
statistics. The measurement of τw has been the focus of many
studies [1–5] and in recent years oil-film interferometry has
emerged as a preferred technique. The oil-film interferometer
provides a direct measure of the wall shear stress, as opposed
to the classical methods such as the Clauser chart [6, 7] and
the Preston tube [8, 9], which require a priori assumption
of known universal scaling laws. However, the analytical
methods used to extract the fringe spacing and hence the wall
shear stress, τw, from the oil-film interferograms introduce a
certain degree of user subjectivity. Common approaches that
exist for the extraction of the fringe spacing are the x–t diagram,
maximum entropy spectral techniques and correlation-based
methods. Details of the approaches for various applications
are available in numerous recent works [1–4, 10–12]. Ideally,
when it is assumed that the average wall shear stress is constant,
a line taken perpendicular to the fringe pattern will yield
a sinusoid with constant amplitude and wavenumber, where
maxima and minima will correspond to the center of the light

and dark bands of the interference pattern, respectively. The
fringe spacing could then easily be determined by finding
the dominant wavenumber using Fourier spectral methods.
However, when dealing with real interferograms the data are
rarely globally both linear and stationary. This makes accurate
identification of the dominant wavenumber difficult because
any globally non-uniform wavenumbers will cause energy
spreading and spurious harmonics to appear in the Fourier
energy spectrum. Most oil-film interferometry techniques
require a user-chosen line or region that is analyzed. Region
selection is also required because the oil-film interferograms
are sensitive to contamination, mainly due to dust, bubbles in
the oil or other contaminants. The process of selecting the
interrogation window can be problematic because there is no
systematic method and one relies on visual inspection of the
interferograms. In cases of highly contaminated oil films, the
entire sequence of interferograms might have to be discarded.

Here an alternative method is introduced for the extraction
of the fringe spacing from oil-film interferograms. This
method largely overcomes the limitations associated with the
Fourier transform as well as providing a method to estimate
the fringe spacing from contaminated interferograms. A
relatively new technique, the empirical mode decomposition
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(EMD) [13], coupled with the Hilbert transform allows one
to overcome the limitations of Fourier spectral methods and
can be used to analyze non-stationary and nonlinear data
series. The method involves two steps: first, EMD is
applied to the data series to obtain a set of intrinsic mode
functions (IMFs), which are symmetrical about the mean and
based on the intrinsic characteristic scales of the data itself.
In the second step, the Hilbert transform is applied to the
IMFs to generate the time–wavenumber–energy distribution
of the data. The EMD and Hilbert transform technique
developed by Huang et al [13] was originally used in the
study of nonlinear water waves [14] and is also referred
to as the Hilbert–Huang transform (HHT). The technique is
adapted here for the extraction of fringe spacing from oil-film
interferograms and overcomes largely the need to preselect the
region of interrogation, avoiding edge and three-dimensional
effects.

2. Oil-film interferometry

The oil-film interferometer measures wall shear stress, τw,
by determining the thinning rate of an oil film that is placed
on the bounding surface of the flow regime of interest. This
method of measuring the skin friction has been applied to
the study of canonical turbulent boundary layers, flows over
aerofoils and flows over turbine blades. The seminal work of
Tanner and Blows [15] established the relationship between
the wall shear stress and the thinning rate of the oil film,
which is governed by the thin oil-film equation of Squire [16].
Tanner [17, 18] and Tanner and Kulkarni [19] continued to
develop the technique and further work by Monson [20], and
Monson and Higuchi [21] modified and further improved the
oil-film interferometer. There are many variations of the oil-
film interferometry technique, and these fall into the categories
of point, line and image-based techniques. Designations
include the laser interferometer skin friction (LISF), fringe
imaging skin friction (FISF), global imaging skin friction
(GISF) and surface imaging skin friction (SISF) methods.
A comprehensive review of the various methods is given
by Naughton and Sheplak [3]. Over the course of time,
the technique has continued to evolve given the advances
in image acquisition technology and improvements to the
analysis techniques.

Oil-film interferometry is based on the relationship
between the thinning rate of the oil film and the three forces
that may act upon it: gravity, pressure and shear force. When
the oil film is sufficiently thin, the effect of gravity and pressure
forces becomes negligible and the thinning rate of the oil film
is assumed to be linear. A simple relationship then exists
between the thinning rate of the oil and the shear force acting
upon it. When a coordinate system is defined such that x is
the streamwise direction, y is the wall normal direction and z

is the spanwise direction, one can obtain the wall shear stress
as

τw =
2μoil

√
n2

oil − n2
air sin2 θ

λ

�x

�t
, (1)

where τw is the wall shear stress, λ is the wavelength of the
light source, μoil is the viscosity of the oil, noil and nair are

Figure 1. Examples of oil-film interferometry images from different
experiments. Only typical examples of contaminated images are
shown.

the refractive indices of the oil and air, respectively, θ is the
illumination incidence angle and �x is the difference in the
distance between consecutive fringes (relative to the leading
edge of the oil film) [2, 11, 21, 22]. Equation (1) is applicable
to flow where the thinning rate of the oil film can be assumed
to be linear and change in shear stress is small over the distance
that is being measured.

Figure 1 shows the evolution of oil drop as it is acted
upon by shear from an air flow passing over it under different
flow conditions. Initially, the droplet of oil is deformed by the
force acting on it and over time the oil spreads and thins to
form a film with thickness of the order of a few microns. The
fringes are generated by Fizeau interferometry and the fringe
spacing increases over time as the oil film becomes thinner.
In almost all laboratory applications, the oil films are subject
to contamination due to dust particles or air bubbles getting
caught in the film and these disturbances can be seen in sample
acquisitions shown in figure 1. If a line is taken through a
contaminated region in the interferogram, the resulting signal
of light intensity as a function of streamwise distance will
feature discontinuities. These spurious peaks are caused by
the dust particles that locally raise the oil film surface and hence
are highly reflective. It is also apparent that the disturbances
due to dust are not isolated and the flow around and behind
them is also altered; i.e. there is an effect on the observed
fringe spacing surrounding the disturbance. Since the wall
shear stress is based on the time history of the fringe spacing,
it is clear that the disturbances in the oil film pose a significant
problem because they will propagate through the entire time
history. This can lead to errors in the calculated value of
skin friction and if the films are severely contaminated, the
data must be discarded. Most analytical methods use some
form of region or line selection in order to avoid errors caused
by contamination of the oil films to propagate through the
analysis. One of the aims of this paper is to provide a technique
that will remove the subjectivity involved in selecting the
interrogation region. The following sections outline the use of
the empirical mode decomposition and the Hilbert transform

2



Meas. Sci. Technol. 21 (2010) 105405 K Chauhan et al

as a tool for the extraction of the fringe spacing in a method
that does not require such user inputs.

