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Abstract—Many websites customize their services ac-
cording to different geo-locations of users, to provide
more relevant content and better responsiveness, including
Google, Craigslist, etc. Recently, mobile devices further
allow web applications to directly read users’ geo-location
information from GPS sensors. However, if such websites
leave location-sensitive content in the browser cache, other
sites can sniff users’ geo-locations by utilizing timing side-
channels. In this paper, we demonstrate that such geo-
location leakage channels are widely open in popular
web applications today, including 62% of Alexa Top 100
websites. With geo-inference attacks that measure the
timing of browser cache queries, we can locate users’
countries, cities and neighborhoods in our case studies.
We also discuss whether existing defenses can effectively
prevent such attacks and additional support required for
a better defense deployment.

I. INTRODUCTION

Geo-location is a type of privacy-sensitive infor-
mation. Websites have strong interests in obtaining
users’ geo-location information to provide personalized
services and advertisements. On the other hand, web
attackers [1] misuse victims’ geo-locations for spear
phishing, personally targeted advertisements, or even
social engineering attacks. Geo-location leakage can
cause tremendous damage to the user’s privacy.

A traditional way for websites to identify users’
locations is through IP addresses [2], [3]. However,
inferring location from IP addresses is unreliable. First,
IP address-based geo-location tracking is not accurate
for mobile networks [4]. For example, one recent study
shows that more than 90% of the mobile devices in
Seattle can be associated with IP addresses that are
located over 600 miles away from Seattle [4]. Second,
users may intentionally use anonymization services,
such as VPN [5] and Tor [6], to hide their real IP
addresses [7].

Recent advancement in mobile devices enables web-
sites to obtain geo-location information from GPS sen-
sors. Nevertheless, modern browsers disable the access
to geo-location information by default to protect user
privacy. Mobile browsers require users’ explicit permis-
sion to access GPS data. In this work, we show that web

attackers can utilize side channels to infer the user’s
geo-location without the user’s explicit permission.

Prior research has unravelled numerous privacy
leakage side-channels via the browser cache [8]–[13].
Specifically, timing attacks on browser cache were in-
troduced to sniff browsing history more than a decade
ago [8]. Bortz et al. later deployed similar timing
attacks on more web applications and scenarios [9].
We demonstrate how such timing side channels caused
by browser caches can be utilized to identify a user’s
geo-location with high accuracy, without permission to
access GPS sensors. We term such attacks geo-location
inference (or geo-inference) attacks.

Our geo-inference attacks are based on a simple
assumption that users usually visit location-oriented
websites provided for their locations that they live in or
plan to visit. For example, when visiting Google’s main
page, users will be automatically redirected to their spe-
cific country page of Google, e.g., www.google.com.sg
in Singapore. As another example, many sites are meant
to be accessed by local residents, such as local ad-
vertisement websites, e.g., sfbay.craigslist.org for San
Fransisco Bay Area users. Under this assumption, we
conduct experiments on three popular websites, Google,
Craigslist and Google Maps. We demonstrate that with
geo-inference attacks via the browser cache, attackers
can reliably infer a user’s country, city, neighborhood,
and even home address.

Our geo-inference attacks affect all mainstream
browsers and a large fraction of popular websites on
both desktop and mobile browsers. After running ex-
periments on five mainstream browsers, we find that
Chrome, Firefox, Safari, Opera, IE and even TorBrowser
(version 3.5.2.1) [6], are all vulnerable to geo-inference
attacks. Aided by a multi-country proxy service (virtual
private network), we’ve browsed Alexa Top 100 web-
sites in five different countries (USA, UK, Australia,
Japan, and Singapore), and identified the sites that
contain location-sensitive resources. Besides the three
popular sites, we show that 62% of these sites contain
location-sensitive resources and are susceptible to geo-
inference attacks.



Security researchers have proposed various defense
solutions against browser cache sniffing [14]–[16]. Jack-
son et al. propose a defense solution by segregating
browser cache based on web origins, thus limiting web
attackers from observing timing differences between
accessing cached and non-cached cross-origin web re-
sources [15]. However, none of today’s mainstream
browsers have adopted it so far; part of the reason is
the significant performance overhead incurred by it. To
validate this hypothesis, we implement the same-origin
caching policy [15] on Chromium. We find that the
policy triggers more than 50% performance overhead
among Alexa Top 100 websites. In the context of geo-
inference attacks, we believe that server-aided cache
control, which involves the cooperation of both the
server and the browser, is a more practical solution than
cache segregation policy at only the browser side.

