
SLA-Driven Distributed Application Development

Vinod Muthusamy
Department of ECE

Toronto, Canada
vinod@eecg.toronto.edu

Hans-Arno Jacobsen
Departments of ECE and CS

Toronto, Canada
jacobsen@eecg.toronto.edu

ABSTRACT
The management of Service Level Agreements (SLA) in the
development of business processes in a Service Oriented Ar-
chitecture (SOA) often requires much manual and error-
prone effort by all parties throughout the lifecycle of the
processes. The formal specification of SLAs into develop-
ment tools can simplify some of this effort. In particular,
the runtime provisioning and monitoring of processes can
be achieved by an autonomic system that adapts to chang-
ing conditions to maintain the SLA’s goals. A cost model
allows the efficient execution and monitoring of processes,
based on a declarative, user-specified optimality function.
Experiments demonstrate that the system can indeed adapt
to changing workload conditions, saving roughly 70% of the
network bandwidth in one particular experiment.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Design

Keywords
Service level agreement, service oriented architecture

1. INTRODUCTION
In a Service-Oriented Architecture (SOA), distributed ap-

plications are built by orchestrating reusable services using
high-level workflows or business processes. The complexity
of developing and maintaining these processes is addressed
by SOA development cycles that identify the roles of partici-
pants at each stage, and SOA development suites from IBM,
Sun or Oracle. However, the development, administration
and maintenance of a business process still requires much
manual effort that can be automated. In particular, the
non-functional goals of a business process, often expressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’08, December 1, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

Business analyst

Architect, developer

Administrator

Analyst, architect, administrator

Model

Services

Events

Modelling

Development

Execution

Monitoring

Figure 1: SOA Development Cycle

as Service Level Agreements (SLA), need to be manually
considered at each stage of the development process.

This paper presents a vision to achieve end-to-end SLA
management by facilitating the various stages of business
process development using formally encoded SLAs. We ar-
gue for a distributed architecture for the execution of busi-
ness processes, and develop a model to control the provi-
sioning of business processes in this architecture based on
high-level goals that can be specified independently of the
processes’ implementation details.

The main contributions of this paper are (i) a vision of
how formally specified SLAs can simplify the end-to-end
SOA development cycle, (ii) the design and development of
a cost model and distributed architecture to execute busi-
ness processes, and to dynamically provision resources based
on high-level goals, and (iii) an evaluation of the distributed
execution engine.

2. SERVICE LEVEL AGREEMENTS
This section outlines a typical SOA development cycle,

and follows with a vision of the benefits to this process of
managing SLAs within the development tools.

2.1 SOA Development Cycle
The SOA development cycle as illustrated in Figure 1 con-

sists of the modelling, development, execution, and monitor-
ing stages. Each stage is concerned with a different level of
abstraction and is performed by the indicated roles, each of
whom have varying expertise and concerns.

> 0.7

else
else

< 0.5

Check

score

Credit

check

Credit

check 2

Check

score 2

Reject

Approve

Send to

officer

< 0.3

Store in

DB
…

…

Figure 2: Loan Application Process

Consider the simple business process fragment in Figure 2
in which a loan application is processed. This process first
calls an external credit check service to determine the appli-
cant’s credit rating, with a second more refined credit check
service used in the case of a low rating. This rating is used
to determine if the application should be approved, denied,
or processed further by a loan application officer.

In the modelling stage of the development cycle, the busi-
ness analyst would define the above process, abstracting
from technology, infrastructure, and implementation details.
The result of the modelling stage is an abstract model of the
process represented in BPEL or a proprietary process lan-
guage. This representation is imported into the development
stage, where architects and developers break the model into
development artifacts such as services along with their in-
terfaces, and implement the required business logic. The
result of this stage is a set of deployable components. These
services are deployed in a runtime environment that is man-
aged by an administrator responsible for ensuring physical
resource provisioning sufficient for the goals of the deployed
services and processes. Often it is desirable to monitor the
execution of the processes by tracking metrics on the state
of the executing system. The metrics gathered can be ag-
gregated and presented to the stakeholders in the preced-
ing development stages. For example, the business analyst
may be interested in high level metrics such as the num-
ber of times the second credit check is required. On the
other hand, the system architect may be interested in lower
level metrics such as the processing delays of the individ-
ual credit checking services, while the administrator would
be concerned with system performance bottlenecks such as
network congestion or processor utilization.