3. Techniques for analysis of interferograms

As mentioned earlier, estimating the thinning of the oil
film with time is an important requirement in accurate
determination of τw. This in turn requires calculating the
fringe spacing (in physical space) and its change with time.
For images that are acquired digitally this is easily done
by processing the images to determine the distance between
two consecutive fringes in terms of the pixels. A reference
calibration image then can provide conversion of �x in pixels
to �x in physical space. However, determining the fringe
spacing is not straightforward as the quality of images can
differ significantly as shown in figure 1. For the sample images
shown, it is observed that the interference pattern is visible in
all of them with a widely varying degree of clarity. Surface
contamination and dust in all of the examples cause an irregular
fringe pattern in the flow direction and are characterized with
non-uniform curvature. For a set of images acquired for a
particular flow, the presence of any dirt leads to the user
needing to determine the ‘region of analysis’, and this region of
analysis largely depends on the size of contamination, which
is not a control parameter. Accordingly, the usual procedure
involves windowing the data in order to

(a) avoid edge and three-dimensional effects introduced by
droplet curvature,

(b) select the portion of the interferogram or signal that is
locally linear and stationary and discard the rest in order
to use Fourier methods, and

(c) maximize the signal-to-noise ratio of the experimental
data.

Another feature to be noted is the varying features
of fringes as they appear different under different lighting
conditions and image acquisition setup. Thus, images with
weak contrast might again be difficult to use if a good region
of analysis is not visually identifiable. Typically, a set of
images with such contamination would be discarded if it were
to be analyzed by conventional techniques. As an example of
one of the conventional approaches, a composite x–t diagram
is shown in figure 2. This composite image is obtained by
choosing a fixed array of pixels in the flow direction from
multiple images acquired over time and then rearranging them
to exhibit the location of a particular fringe at x in time. The
fringe pattern in the composite image shows a linear relation
between the fringe spacing and time. Hence, the slope of line
drawn over the first fringe from the bottom is equivalent to
�x/�t , while a similar line on the second fringe pattern will
have a slope of 2�x/�t . A user can draw many such lines
on the x–t diagram and determine an average. However, a line
can be drawn on either edge or the center of a fringe, which
will result in different slope estimates. Also, one can only
utilize a small region of the diagram (lower right) to visually
identify fringe lines without ambiguity. Such an approach can
introduce errors that depend on the user’s selection criteria and
would not be consistent if the process is repeated. Hence, we

x
→
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g
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5Fs

Figure 2. An x–t diagram or composite image showing
development of the fringe pattern in time. The slope of the first dark
band is �x/�t .

aim to use the HHT as a robust and statistical procedure that
can extract the fringe spacing accurately even in the absence
of ‘ideal’ fringe patterns throughout and with minimal user
input.

The fast Fourier transform (FFT) is widely used in image
processing and is also applied to oil-film interferograms to
determine the fringe spacing. The Fourier transform f̂ (ω) of
an analytic function f (x) is given as

f̂ (ω) = 1

2π

∫ ∞

−∞
f (x) e−iωx dx. (2)

An FFT of the intensity profile will result in a spectrogram
which peaks at a wavenumber equivalent to the spacing
between two dark and light bands in the fringe patterns.
However, wavenumber determination by the FFT is only
accurate for a linear and stationary signal. Its applicability
also suffers from discontinuity, noise and signal length, which
are typically present in intensity profiles as shown in figures 3,
5 and 6. As the signal in practical application is always finite,
one can only calculate a discrete Fourier transform (DFT)
by an FFT algorithm within a limited frequency/wavenumber
range. The frequency range of a DFT depends on the sample
size of the finite signal. This aspect will be discussed later in
section 5.1.

The present study aims to improve on the techniques
to extract fringe spacing by utilizing the HHT, which is a
powerful tool in analysis of non-stationary data [13]. The
Hilbert transform of an analytic function X(t) is given as

Y (t) = P.V.
1

π

∫ ∞

−∞

X(τ)

t − τ
dτ, (3)

where P.V. indicates the Cauchy principal value. The Hilbert
transform can be thought of as the convolution of X(t) with
the function 1/(πt). An analytic signal Z(t) is obtained with
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Figure 3. Example 1. (a) IMFs of the intensity profile at a pixel line
shown by a dashed black line on the grayscale image on top. I is the
intensity profile, and Ci are IMFs. (b) Amplitude versus
wavenumber plots for the FFT and HHT. For the HHT, the
wavenumber for mode containing fringe characteristics is shown in
black and rest are in gray. A solid black line denotes the median of
wavenumbers of the dominant mode.

X(t) and Y (t) as a complex conjugate pair:
Z(t) = X(t) + i Y (t) = α(t) eiθ(t), (4)

in which

α(t) = [X2(t) + Y 2(t)]1/2, θ(t) = arctan

(
Y (t)

X(t)

)
. (5)

Here, α is the amplitude and θ is the phase angle. The polar
coordinate representation can be thought of as the best local
fit of an amplitude- and phase-varying trigonometric function
to X(t). A instantaneous frequency is then defined as

ω(t) = dθ(t)

dt
. (6)

A detailed discussion on instantaneous frequency and physical
interpretation of Hilbert transform can be found in Huang
et al [13] and Bendat and Piersol [23]. This definition of
instantaneous frequency cannot be applied to any arbitrary
signal. Physically, only one frequency exists at a particular
instance in time and hence it can only represent one component
of a signal. EMD proposed by Huang et al [13] decomposes
the signal into ‘mono-component’ signals using certain
criteria so that a relevant instantaneous frequency can be
obtained for each of those decomposed functions. Hilbert
transform applied to a signal in spatial domain would give the
instantaneous wavenumber, as in the present case.