Contributions. In summary, we make the following
contributions:

• We introduce geo-inference attacks that exploit
geo-location information leakage channels via
the browser cache on desktop and mobile plat-
forms without direct access to GPS or IP ad-
dress. With such geo-inference attacks, we can
reliably track the geo-locations of web users to
their countries, cities, and neighborhoods.

• We show that all five mainstream browsers
(Chrome, Firefox, Safari, Opera and IE) on
both desktop and mobile platforms as well
as TorBrowser are vulnerable to geo-inference
attacks. Meanwhile, 62% of Alexa Top 100
websites are susceptible to geo-inference at-
tacks.

• We discuss existing and potential defenses and
propose a more balanced solution to segregate
location-sensitive resources instead of caching
them in the user’s browser.

II. PROBLEM DEFINITION

A. Threat Model

The adversary in a geo-inference attack is a standard
web attacker [1], who controls at least one web server
and hosts a malicious site, e.g., attacker.com. The web
attacker can run JavaScript on the malicious site, but
is not capable of compromising the browser code,
or bypassing the same-origin policy. To advertise the
malicious site, the attacker can promote the popularity
of the site via Search Engine Optimization (SEO), and
disseminate its shortened URL through emails, social
networks and advertisements.

We assume that Alice is an ordinary web user who
does not clear browser cache frequently, and she usually
visits geo-location-oriented sites specific to her geo-
location, e.g., Google, Craigslist, and Google Maps,

Attacker.com 
Attacker.com 

Browser Cache 

Country  
City  Neighborhood  

Attacker’s 
Website 

Fig. 1: Geo-inference attacks sniff location-sensitive re-
sources left by the location-oriented sites (e.g., Google,
Craigslist, and Google Maps) through timing side chan-
nels in the browser cache to infer the victim’s geo-
location.

so that she can take advantage of the customized lo-
cal location-oriented services. When Alice visits the
attacker’s malicious site in her browser, she denies the
unfamiliar site’s request to access the device’s location.
However, the malicious payload in attacker.com can
sniff the location-sensitive resources left by the location-
oriented sites through side channels in the browser, as
Figure 1 shows.

If Alice manually changes the location-oriented ser-
vice to a location different from her location, and she
never visits any websites provided for local people, her
location will not be leaked to attackers, but she also
loses the benefits of customized services for local users.

B. Browser Cache Timing Channels

In order to reduce the page load time of websites, all
present mainstream browsers utilize memory cache or
disk cache to save infrequently changed resources such
as image files, JavaScript files, CSS files and so on [17].
Once the resources are cached locally, the browser can
fetch the resources from local cached copies instead
of downloading from the original website. Thus the
browser cache reduces the page load time of the website
by decreasing the round-trip time.

While browser cache provides efficiency in loading
pages to users, it also introduces side channels to
attackers. In a nutshell, by measuring the resources load
time for a specific site twice in a victim’s browser, the
attacker can calculate the difference in the resources
load time. If the difference is smaller than a threshold,
it indicates that the user has visited this site previously;
otherwise, the user has not. These implicit attacks are
called timing attacks on browser cache [8].



C. Geo-Inference Attacks via the Browser Cache

As a typical case of attacks on browsing history,
Wondracek et al. de-anonymize social network users
by analyzing users’ visited URLs [10]. In this pa-
per, we show the implication of timing attacks in de-
anonymizing the user’s geo-location. Our main observa-
tion is that to improve user experience, websites usually
provide geo-targeting services, e.g., Craigslist maintains
city-specific sites to serve users in different cities.

In geo-inference attacks, the attacker makes guesses
on the victim’s geo-location, and then queries the cached
resources corresponding to the geo-location. By uti-
lizing the location-sensitive resources left by location-
oriented sites in the browser, geo-inference attacks pro-
vide an oracle for attackers to verify the user’s country,
city, or neighborhood. For example, a paper author
wants to check which one of the 20 PC members visits
the supplementary website provided in an anonymous
submission for review. Suppose the PC members are
known to be from 20 different cities. The author can
mount our geo-inference attacks on the website to locate
the PC member, which queries whether the visitor of the
website comes from any of the 20 cities. The author has
a fare chance to successfully infer the reviewer of the
paper, even if the visit is made through a web proxy.

III. GEO-INFERENCE ATTACKS: CASE STUDY

In this section, we show how to conduct geo-
inference attacks at various granularity with mainstream
browsers. We set up a web site that contains scripts to
explore side channels from browser cache. We use two
well-known timing channels, including page load time
in frames and resources (e.g., image file) load time. We
also utilize two other vectors for querying, which have
not been widely explored, i.e., Cross-Origin Resource
Sharing (CORS) and <img>’s complete property. To-
gether, these channels are practical ways to query cache
states in present web browsers.