In the modelling stage, high level, declarative goals are
specified by the analyst, such as the throughput require-
ments or the cost constraints on the process. These goals
are formalized into Service Level Agreements that specify a
contract between the service provider and consumer. SLAs
can be represented at different levels of abstractions, and
may simply be a document at the modelling stage. These
SLA documents are passed down the chain of the develop-
ment process, with each stakeholder being responsible for
ensuring conformance to the SLAs. The architects and de-
velopers interpret and ensure that the services developed
conform to the SLAs. During execution, SLA conformance
is often achieved by over-provisioning resources and manu-
ally tuning the system. Finally, monitoring subsystems are
instantiated to verify that the SLA goals are met, and that
violations are reported to the appropriate parties. These vi-
olations are manually addressed by changes to the process,
redevelopment of services, or provisioning of resources.

2.2 Integration of SLAs
If SLAs are integrated into the tools and translated into

execution and monitoring models, violations can be tracked
more quickly and resources can be provisioned on demand
in response to or in anticipation of violations. For exam-
ple, SLAs at the modelling stage can be mapped to lower
level requirements on the services developed and resources
provisioned, and translated to metrics that need to be moni-
tored to observe SLAs violations. Furthermore, adaptations
on the process itself or its resource provisioning can be per-
formed automatically at runtime to maintain the SLA goals.

Several runtime adaptations can be performed to main-
tain SLAs. Dynamic service selection can occur whereby
the most appropriate services are chosen from a catalog of
available services. For example, a fast or cheap credit check
service can be used based on the SLA requirements. As well,
monitoring can be optimized by only observing those metrics
that are relevant to the SLA. As we outline in Section 3.3,
the distributed execution of business processes becomes fea-
sible by automatically assigning portions of a process to
strategic locations in the system. Furthermore, dynamic
resource allocation can take place to ensure the process has
sufficient resources (CPU, bandwidth, etc.) to maintain the
SLA despite changes in the process load. Finally, the En-
terprise Service Bus (ESB)that underlies the SOA can be
reconfigured to satisfy the SLA. It is important to empha-
size that the encoding of the SLAs into the SOA tools in a
machine understandable format makes it possible for these
runtime adaptations to take place dynamically and without
human intervention.

Incorporating SLAs into the SOA development tools sim-
plifies the specification of SLAs since the analyst can declar-
atively specify business process goals without detailed knowl-
edge of the underlying technologies. Additional flexibility is
achieved by allowing the developers and administrators to
make design decisions without having to be as concerned
about SLA violations since the tools can perform some of
these tasks. As well, the analyst can change the SLAs and
be confident that these revisions will be propagated and en-
forced throughout the development stages.

3. SYSTEM ARCHITECTURE
Business process execution engines are typically central-

ized systems in which one node executes and manages all
instances of one or more business processes. To address
scalability, the centralized engine can be replicated and the
process instances balanced among the replicas. In this work,
we take a fundamentally different architectural approach
whereby even individual process instances are executed in
a distributed manner. The benefits of this architecture in-
clude scalability, in-network processing, and fine-grained use
of IT resources. We further describe and compare the vari-
ous business process execution architectures below.

3.1 Execution Architectures
Centralized: The simplest business process engine con-

sists of a single execution engine as shown in Figure 3(a).
This centralized engine is responsible for executing and man-
aging all concurrent instances of the processes deployed on
it. The advantage of such an architecture is its simplicity
in terms of deployment and management. However, as the
resources in such an architecture are fixed, the system may
not scale with the complexity of processes and the number of

A

B

C

D

(a) Centralized

A

B

C

D

A

B

C

D

…

(b) Clustered

D

C

A,B

(c) Distributed

Figure 3: Process execution engine architectures

process instances. Also, as the single execution engine rep-
resents a single point of failure and may not be appropriate
for the execution of mission critical processes. Furthermore,
inter-organization business processes may have no obvious
choice for a central coordinator.