3.1. Empirical mode decomposition

The EMD technique is applied to decompose a data series
into a set of intrinsic mode functions, or IMFs, so that the
information of physical significance contained within the data
can be obtained without distortion. Full details of these
techniques are given in Huang et al [13, 14] and Bendat and
Piersol [23]. By definition, IMFs must satisfy two conditions:

(1) the total number of extrema and zero-crossings at most
differ by one, and

(2) the local mean defined by the envelope formed by the local
maxima and the envelope formed by the local minima
must be equal to zero.

A ‘sifting process’ (see [13]) is used to identify and
separate the intrinsic modes of the signal, X(t). Once
identified, the maxima and minima are used to generate
the upper and lower envelope functions of the data. The
mean formed by the upper and lower envelopes, m1, is then
subtracted from the data to give h1. The procedure of
subtracting the mean of upper and lower envelopes is repeated
on h1:

X(t) − m1 = h1, (7)

h1 − m11 = h11, (8)

h11 − m12 = h12, (9)

↓
h1(k−1) − m1k = h1k.

(10)

If

SD =
∑

(h1(k−1) − h1k)
2∑

h2
1(k−1)

< 0.2–0.3, (11)

then C1 = h1k is an intrinsic mode. Once a function, C1, that
satisfies the IMF criteria is found, it becomes an IMF and is
then subtracted from the original data series:

X(t) − C1 = R1.
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The sifting procedure of equations (7)–(11) is repeated for
R1 to find the next intrinsic mode, C2. The entire process
is then repeated until all IMFs are obtained. Essentially, the
sifting process drives the mean of the envelopes formed by
the local maxima and local minima to zero in order to satisfy
the definition of an IMF. When all the IMFs are identified
and removed from the data, there remains a residual function,
which is generally the trend of the data series.

The sifting process requires a stop criterion; otherwise,
the generated IMFs will be modes of constant amplitude and
contain only frequency modulations. Without the amplitude
modulation, the modes lose their physical meaning [13]. The
stop criterion proposed by Huang et al [13] was to limit
the standard deviation between consecutive sifts to values
of between 0.2 and 0.3. Here, we impose the lower limit
and an additional criterion based on the number of maxima
or minima. If the number of maxima or minima falls
below a certain threshold, the sifting process is stopped.
In effect this implements a cutoff frequency to limit the
number of IMFs generated and also to prevent the generation
of spurious modes. The cutoff frequency will change for
different applications but is generally a proportion of the
lowest frequency occurring in the original data series. For
the particular case of interferograms, if the image has high
background noise a lower standard deviation is advised so
that noise is limited to the first few modes. A larger value
of standard deviation will inherently result in larger scatter in
instantaneous frequencies. On the other hand, imposing a limit
on the number of maxima/minima provides a means to limit
higher trend containing modes being generated. Such modes
contain low wavenumber features that are substantially lower
than the characteristic wavenumber corresponding to the fringe
spacing. Hence, increasing the standard deviation can lead to
larger errors in determining dominant wavenumber/frequency
of the characteristic IMF, while the number of maxima/minima
determined during sifting only affects the computational time.
The reader is referred to [13, 14] for details of the sifting
process and EMD.

When analyzing an oil-film interferogram, the data series
will consist of a line taken through an interferogram parallel
to the flow direction. The signal obtained will contain
multiple maxima and minima each corresponding to the light
and dark bands that appear in the interferogram. When
the EMD is applied to this signal, the time lapse between
successive extremum of one of the obtained IMFs will be
the fringe spacing of the oil-film interferogram. For oil-
film interferograms, the cutoff wavenumber is a factor of the
wavenumber that corresponds to the maximum fringe spacing
within the entire time series. This can be determined by
inspection of the last recorded interferogram.

4. The experimental database

Measurements were performed on the floor of the high
Reynolds number boundary layer wind tunnel (HRNBLWT)
at the University of Melbourne. Following are the important
features of the experiments that are relevant to results presented
here.

(a) Interferometry was performed at three different
streamwise stations: x = 8 m, 13 m and 21 m. The
freestream velocity was also varied to obtain a range of
Reynolds number, Rex between 6.7 × 106 and 3.5 × 107.
Most measurements were repeated a number of times
to check their repeatability and in case small problems
occurred. Also, multiple oil droplets are used side by side
to avoid repetition if a single oil film is contaminated.

(b) The oil-film measurements were all performed on a glass
plate mounted flush with the floor of the wind tunnel with
both the light source and the camera located underneath
the wind tunnel. The light source is a low pressure
sodium lamp SOX35 mounted in a box with a white
Plexiglas window to diffuse its light. The camera used
was a NIKON D200 mounted on a tripod and operated
remotely using NIKON CAPTURE PRO. The angle of
the floor and of the lens were measured with an electronic
inclinometer. The angle between the glass plate and the
camera was calculated from the difference between the
floor angle and the angle of the lens. The pictures were
recorded in the jpeg format, ‘fine’ quality with dimensions
in pixels of 3872 × 2592.

(c) Silicone oil with a viscosity of 20 cSt (mm2 s−1) is
used. The oil viscosity was measured and calibrated as a
function of temperature at Ecole Polytechnique Fédérale
de Lausanne (EPFL).

(d) Millimeter paper was placed on the glass plate as
a calibration grid and recorded as images to convert
the distance between successive fringes from pixels to
physical units.