A. Locate Your Country

Google has 191 geography-specific domains to pro-
vide enhanced service for users. Usually, when a user
opens google.com to search, Google will automatically
redirect the page to the local Google site hosted in the
user’s physical location, e.g., google.com.sg. This makes
Google a good case study for geo-inference attacks to
locate the user’s country.

In order to infer a user’s country, we aim to
find out which page from 191 Google’s domains hits
cache. To achieve this, we utilize Google’s logo image,
whose URL consists of Google’s local domain, e.g.,
google.com.sg, and /images/srpr/logo11w.png to specify
Google’s website. We demonstrate three ways to locate
the user’s country.

1) Geo-Inference Attacks with Image Load Time:
Page load time [18] is the period of time from the
initiation of the page load (e.g., click on a page link)
to its completion in the browser. It usually consists
of HTTP/HTTPS request time, response time, and the
overhead of parsing and rendering the page in the
browser.

Image load time is similar to page load time, which
is the interval between requesting the image file and fin-
ishing rendering the image in the browser. We measured
the image load time of Google logos from Google’s 191
regional domains to determine the geo-location of the
victim.

Measurement Techniques. We set the start time as
an attribute of the image tag, and set the end time in
the onload event handler. We make three measurements
of the image load time, the first measurement without
cache and the latter two with cache. If the first image
load time is significantly larger than the latter two, we
infer that the image is not cached in the user’s browser.
If the time difference is significantly small, e.g., 10 ms,
we infer that the image hits cache. Since each logo
stands for one local domain, and one domain is hosted
in one country, which country’s logo out of 191 logos
is cached indicates the country the victim lives in.

Below is the piece of code to measure the image
load time.

var image = document.createElement(‘img’);
image.setAttribute(‘startTime’, (new Date().

getTime()));
image.onload = function()
{

var endTime = new Date().getTime();
var loadTime = endTime - parseInt(this.

getAttribute(‘startTime’));
......

}

Listing 1: Measuring the image load time with
JavaScript

Results. We found that the image load time of each
Google’s domain without cache is much larger than that
with cache. We show the difference in Figure 2 as well
as Figure 8 in the Appendix. Because there is only one
request for the Google’s logo image, when reloading the
cached image file, the browser directly reads it from the
cache, and the average image load time is usually 1 ms
or 0 ms.

We have evaluated 191 Google’s regional domains
on five mainstream browsers, including Chrome, Fire-
fox, Safari, Opera and IE, on both desktop and mobile
platforms. We switch the region to US, UK, Australia,
Singapore, and Japan with a multi-country proxy ser-
vice (virtual private network). According to the results,
there are no big differences among results from these
browsers. Due to the limited space, we only show the
Singapore-based results in Chrome as the representative



TABLE I: Geo-inference attacks on mainstream browsers

I II III IV V
Chrome (Linux, Windows & OS X + Android & iOS) 3 3 – 3 3
Firefox (Linux, Windows & OS X + Android) 3 – 3 3 3
Safari (Windows & OS X + iOS) 3 – 3 3 3
Opera (Linux, Windows & OS X + Android & iOS) 3 3 – 3 3
IE (Windows) 3 – 3 3 3

I : Locate Your Country with Image Load Time
II : Locate Your Country with Cross-Origin Resource Sharing (CORS)
III: Locate Your Country with <img>’s complete Property
IV: Locate Your City with Craigslist
V : Locate Your Neighbourhood with Google Maps
3 : Susceptible
– : Not Susceptible
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Fig. 2: Difference in image load time (in millisecond): Without Cache (> 129 ms) v.s. With Cache (0 ∼ 1 ms), for
191 Google’s regional domains in Chrome on Mac OS X.

in this paper. Table I shows the details of other browsers
and platforms. We present the experimental results on
Android in the Appendix.

2) Geo-Inference Attacks with Cross-Origin Re-
source Sharing (CORS): Cross-origin resource sharing
(CORS) [19] allows JavaScript to make XMLHttpRe-
quests to another origin. Although Google does not
allow JavaScript in other origins to read XMLHttpRe-
quests responses from Google, we can still measure
the time interval between sending XMLHttpRequests to
Google and receiving the rejection responses.

Measurement Techniques. We set the start time in the
onloadstart event handler, and set the end time in the
onloadend event handler. We measured three rounds of
the request load time of Google’s logo from Google’s
191 regional domains. The big difference between the
first round and last two rounds indicates a cache miss
for the image. If the request load time is approximately
same for three rounds, the image is cached in the user’s
browser.

Below is the piece of code to measure the load time
of XMLHttpRequests.

var starTime, endTime, loadTime;
var xmlhttp = new XMLHttpRequest();
xmlhttp.onloadstart = function()
{

startTime = (new Date()).getTime();
}
xmlhttp.onloadend = function()
{

endTime = (new Date()).getTime();
loadTime = endTime - startTime;
......

}

Listing 2: Measuring the load time for
XMLHttpRequests

Results. We found that the request load time without
cache is larger than that with cache. Similar to Figure 2,
Figure 3 shows the difference, which indicates that
it is practical to locate users’ countries in this way.
Figure 9 in the Appendix shows that this method is
also applicable to mobile browsers.

3) Geo-Inference Attacks with <img>’s complete
Property: As for the <img> tag in HTML, it has
complete property to indicate that the image file fin-
ishes loading. We found that this attribute also indi-
cates whether the image file is cached or not in some
browsers.

Measurement Techniques. We created <img> ele-
ments for each URL of Google’s regional domains, and
check the complete property of each element. If the
return value is true, the image is cached in the user’s
browser; otherwise, the image is not cached.

Below is the piece of code to distinguish whether
the image file is cached or not.

function cached(url)
{

var image = document.createElement(‘img’);
image.src = url;
return image.complete || image.width+image.

height > 0;
}

Listing 3: Distinguishing whether an image file is
cached or not
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Fig. 3: Difference in load time (in millisecond) for XMLHttpRequests: Without Cache (> 100 ms) v.s. That With
Cache (0 ∼ 1 ms), for 191 Google’s regional domains in Chrome on Mac OS X.
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Fig. 4: The big difference between the page load time (in millisecond) of 100 Craigslist sites without cache (> 1000
ms) and with cache (≈ 220 ms) indicates geo-inference attacks with Craigslist in Chrome on Mac OS X.

Results. We have evaluated Google’s 191 regional do-
mains, and this method can reliably distinguish cache hit
from cache miss. This method works on Firefox, Safari
and IE, but is not applicable for Chrome and Opera.

B. Locate Your City

Several websites offer content specific to cities,
e.g., Craigslist [20] is a large classified advertisements
website that covers 712 cities on the world. Since all the
sub-sites are city-oriented and can be loaded in frames,
we measured the page load time to locate the user’s city.

Measurement Techniques. We set the start time as an
attribute of the iframe, and set the end time in the onload
event handler. We measured the page load time of
Craigslist’s 712 city-oriented websites in iframes three
times. If the difference between the page load time at
the first attempt and the latter two is significantly large,
e.g., 500 ms, we infer that the page is not cached in the
user’s browser; otherwise, the page has been visited.
From the recently visited page (cached page), we can
determine the victim’s city.

Below is the piece of code to measure the page load
time of Craigslist sub-sites.

var page = document.createElement(‘iframe’);
page.setAttribute(‘startTime’, (new Date()).

getTime());
page.onload = function ()
{

var endTime = (new Date()).getTime();
var loadTime = ( endTime - parseInt(this.

getAttribute(‘startTime’)));
......

}

Listing 4: Measuring the page load time of Craigslist
sub-sites

Results. Our attacks can reliably identify whether a
city-specific page is cached in the user’s browser. We
consider the average page load time of the latter two
measurements as the time with cache. As Figure 4 as
well as Figure 10 in the Appendix demonstrates, the
difference is quite large. Due to more resources that
Craigslist contains than Google’s logo (only one image
file), the page load time with cache is around 220 ms
on desktop or 620 ms on mobile, which is much higher
than 0 ms in Figure 2 and Figure 8.

Since the user buys or sells goods on Craigslist
mostly in his/her city, the attacker can reveal the vic-
tim’s real city with this method, even if they use VPN
or Tor.

C. Locate Your Neighborhood

To extend our study to finer granularity than city
level, we exploit the cached resources from online map
service websites, e.g., Google Maps.

Google Maps [21] is a web map service supported
by Google, which provides maps and street views at
each place. When a user searches one place, Google
Maps presents the specific area to the user and the
user can zoom in/out to control the map precision.
Furthermore, the user can click on the area to see the
street views mapping to the area. For all the searching
and locating steps, Google Maps will request and fetch
numerous map tiles from the web server.