For the present study, we focus on the techniques for
determining the fringe spacing and the results are only
shown for fringe spacing, Fs , in pixels. The uncertainty in
determining the τw largely comes from errors in determining
the rate of change of fringe spacing, oil viscosity and
calibration. By comparing results of fringe spacing in
pixels, the discussion of error related to oil viscosity and
image calibration is avoided as they depend on a particular
experimental setup. Further details of the facility are given by
Nickels et al [24] and Hutchins and Marusic [25], while Ng
et al [26] presents previous skin-friction results in the same
facility using oil-film interferometry.

5. Analysis examples

Figures 3, 5 and 6 show sample images with the interference
pattern from three separate flows with different freestream
velocities and ambient conditions. Each image seen on the
top is accompanied by a plot showing its grayscale intensity
(I) profile at a pixel location shown by the solid black line on
the image. Typically, the images acquired are in the indexed
RGB format and then converted to grayscale intensity. A
grayscale profile is preferred as it provides the most contrast
between the light and dark fringe patterns. The IMFs, Ci ,
obtained by EMD of the intensity profile are shown in plots
below each intensity profile. Each figure also shows the
amplitude of the Fourier and Hilbert transform plotted against
the wavenumber. The dominant wavenumber obtained from a

5



Meas. Sci. Technol. 21 (2010) 105405 K Chauhan et al

particular IMF is a function of pixels that on inversion produces
the wavelength, which is the fringe spacing, and has units of
pixels. One is only required to revert to the time domain
when determining the rate of change of the fringe spacing. As
here we are interested in determining the mean fringe spacing,
the amplitude information of each transform is only used to
determine the dominant wavenumber and not scaled to make
them equivalent.

Figure 3 shows a ‘clean’ image with the clear fringe
pattern reproduced well in the sinusoid wave-like characteristic
of the grayscale intensity. One can now use this profile
of intensity versus pixels as a signal and determine the
wavenumber characteristic of the wave pattern using a signal
processing algorithm. It is obvious that this intensity profile
is not stationary. The first three IMFs contain the small-scale
information associated with the noise in the signal. We find
that fringe characteristics of I are contained in the fourth mode,
C4. In the algorithm, a correlation between the original signal
and the individual IMFs is used to identify the intrinsic mode
that contains the fringe characteristics. Compared to I, C4 is
symmetric with zero mean. The last mode, C7, contains the
trend or the traveling mean of the signal, I. This is a typical
outcome of EMD where small-scale information is retained
in the first few modes while large scales or low wavenumber
characteristics appear in subsequent modes.

Adhering to common practice, the FFT is applied to the
mean subtracted intensity profile while the Hilbert transform
is applied to the individual IMFs, Ci . The Hilbert transform
when applied to the IMFs generated by EMD proposed by
Huang et al [13] are known as the Hilbert–Huang transform
(HHT). As the HHT gives wavenumber information which
varies with time, one can also create a Hilbert marginal
spectrum (wavenumber–amplitude–time map). However, for
comparison with the FFT and determination of dominant
wavenumber, the amplitude versus wavenumber plot shown
here will suffice. For each mode, n number of wavenumbers
are determined if the length of I is n pixels. As the dominant
wavenumber is retained in the fourth mode, it is shown in
black in the figure while the amplitude versus wavenumber
for the rest of the Ci are shown in gray for the HHT. The
wavenumber obtained from a Ci at a particular location in x
is associated with its local amplitude and does not necessarily
mean that a wave of that wavenumber was the most likely to
have persisted through the entire data series. Hence, a median
value of the instantaneous wavenumber of the fourth mode is
considered as the dominant wavenumber. This wavenumber
is shown by a solid black line on the HHT spectra plot. Five
‘×’ marks in the interferometry image for five fringes are
placed at a spacing equivalent to the inverse of dominant
wavenumber of the HHT spectra (solid black line). It is clear
that the instantaneous wavenumber obtained from the HHT
is physically relevant and results in a reliable estimate of the
fringe spacing. In comparison, the FFT spectrum in figure 3
also shows a sharp peak near the same wavenumber; however,
there is a considerable spread of energy at low wavenumber due
to the non-stationary behavior of I. This problem for the FFT
can be remedied by removing a traveling mean determined by
some method, e.g. a low order polynomial. However, it is not
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Figure 4. Fringe spacing for each pixel line in the spanwise
direction obtained for one image.

known a priori which functional form will provide the best
traveling mean. Such an approach also fails in the presence
of sharp discontinuity and low signal-to-noise ratio. For the
FFT, only the spectrum above a cutoff wavenumber of 5/n is
used to detect a peak to avoid the low wavenumber high energy
distribution.

The procedure outlined above is for 1 pixel line in the flow
direction. Similarly, the wavenumber is determined for all the
pixel lines (parallel to the one shown) in order to obtain a large
bin of wavenumbers which are similar. Figure 4 shows fringe
spacing obtained for the particular interferogram of figure 3
for all pixel lines using the FFT and HHT as one moves in
the spanwise direction (perpendicular to the flow). The three-
dimensional effect from the edge and curvature of the oil drop
manifests itself in the behavior of fringe spacing in the form
of increased Fs at both ends. The Fs for the HHT approach
is obtained as the median of wavenumbers of the dominant
mode (see figure 4(b)). Hence, FsHHT behavior has a scatter
to it while providing a continuous variation in the spanwise
direction. On the other hand, the FFT approach does not
detect small changes in the fringe spacing and gives a constant
FsFFT estimate near the middle of the thin film. The variation
in FsFFT at either end only appears as ‘step’ changes, which
is physically incorrect. Hence, for interferograms where the
width of the interference pattern is relatively small, the HHT
approach is better posed to identify a region near the center that
is devoid of three-dimensional effects. A mean or median of
these gives an overall wavenumber and hence the mean fringe
spacing that exists throughout the image.