In fact, the maps are tessellations of map tiles,
and each tile localizes at a predicable URL. After
manually analyzing the URLs of the requests for map
tiles, we figure out that the URLs have some patterns



https://www.google.com.sg/maps/vt/pb= 
!1m5!1m4!1i15!2i12627!3i23720!4i128!2m1!1e0!3m3!5e1105!12m1!1e47!4e0 

(12627, 23720) 

Grand Loop Rd, Yellowstone National 
Park, WY 82190, USA  

Fig. 5: URLs of map tiles have static mappings to geo-locations in Google Maps.
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Fig. 6: Difference in page load time (in millisecond): Without Cache (> 50 ms) v.s. With Cache (0 ∼ 1 ms), for
4,646 map tiles of New York City from Google Maps in Chrome on Mac OS X.

that are a function of real geo-location coordinates1.
For example, as Figure 5 shows, we can derive the
coordinates (12627, 23720) of “Grand Loop Rd” from
the requesting URL. Though the coordinates are not
the real geographic coordinates, we can predict the
URLs of one specific area’s map tiles corresponding
with the coordinates. By recording the coordinates of
all the vertices on the area, we can traverse all the
possible points inside the area. After converting the
coordinates to URLs, we measured the image load time
of the map tiles in the victim’s city, which is verified
by Craigslist. As Google Maps usually zooms in to the
user’s current location when the user starts to browse
Google Maps in the browser, by sniffing the victim’s
recently visited map tiles, we can locate the victim’s
streets and neighborhood.

Measurement Techniques. We set the start time as
an attribute of the image, and set the end time in the
onload event handler. In our experiments, we measured
the image load time for all 4,646 map tiles in New York
City on Google Maps three times. If the image load time
at the first attempt is much larger than the latter two,
e.g., 40 ms, it indicates a cache miss for the image. If
the difference between each time is quite small, e.g., 10
ms, the image hits cache.

Results. We found that the image load time of map tiles
from Google Maps without cache is much larger than
that with cache. Therefore, we can reliably determine
the user’s location via measuring the image load time
of map tiles in the user’s city. As Figure 6 as well as

1We have investigated 11 websites that provide map service,
including Google Maps, Bing Maps, Yahoo! Maps, arcGIS, HERE,
OpenStreetMap, ViaMichelin, MapQuest, WikiMapia, Navionics and
Mappy. We found that the URLs of map tiles from these sites are all
statically predictable.

Figure 11 in the Appendix shows, the huge difference
makes it quite straightforward to distinguish whether the
specific map tile is cached in the browser or not.

IV. GEO-TARGETING ON ALEXA TOP 100
WEBSITES

In addition to our case studies with Google,
Craigslist and Google Maps, we also show that a set of
popular websites is susceptible to geo-inference attacks.
We present our results from two aspects.

A. Reliability of Timing-Based Attacks via the Browser
Cache

Geo-inference attacks are based on the techniques
of timing attacks on the browser cache. We revisit
such timing-based attacks by conducting a study for
Alexa Top 100 websites on five mainstream browsers
(Chrome, Firefox, Safari, Opera and IE) as well as
TorBrowser2. We found that browsing history sniffing
is still open to timing-based attacks on these browsers.

We measured the page load time three times per
site. In Figure 12 and Figure 13 in the Appendix,
we consider the average difference between the second
measurement and the third measurement as the page
load time with cache. The difference between page load
time without cache and that with cache is quite large.
As Figure 12 and Figure 13 show, our proposed geo-
inference attacks can reliably measure the page load
time of Alexa Top 100 websites and sniff the victim’s
browsing history. Table I shows that our geo-inference
attacks are applicable to all five mainstream browsers.

2We run the experiments on TorBrowser 3.5.2.1, which is based on
Firefox 24.3.0.



If a website sets ‘X-Frame-Options’ to ‘SAMEO-
RIGIN’ or ‘DENY’ in the response headers, the at-
tacker cannot load the site into frames, so the page
load time actually equals the request load time and
is not reliable. We investigated Alexa Top 100 web-
sites, and found that only 32 sites set ‘X-Frame-
Options’ to ‘SAMEORIGIN’, and five sites set it
to ‘DENY’. Nevertheless, the attacker can utilize a
geo-targeting image or other resources that are spe-
cific to the site, and measure the resources load
time. For example, the URLs of Google’s logo im-
ages are www.google.com.sg/images/srpr/logo11w.png
and www.google.co.jp/images/srpr/logo11w.png, respec-
tively for google.com.sg in Singapore and google.co.jp
in Japan. As Section III-A shows, geo-inference attacks
with resources load time are quite reliable.

B. Prevalence of Location-Sensitive Resources

To demonstrate the susceptibility of geo-inference
attacks, we systematically analyzed Alexa Top 100 web-
sites, and identified the location-sensitive sites and their
location-sensitive resources. We exclude 45 domains
that are one of the following categories.
• Sites are highly related to specific countries,

e.g., google.de and yahoo.co.jp.

• Sites are known to contain pornographic con-
tent, e.g., xvideos.com and xhamster.com.

• Sites are unreachable, e.g., akamaihd.net, and
googleusercontent.com.

Using Hotspot Shield, we visited the 55 websites
in five different countries (USA, UK, Australia, Japan
and Singapore) and recorded all the URLs of cached
resources for each website. As for each site, we auto-
matically compared the collected URLs from different
countries with our analysis tool, sorted out the URLs
that vary in different countries, and then manually
verified the resource that has the same functionality but
the URL changes from country to country.

Our study demonstrates that the majority of websites
contain location-sensitive resources, which are vulnera-
ble to geo-inference attacks. 62% of these websites have
location-sensitive resources, such as domain and logo.
The user who recently visited any of these websites
is vulnerable to expose his/her geo-location to the
attackers who conduct geo-inference attacks.

V. DISCUSSION & SOLUTION

Beyond its techniques, the geo-inference attack we
demonstrate can be an effective attack vector in practice.

A. Effectiveness in Locating Victims

The geo-inference attacks discussed in this paper do
not directly pinpoint the geo-locations of targeted users.
Instead, they allow attackers to verify whether the user
has been to a given location. Consider one scenario

where a paper author wants to check which one of the 20
PC members visits the supplementary website provided
in an anonymous submission for review via an IP-
anonymization VPN service. Suppose the PC members
are known to be from 20 different cities. The author can
mount our geo-inference attacks on the website, which
queries whether the visitor of the website comes from
any of the 20 cities.

In the previous case, it only needs to issue 20
queries. However, the number of queries may grow
significantly depending on different scenarios. Now con-
sider another example where the attacker wants to locate
a visitor’s neighborhood within the New York City. In
this case, Google Maps has 4,646 map tiles for the
entire city, i.e., the attacker needs to make 4,646 queries
in worst case to locate the visitor. According to our
experiments, one web attacker can verify around 5 to
10 geo-locations every second (Figure 4 and Figure 10).
This amounts to eight minutes’ time in a single-threaded
execution; of course, the attacker can speed up the
process with parallel queries.

B. Pros & Cons of Potential Defenses

Technically speaking, geo-inference attacks can be
prevented by existing defenses against privacy leakage
via the browser cache. However, as we discuss next,
there are trade-offs we need to consider when deploying
such defenses.

Private browsing mode is not the cure: The
private browsing mode (Private Browsing in Safari and
Firefox, Incognito Mode in Chrome, Private Window in
Opera, and inPrivate Browsing in IE) prevents browsers
from permanently storing any history, cookies or other
client-side states for websites. However, contrary to
what the name naively suggests, the private browsing
mode does not prevent caching of web resources during
users’ private browsing [22]. Instead, all cache incurred
during the private browsing mode is automatically
cleared after the user closes its window. Therefore, users
of the private browsing mode are still susceptible to geo-
inference attacks via the browser cache.

Can VPN or Tor prevent the attacks?: Geo-
inference attacks are based on timing attacks against
browser cache, so they are not affected by VPN services
that replace the original IP addresses of users. Although
the current version of Tor Browser Bundle disables
disk cache in browsers by default, memory cache is
still active. As a result, it is similar to the private
browsing mode. Browser cache is available until the
user closes the browser, where the cache stored in
memory is invalidated. Moreover, if a Tor user accesses
Tor by manual configuration or with the TorButton, even
the disk cache is not disabled by default. Thus, if a
user visits location-sensitive sites with TorBrowser or
TorButton, the de-anonymiztion site can still geo-locate
the user. We’ve run our experiments on TorBrowser, and
found that TorBrowser is susceptible to geo-inference



attacks. At this moment, Tor does not eliminate geo-
inference attacks we demonstrate in this paper.

Rectifying inconsistent access policy with XML-
HttpRequest: Although Cross-Origin Resource Sharing
(CORS) has been integrated into modern web browsers,
it only allows websites to control which web origins
can access the content of XMLHttpRequest responses.
It does not, on the other hand, specify whether other
origins can get the notification when the response whose
content is inaccessible arrives. These error notifications
can be a source of timing leakage as shown in Sec-
tion III-A2. Such an inconsistent policy is one of the
root causes that make geo-inference attacks possible. It
is also quite different from other timing exposure with
image loading (Section III-A1 and III-A3), where no
explicit access control policy exists.