Figure 5 shows a fringe pattern similar to figure 3 but has a
large dust particle present near xpixel ≈ 1000. This results in a
sharp discontinuity and drop in the intensity profile, which can
lead to dubious results if analyzed by a conventional method.
The interference pattern is also seen downstream of the dirt;
however, the amplitude of the wave is not uniform unlike the
region upstream of the dirt. Again the first three IMFs retain
the small-scale information while the fringe pattern appears in
C4. The fringe pattern downstream is seen in C4; however, it is
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Figure 5. Example 2. See figure 3 for detailed caption.

not uniform as it has been disturbed by the presence of the dirt.
The varying intensity is captured in C6 with a large dip in the
profile at the location of the dirt indicating that EMD is useful
in finding the moving mean even when sharp discontinuities
are present. Applying the HHT on C4, the fringe spacing is
obtained from the instantaneous wavenumber in HHT spectra,

which agrees well with fringes on the grayscale image (‘×’
marks). The FFT spectrum also shows a peak at the dominant
wavenumber but is not as distinct as compared to figure 3.
Also, identification of the peak wavenumber from the FFT
spectrum is difficult in this case as low wavenumber peaks are
amplified due to non-stationarity even if a threshold is used.

Figure 6 shows a clean image but it is acquired relatively
early in time as the interference pattern starts developing. The
fringe spacing and amplitude of the signal here is quite small
compared to the earlier two cases. Also, the width of the
oil film rapidly changes to become very narrow downstream.
This results in a very short region of signal with the meaningful
interference pattern (from xpixel ≈ 700 to xpixel ≈ 1600) that
can be analyzed at the section chosen to show the intensity
profile. Also, an unclean surface can lead to noise in the
intensity profile (seen downstream) which can be hard to
distinguish if the fringe spacing is small and the contrast is
weak. A large dip due to the thick oil that is still developing
is seen downstream near xpixel ≈ 200. For this particular
case, the fringe pattern is recovered in the second mode even
though it is hard to identify by visual inspection. This is not
surprising as the fringe spacing is very small and its period is
of the same order as the random noise in the signal, albeit with
a much larger amplitude. The HHT spectra for C2 (shown
in black) clearly distinguish the wavenumber associated with
fringes appearing with higher amplitude. The noise present
in C1 is at a relatively higher wavenumber with a very low
magnitude. Such wavenumber characteristics are impossible
to detect in the FFT spectrum, which fails to show a clear peak
at a wavenumber associated with the fringe spacing. Again,
non-stationarity poses a problem here. If one considers only a
part of the signal (e.g. from xpixel ≈ 800 to xpixel ≈ 1600) for
FFT analysis, then it might be possible to detect the dominant
wavenumber. However, choosing a region of analysis for
every flow and its many different interference images is not
practical. Before proceeding with a discussion of the results
and a comparison of the FFT and HHT, some challenges
encountered by both the methods will be discussed.

5.1. Challenges in implementing the FFT

The FFT, although being a very powerful and widely used
tool in signal processing, suffers many limitations in our
application of determining the fringe spacing. Here, the
demerits are only discussed with respect to the analysis of
oil-film interferograms. They are summarized as follows.

(i) The FFT is only accurate if the signal is linear and
stationary. As shown earlier, the intensity profiles from
oil-film acquisitions are rarely stationary. The FFT of
a non-stationary signal leads to high amplitudes at a
relatively low wavenumber, which makes it difficult to
distinguish the physically relevant wavelength associated
with fringe spacing.

(ii) A moving or traveling mean can be subtracted to remove
the non-stationarity from the signal. However, this
approach has to be tailored for the varying quality of the
images. Specific to interferograms, the non-stationary
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Figure 6. Example 3. See figure 3 for detailed caption.

behavior depends on the ambient light conditions and
hence, for different experimental setups different methods
for extracting the traveling mean might be needed. As
shown in figure 5, such an approach is still not helpful in
treating nonlinearity or discontinuities in the signal.
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Figure 7. (a) Two intensity profiles along a pixel line after
removing traveling mean from a set of acquisitions 80 s apart in the
same flow. (b) Amplitude of the FFT on the profiles.

(iii) For very small fringe spacings, the FFT provides no
qualitative distinction between the signal noise and the
wave itself. For images with weak contrast, this would
lead to a relatively flat spectrum making it difficult to
locate the peak.

(iv) The FFT for signals of length n can only resolve n/2 + 1
frequencies with each frequency cell being 2/n wide.
For the short sample size of a wave with a relatively
large period, the estimate of dominant frequency is
often inaccurate. This limitation is more prominently
encountered in interferograms with a small number of
fringes. Figure 7 shows intensity profiles from two images
acquired from the same flow. The dash-dotted profile
is from an image acquired at an earlier time while the
solid profile is from an image acquired after 80 s. It
is clearly seen that the distance between two subsequent
zero crossings for the solid line (five fringes) is higher
than the dash-dotted one (six fringes) indicating larger
fringe spacing. This is further evident by considering
that a sinusoidal pattern fitted to the intensity profiles will
give six crests for the dash-dotted line while five crests
for the solid line. However, the FFT spectrum for both
the profiles peaks at the same wavenumber because the
actual wavenumbers, say k1 and k2, correspond to the same
frequency cell. This resolution limitation is quite common
when the change in fringe spacing of two consecutive
image acquisitions is smaller than 2/n. The wavenumbers
in the discrete Fourier transform are linearly spaced and
hence the inverse of these would have a nonlinear variation
in physical or space coordinates. On the other hand, the
fringe spacing for oil-film interferograms changes linearly
with time and hence will require large sample lengths, n,
to resolve small changes in the low wavenumber (high
Fs) characteristics. Auto-correlation methods can help in
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Figure 8. IMFs for an intensity profile showing mode mixing
between C3 and C4.

overcoming this limitation if the curvature of fringes is
not too high.

5.2. Challenges in implementing the HHT

The main challenges encountered in implementing the HHT
are summarized as follows.