It thus appears as a necessary rectification step to
block the XMLHttpRequest status notifications if the
website has denied the request to access it. However,
additional analysis and experiments are necessary to
figure out whether any valid case that requires access to
the status notification of an access-denied XMLHttpRe-
quest. Besides, this is just one of the many existing
side-channels that leak users’ privacy; it is not a holistic
solution to defend geo-inference attacks via the browser
cache.

Segregating browser cache works but is expen-
sive: In current browsers, cache is like a huge repos-
itory; there are no explicit boundaries or restrictions
among different domains. Jackson et al. [15] deploy
Same-Origin Policy on the browser cache to prevent
cross-origin sites from loading the resources stored by
the original sites. In principal, such a solution would
defeat geo-inference attacks. To the authors’ knowl-
edge, this solution has not been adopted by modern
web browsers in the default setting. We speculate that
performance could be one of the concerns. Thus, we re-
implement their cache segregation policy in Chromium
34 (latest release), and measure the estimated perfor-
mance overhead incurred from it.

Since the most obvious performance overhead
comes from loading cross-origin resources, we measure
the page load time for Alexa Top 100 websites3. As
shown in Figure 7, the same-origin caching policy
triggers more than 50% performance overhead. This
indicates that the same-origin caching policy may affect
the page load time significantly, although such perfor-
mance overhead might be mitigated to a certain extent
by whitelisting domains as same-origin, such as Content
Delivery Network (CDN) domains. We try to whitelist
the resources from CDN, and show that the performance
overhead is still non-negligible after whitelisting for five

3Except three unreachable sites, googleusercontent.com, akamaihd.
net, thepiratebay.sx.

TABLE II: How does whitelisting resources from CDN
affect performance overhead?

I II
google.com 140% 9.09%
facebook.com 80.81% 5.05%
youtube.com 45.45% 12.59%
yahoo.com 123.51% 31.03%
baidu.com 107.27% 6.67%

I: Performance Overhead Without
Whitelisting Resources From CDN
II: Performance Overhead With
Whitelisting Resources From CDN

sites in Table II4. We will discuss alternatives to this
policy in Section V-C.

Randomizing timing measurements: As with
other timing-based attacks, we can add noise into the
timing measurement mechanisms related to browser
cache queries. However, introduction of such noise
needs to be carefully designed and verified to have mini-
mal impact on browser performance and responsiveness.
This could be an intricate engineering effort in future.

Server-side protection of users’ geo-locations:
Websites may voluntarily switch to a non-geo-targeting
mode upon request of users. As part of the reason for de-
ploying geo-targeting is to improve the responsiveness
of websites, this will probably degrade website perfor-
mance. As a middle ground, websites may randomize
the URLs for geo-targeting resources periodically. This
way, they can still benefit the performance improvement
from geo-targeting and cache, at least for a period of
time. At the same time, periodical changes of URLs can
mitigate geo-inference attacks via the browser cache, as
the additional randomness makes it difficult for attackers
to predict the URLs to query.

C. A Better Defense Solution?

The cache segregation proposed by Jackson et al.
appears as a promising direction to resolve the geo-
location leakage via browser cache. In addition, with
collaborative effort from both the browser vendors and
web servers, the performance overhead incurred could
be significantly reduced for most of use cases. We
envision an endeavor similar to Do Not Track [23].
Browsers should provide an option for end users to opt
out of caching location-sensitive web resources, such
as map tiles in Google Maps and geo-targeting country
pages. This way, users can voluntarily protect their
geo-location information from geo-inference attacks. In
solutions aimed to protect users’ privacy, such as Tor
or private browsing mode, this option should be turned
on by default. Such an option can be communicated to
web servers as an HTTP request header. At the server
side, web developers need to respect this option, and set

4Table II shows the performance overhead without or with whitelist-
ing resources from CDN comparing with the vanilla version without
same-origin caching policy.
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Fig. 7: Enforcing same-origin caching policy cause 20% to 300% performance overhead to load each site comparing
with the vanilla version without policy.

the Cache-Control: no-cache HTTP response
header for location-sensitive resources. However, dis-
cerning such resources might be a challenging task for
today’s web applications. We have experimented with
a prototype tool during our study, which can aid web
developers in identifying location-sensitive resources.

More specifically, the tool collects the URLs of
cached resources during our manual testing of the web
applications from different geo-locations (behind VPN
services). Then it compares such collections and auto-
matically labels the URLs that are potentially location-
sensitive. Web developers can further verify resources
corresponding to this scaled-down set of potentially
location-sensitive URLs, and confirm the location-
sensitive resources. In the future, we can integrate the
no caching support for location-sensitive resources into
web application generation frameworks.

VI. RELATED WORK

There has been extensive research on both privacy
leakage attacks and defense solutions. We discuss the
most closely related work in this section.