(i) When generating the envelopes required by EMD, the
treatment of end conditions requires special attention.
Typically, cubic splines are fitted to the local maxima
and minima in order to generate the upper and lower
envelopes. However, fitting a cubic spline to the data
can be problematic at the ends because large swings can
be generated [13]. These end swings can then propagate
inward, generating new artificial extremum and eventually
generating spurious intrinsic modes of low wavenumber.
To limit these, whilst maintaining low computational
expense, we have chosen to add a sine wave at both the
ends. The amplitude of this wave is characterized by the
first two extrema at each end. This approach works with
the assumption that the imaginary signal preceding and
following the signal has the same wave characteristics.

(ii) Another difficulty that is typically encountered is a
phenomena called ‘mode mixing’ [14]. Figure 8 shows
IMFs for an intensity profile which also has random noise
on the fringe pattern. After applying EMD, it is seen
that the wave characteristic associated with the fringe
pattern is present in both C3 and C4 instead of being
a continuous occurrence in either one of them. As the

same component of wavenumber is present in two modes,
one can say that the component of C4 is ‘mixed’ with C3.
Mode mixing occurs due to the presence of ‘riding waves’,
which are small wavelength and amplitude fluctuations
residing on top of larger waves. Mode mixing can be
a common occurrence in interferogram analysis as the
surface conditions are not ideal and small amplitude noise
is always present on the fringe pattern. Riding waves will
cause the envelope mean to travel along the signal instead
of its line of symmetry. Such mixing of modes can be
problematic when determining the dominant wavenumber
as the amplitude versus wavenumber characteristic of
C3 will be quite wide (both low and high wavenumbers
present). Also, the peak amplitude for both C3 and C4

will be attenuated. In the present study, the covariance
between the original signal and the individual IMFs is used
to determine which IMF contains the information of the
dominant wavenumber. Covariance being the measure
of how much two variables change together is a direct
means of statistically relating the original signal and IMF
with the fringe pattern. If mode mixing occurs, such a
statistical determination might fail because of the lack of
correlation for both the modes with the original signal.

One approach to tackle mode mixing is to evaluate the
distance between two consecutive zero crossings. For C3 in
figure 8, a histogram of the period between zero crossings
will be populated for both small and large periods. A upper
limit criterion can be implemented, which limits the period
size allowed in a particular mode. Any wave with a higher
period is then replaced by the local envelope mean so that it
is ‘forced’ to go to the next IMF, which by nature of EMD
should contain the large-scale information. Figure 9 shows
this implementation where the large amplitude and period
waves in C3 are replaced by the local mean and they now
appear in C4. The IMF C4 can now provide the dominant
wavenumber estimate more accurately. A low pass filter on
the original signal to remove the small-scale disturbances and
riding waves can also be used. Mode mixing rarely occurs
for a filtered signal. However, because the fringes spacing
typically changes from very small to quite large, such a filter
should only be implemented after a good estimate of accuracy
and errors of the overall procedure are known.

In the present study, we have not treated the data for mode
mixing by either of the above methods. The reason is to avoid
any sort of subjectivity to the analysis. The aim of this paper is
to use the HHT as a tool which can be adopted by readers for
similar studies. Hence, the strengths and weaknesses of the
HHT applied to interferograms are presented here by keeping
the procedure in an elementary form. A user can further make
improvements to the techniques by customizing it to their own
applications if required.

6. Results and discussion

Figures 10 and 11 plot fringe spacing versus time for two
zero pressure gradient boundary layer flow experiments in
the Melbourne wind tunnel. The fringe pattern seen in the
last image acquired is shown on the top. It should be noted

9



Meas. Sci. Technol. 21 (2010) 105405 K Chauhan et al

0

5

C1

0

5

C2

0

5

C3

0

5

C4

100

120

I

0 500 1000 1500 2000
90

100

110

Σ
C

5
−7

Pixels

Figure 9. IMFs for the same intensity profile as in figure 8 after
treating for mode mixing. The histogram of zero crossings is used to
exclude large period waves in C3. Note that C1 and C2 are the same
as in figure 8.

that in a particular experiment the images are captured at a
certain time interval which depends on the oil viscosity and
freestream velocity. In figures 10 and 11, the abscissa is the
image number, which can be conveniently converted to time by
multiplying the time interval between consecutive images. In
these experiments, multiple drops of oil were used side by side.
These are denoted by ‘a’, ‘b’ and ‘c’ on the image. The fringe
spacing for a particular image number is the ensemble mean
obtained from wavenumbers estimated from each streamwise
pixel line using the HHT and FFT. As the fringe spacing varies
linearly with time, a least-squares fit gives the slope, dFs/dt

(pixels s−1). A calibration image for each setup makes it
possible to obtain dFs/dt in m s−1, which can be substituted
in equation (1) for �x/�t . The numerical values of slope
obtained for each fringe pattern from the HHT and FFT are
listed on the plot along with their percentage difference. Also,
a parameter Fε is defined as

Fε =
√

1

N

∑
(FsHHT − FsFFT)2, (12)

where N is the total number of images fitted to estimate the
slope and FsHHT and FsFFT are the fringe spacing estimated
using the HHT and FFT, respectively. Here, Fε serves as a
statistical measure of difference between the HHT and FFT
estimates of fringe spacing in pixels.

The interference pattern in figure 10 is clean and devoid of
any dust or contamination. It is not surprising that the slopes
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Figure 10. Fringe spacing, Fs versus image number (time) for ZPG
flow in the Melbourne tunnel at U∞ = 20 m s−1 at station 3 (x ≈
21m). Symbols ‘◦’, ‘�’ and ‘+’ represent FsHHT for oil drops ‘a’, ‘b’
and ‘c’, respectively. Symbols ‘�’, ‘�’ and ‘×’ represent FsFFT for
oil drops ‘a’, ‘b’ and ‘c’, respectively. Solid lines are linear
least-squares fits. Note the shift of 30 units between data points for
‘a’, ‘b’ and ‘c’. The inset shows magnified comparison for the oil
film ‘c’ clearly showing the step change in FsFFT. Approximately
2000 pixels in the streamwise direction are used for EMD.