A. Privacy Leakage

Jang et al. study popular privacy violation practices
in websites and third-party JavaScript libraries [24]. Re-
searchers further present another way to sniff browsing
history with the CSS visited pseudoclass [25], [26]. In
addition to traditional leakage channels via DOM or
CSS primitives, user interactions can also be misused
to reveal users’ browsing history [11]. More recently,
new primitives introduced into browsers also expose
new attack vectors of privacy leakage, including CSS
filters [12] and SVG filters [13].

On the other hand, side channels, such as timing
attacks that were previously used to crack crypto sys-
tems or protocol implementations [27]–[29] have also
been explored for privacy leakage in browsers. Felten
et al. [8] first introduced timing-based attacks to detect
browser cache. Bortz et al. [9] apply timing attacks to
more web applications and scenarios.

With the popularity of social networks, user privacy
becomes a serious concern. Wondracek et al. show that
by analyzing the group memberships of social network
users, attackers can potentially identify the identities of
users [10].

This paper presents a different view into privacy
leakage in browsers. Instead of proposing new leakage
channels, we provide a more in-depth evaluation of the
implications of existing leakage channels. We specifi-
cally demonstrate that many of the timing-based attack
vectors still exist today, and they are open to attackers
to sniff users’ geo-locations.

B. Defense

To prevent direct privacy leakage channels, L.D.
Baron proposes a fix to misused CSS visited styles that
leak browsing history, which has been incorporated into
all popular web browsers [14]. As a more fundamental
endeavor, Jackson et al. [15] analyze various degrees
of cooperation between sites to track users and apply a
refined same-origin policy on browser cookie and cache
to protect browser states. Jakobsson et al. [16] neutralize
browser sniffing by performing URL personalization on
the fly at the server side. As more social networking
gadgets are also used to track users, Roesner et al.
propose a browser extension to allow users to prevent
such gadgets to track them without their explicit inter-
actions [30]. As we discuss in Section V-B, we expect
more practical solutions with a better balance between
performance and privacy preservation.

C. Location Privacy

The privacy of geo-locations has attained significant
attention from security researchers. Gedik et al. propose
a personalized k-anonymity model to protect location
privacy with mobile clients [31]. Nevertheless, recent
boom in location-based web and mobile services also
demonstrates that users are generally willing to re-
veal partial geo-location information for better services.
Duckham et al. thus propose a formal model that allows
efficient balancing between the two competing needs,
the need for high quality location-based services and
that for location privacy [32]. Similarly, Beresford et
al. develop a refined method, called the mixed zone, to
achieve enhanced location privacy in location-based ser-
vices [33]. In this paper, we primarily consider empirical
geo-location leakage on the present web, where location
information is explicitly available without anonymized
protection.

VII. CONCLUSION

In this paper, we present geo-inference attacks via
the browser cache, which utilize the cached location-



sensitive resources left by location-based websites. Our
geo-inference attacks provide an oracle for web at-
tackers to verify guessed geo-locations of victims. In
our case studies, we demonstrate the reliability and the
power of our geo-inference attacks to track the victim’s
country, city, and neighborhood. Furthermore, we an-
alyze Alexa Top 100 websites for their susceptibility
of geo-inference attacks. We discuss the effectiveness
in locating victims and potential defenses for geo-
inference attacks, and suggest collaborative solutions
between browser vendors and web applications to pre-
vent such geo-location leakage channels.
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Fig. 8: Difference in image load time (in millisecond): Without Cache (> 200 ms) v.s. With Cache (0 ∼ 1 ms), for
191 Google’s geo-targeting domains in Chrome on Android.
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Fig. 9: Difference in load time (in millisecond) for XMLHttpRequests: Without Cache (> 400 ms) v.s. With Cache
(20 ∼ 30 ms), for 191 Google’s geo-targeting domains in Chrome on Android.
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Fig. 10: The page load time (in millisecond) of 100 Craigslist sites without cache (> 1300 ms) is substantially
larger than the time with cache (≈ 620 ms) in Chrome on Android.
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Fig. 11: Difference in page load time (in millisecond): Without Cache (> 50 ms) v.s. With Cache (0 ∼ 5 ms), for
4,646 map tiles of New York City from Google Maps in Chrome on Android.
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Fig. 12: The difference between the page load time (in millisecond) of Alexa Top 100 websites without cache and
with cache indicates that it is effortless for timing-based attacks to distinguish whether the site is cached or not in
Chrome on desktop.
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Fig. 13: The page load time (in millisecond) of Alexa Top 100 websites without cache is much larger than the time
with cache in Chrome on Android.