evaluated for the HHT and FFT agree very well with each
other. Also, Fε ≈ 3 suggests that the fringe spacing obtained
by these two methods would at most disagree by 9 pixels
(three standard deviations), which is quite small compared to
Fs ∼ 250 pixels for the final images. However, it should
be noted that such a good agreement is only obtained by
discarding Fs estimates by the FFT, which suffer from the
problem of wavenumber resolution. It can be seen that FsFFT

toward the end of the acquisition does not change for a certain
consecutive set of images and then suddenly jumps to a higher
value. This is due to the jump of dominant wavenumber
from one wavenumber cell to another as discussed earlier in
section 5.1. The data points which have the same Fs FFT as the
previous or next image are not used to determine the slope.
It is clear that in the absence of the HHT, the FFT would not
provide an accurate estimate of Fs for the latter part of the
acquisitions. The instantaneous wavenumber of the Hilbert
transform does not suffer from a limitation of wavenumber
range and only depends on the accuracy of determining dω/dt

(equation (6)). Hence, even when the fringe spacing is large
(or only a few fringes are seen in the interrogation region),
the HHT can provide an accurate estimate of the wavenumber
from the IMFs. This is clearly evident by the linear behavior
of FsHHT all throughout in contrast to the ‘step’ behavior of
FsFFT toward the end of the acquisition.
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‘a’ and ‘b’, respectively. Solid lines are linear least-squares fits.

Figure 11 shows a similar plot as figure 10 for
interferometry at different streamwise locations and freestream
velocities. Compared to figure 10, freestream velocity in this
case is lower, resulting in the maximum fringe spacing being
near 100 pixels (compared to ∼250 in figure 10) after the same
amount of time has elapsed. The problem of wavenumber
resolution is also present in this case. However, this particular
case has been chosen because of the presence of a distinctly
large dust particle on the left oil film ‘a’ and a patch of surface
contamination on oil film ‘b’. This results in a very poor
interference pattern that would be discarded if analyzed by
any conventional approach like the x–t diagram of figure 2.
Even selecting a clear region of the fringe pattern manually
would be difficult as it would have a only small region with a
clear interference pattern. However, it is found that the HHT
approach works consistently well even in this case resulting
in linear behavior of FsHHT. On the other hand, FsFFT shows
considerable scatter along its linear behavior resulting in a
2.1% difference in the estimated slope for oil film ‘b’. Such
a difference is significant as the expected accuracy of oil-
film interferometry is to be typically bound within ±1.5%.
The estimate of wall shear stress can only be as accurate
as the accuracy of the estimated slope (�x/�t) if the other
parameters are accurately known. In contrast, even though the
inference pattern in ‘b’ is not clear, we see that the percentage
difference between FsHHT and FsFFT is relatively small. This
is due to the overall larger width of the oil film in ‘b’, which
initially contained a larger volume of oil drop to start with.
A wider fringe pattern gives more samples of wavenumber
that are estimated from pixel lines in the flow direction and
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Figure 12. (a) Percentage difference for dFs/dt between the FFT
and HHT approach for all interferograms (each data point
corresponds to a single oil drop). Symbols denote: ‘•’, ‘�’ and ‘�’
for U∞ = 12, 17 and 21 m s−1, respectively, at station 1; ‘×’ for
U∞ = 12 m s−1 at station 2; ‘�’, ‘�’, ‘�’ and ‘	’ for U∞ = 10, 15,
20 and 25 m s−1, respectively, at station 3. (b) Root-mean-square
error of linear fit to the Fs versus t data for the FFT and HHT
approach. ‘•’, RMSE for fits to FsFFT versus t; ‘�’, RMSE for fits to
FsHHT versus t. Data points are arranged in increasing order of
RMSE from the FFT approach (‘•’) and dashed line is half its value.

subsequently averaged. A small oil drop will form a narrow
fringe pattern with high curvature and the three-dimensional
effects can lead to an inaccurate fringe spacing estimate.

Finally, figure 12 shows two comparisons for the FFT
and HHT approach to find dFs/dt . First, the percentage
difference between dFs/dt obtained using the FFT and HHT is
shown in figure 12(a) for all 60 cases of oil-film interferograms
available from the experiments for the zero pressure gradient
boundary layer. These include measurement at different
stations with different freestream velocities and also the
multiple acquisitions made for similar flow conditions. It
is found that the typical difference between the FFT and
HHT approaches for estimated dFs/dt is within ±1%, which
is about the same as the expected error in determining τw

from oil-film interferometry. This emphasizes the need for
accurately determining dFs/dt , an error in which linearly
contributes to the error of τw (equation (1)). As the thickness of
thin film changes linearly with time, we compare the linearity
of Fs versus t obtained using FFT and HHT approaches. This
is achieved by comparing the root-mean-square error (RMSE)
of linear fits to Fs versus t as shown in figure 12(b). A small
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RMSE would indicate that the estimated development of Fs

versus t is in close agreement to the physical linear behavior. It
is clear from figure 12(b) that the HHT approach considerably
improves the accuracy of estimating the linear variation of
Fs versus t with RMSE less than half of RMSE for the FFT
approach. Hence, figure 12(b) compliments figure 12(a) to
indicate that the error involved in determining dFs/dt can be
reduced by at least 50% by adopting the HHT approach.

7. Conclusions

In the present study, a large database of oil-film interferometry
acquisitions is analyzed using two approaches: FFT and HHT.
While FFT methods are conventionally used in determining the
fringe spacing, they often require some user input in the form
of region selection, removal of non-stationarity and sometimes
peak identification. Even when such care is implemented in
the analysis, it still falls short of being accurate for images that
have dust and contamination. The Hilbert–Huang transform
on the other hand does not suffer from the limitations of
the FFT listed in section 5.1, and although, it poses its own
challenges in the form of mode mixing and end effects, these
are not found to be limiting for application. Both mode mixing
and end effects can be treated by adopting the EMD algorithms
to suit the characteristics of the signal being measured, though
the higher computational cost associated with EMD (and
sifting) is unavoidable. On the other hand, the FFT is simple
to implement and computationally fast algorithms are readily
available due to its popularity. Overall, key benefits of using
the HHT over the FFT as a procedure for extracting fringe
spacing can be explicitly listed as follows.

(i) The HHT does not suffer from the problem of inadequate
wavenumber resolution. The instantaneous wavenumber
only depends on the shape of the IMF and hence the
HHT even on a short signal length can provide significant
information.

(ii) EMD isolates the fringe characteristics to a particular
IMF while the noise and low wavenumber characteristics
are typically in other modes. Hence, wavenumber
identification is relatively easier as compared to the FFT
spectrum.

(iii) The HHT can be applied to non-stationary and nonlinear
data. It can also handle interferograms with dirt
and surface contamination, which can have sharp
discontinuities and uneven wave patterns in the intensity
profile.

It is advisable to have a sufficiently high number of
fringes in the images acquired to use the Fourier transform
for extracting fringe spacing. Typically, one has to balance
between three important parameters in the experiment: the
freestream velocity, the viscosity of oil and the time available
for the acquisition of interferograms. This requires choosing
different oil viscosities for different freestream velocities for
best result. At high freestream velocities, the fringe spacing
can be quite large and the oil film is closest to the thin-
film approximation. A high oil viscosity is preferred in such
instances. On the other hand, short acquisition times would

require relatively low viscosity of oil so that enough linear
change in fringe spacing is observed to determine the slope.
Such an adaptation of parameters is not straightforward and
tedious. The approach of using the HHT eliminates such
tweaking of parameters as it is able to extract fringe spacing
even from short signal length or interferograms with few
fringes visible. Also, it provides a good linear estimate of
Fs even over short acquisition times to reliably estimate the
slope, dFs/dt (see figure 10).

It should be noted that the HHT approach does require
some user adaptation in the form of selecting the right sifting
stop criteria, treatment of end effects, treatment of mode
mixing and extracting a single value of wavenumber from
a time-varying wavenumber distribution. However, these only
affect the quantitative results presented in this paper while
the inherent advantages over Fourier methods remain intact.
The advantages and applicability of the HHT makes it a very
robust technique to determine fringe spacing. As highlighted
in the previous section, the HHT approach determines dFs/dt

more accurately than the FFT, while their results can differ by
few a percentage. Hence, using the HHT as a primary tool in
analysis of interferograms will only improve the already most
accurate technique of oil-film interferometry for wall shear
stress measurements.
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[4] Rüedi J D, Nagib H, Österlund J and Monkewitz P A 2003
Evaluation of three techniques for wall-shear measurements
in three-dimensional flows Exp. Fluids 35 389–96

[5] Heuer W D C and Marusic I 2005 Turbulence wall-shear stress
sensor for the atmospheric surface layer Meas. Sci. Technol.
16 1644–9

[6] Clauser F H 1954 Turbulent boundary layers in adverse
pressure gradients J. Aeronaut. Sci. 21 91–108

[7] Clauser F H 1956 The turbulent boundary layer Adv. Appl.
Mech. 4 1–51

[8] Preston J H 1954 Determination of turbulent skin friction by
means of pitot tubes J. R. Aeronaut. Soc. 58 109–21

[9] Patel V C 1965 Calibration of the Preston tube and limitations
on its use in pressure gradients J. Fluid Mech. 23 185–208

[10] Naughton J W, Robinson J and Durgesh V 2003 Oil-film
interferometry measurement of skin friction—analysis and
description of Matlab program Proc. 20th Int. Congress on

12

http://dx.doi.org/10.1088/0957-0233/7/10/010
http://dx.doi.org/10.1016/S0376-0421(02)00031-3
http://dx.doi.org/10.1007/s00348-003-0650-9
http://dx.doi.org/10.1088/0957-0233/16/8/015
http://dx.doi.org/10.1017/S0022112065001301


Meas. Sci. Technol. 21 (2010) 105405 K Chauhan et al

Instrumentation in Aerospace Simulation Facilities
pp 169–178

[11] Zilliac G G 1996 Further developments of the fringe imaging
skin friction technique NASA Technical Memorandum
110425

[12] Decker R K, Naughton J W and Jafari F 2000 Automatic
fringe detection for oil film interferometric skin friction
measurement 9th Int. Symp. on Flow Visualisation
ed I Grant and G M Carlomagno, paper 368

[13] Huang N E, Zheng S, Long S R, Wu M C, Shih H H, Zheng Q,
Yen N, Tung C C and Liu H H 1998 The empirical mode
decomposition and the Hilbert spectrum for non-linear and
non-stationary time series analysis Proc. R. Soc. A
454 903–95

[14] Huang N E, Zheng S and Long S R 1999 A new view of
nonlinear water waves: the Hilbert spectrum Annu. Rev.
Fluid Mech. 31 417–57

[15] Tanner L H and Blows L G 1976 A study of the motion of oil
films on surfaces in air flow, with application to the
measurement of skin friction J. Phys. E: Sci. Instrum.
9 194–202

[16] Squire L C 1961 The motion of a thin oil sheet under the
steady boundary layer on a body J. Fluid Mech. 11 161–79

[17] Tanner L H 1977 A comparison of the viscosity balance and
Preston tube methods of skin friction measurement J. Phys.
E: Sci. Instrum. 10 627–32

[18] Tanner L H 1977 A skin friction meter, using the viscosity
balance principle, suitable for use with flat or curved metal

surfaces (based on thickness measurement) J. Phys. E: Sci.
Instrum. 10 278–84

[19] Tanner L H and Kulkarni V G 1976 The viscosity balance
method of skin friction measurement: further developments
including applications to three-dimensional flow J. Phys. E:
Sci. Instrum. 9 1114–21

[20] Monson D J 1983 A nonintrusive laser interferometer method
for measurement of skin friction Exp. Fluids 1 15–22

[21] Monson D J and Higuchi H 1981 Skin friction measurements
by a dual-laser-beam interferometer technique AIAA J.
19 739–44
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