Clustered: To address scalability and fault-tolerant, a
cluster of execution engines can be deployed. In this archi-
tecture, illustrated in Figure 3(b), each engine in the cluster
is essentially a replica of the others, and can execute a com-
plete business process. A call to a business process P is first
sent to a load balancing component (not shown in the fig-
ure), which forwards the call to one of the engines E in the
cluster, based on some criteria such as ensuring a balance
of load across the cluster. At this point, engine E creates
an instance of process P and is responsible for executing the
instance until completion. Some systems support the ability
to add and remove engines to the cluster as the load varies.
A clustered execution architecture can be scalable and does
not suffer from a single point of failure. However, process
instances are still executed in a centralized manner, and con-
trol and data is still concentrated in the cluster. Consider
the case of a data-intensive process such as a scientific work-
flow that transfers and operates on large volumes of data.
In a clustered architecture, the data needs to be transfered
to the cluster before it can be operated on by the process.
In a more flexible deployment it would be possible to move
the portions of the process that operate on the data closer
to the data source thereby reducing the time and network
costs incurred in having to transfer the data.

Distributed: This paper opts for an execution engine in
which processes themselves can be distributed. As shown in
Figure 3(c), a process is first decomposed into tasks, which
are then assigned to various execution engines in the system.
In a BPEL process, the tasks can be the individual BPEL ac-
tivities. To emphasize the fact that these execution engines
can be light-weight as they only execute fine-grained tasks,
as opposed to complete processes, we refer to the entity that
execute tasks as an agent. A key benefit of such an architec-
ture is the ability to deploy portions or processes close to the
data they operate on, thereby minimizing bandwidth and
latency costs of a process. For example, for data intensive
business processes (e.g., rendering farms, large simulations
etc.) it would be possible to deploy only those portions of the
process that require access to large data sets close to their
respective data sources. Different parts of the process that
operate on different data sets can be independently deployed
near their respective data sources. This is not possible in a
clustered architecture since the entire process instance must
be executed by a single engine.

The benefits of the agent-based execution engine archi-
tecture are only achieved if the agents are deployed in a
strategic manner. This can be a labour intensive procedure
that requires knowledge of the system resources, and pro-
cess characteristics. It may even be a futile exercise if either

Component Notation
Distribution cost Cdist (distribution overhead)
Message rate Cd1

Message size Cd2

Message latency Cd3

Engine cost Ceng (execution overhead)
Load Ce1

Resources Ce2

Task complexity Ce3

Service cost Cserv (service overhead)
Service latency Cs1

Service execution Cs2

Marshalling Cs3

Table 1: Cost model components

Criteria Cost function mapping
3s response time Cd1 + Cd3 + Ce3 + Cserv < 3
Optimize bandwidth min(Cd2)

Table 2: Examples of Cost Functions

of these variables changes frequently. It is desirable for the
system itself to determine an optimal placement of agents.
To achieve this, we develop a cost model below to model
the cost of a particular placement of agents. This model is
used to compare different placement possibilities.

3.2 Cost Model
The cost model consists of various factors that can influ-

ence the agent placement decisions. Some cost factors are
shown in Table 1 grouped into cost components.

The first component is the distribution cost which repre-
sents the overhead of distributing a process into small, fine-
grained agents. This overhead can be expressed in terms of
the bandwidth or latency of the inter-agent communication
depending on the desired goal. .

Another important cost component captures the resource
usage of an agent on the engine it is executing on. Factors
here include the number of concurrent instances an agent is
executing, the resource utilization (in terms of processor or
memory) of an agent, and the complexity of the task the
agent is executing.

The third cost component in Table 1 is the service cost
which represents the cost of calling external services. This
includes the time to call the service (which is a function
of the network conditions between the agent and service),
and the execution time of the service (which depends on the
service provider used to execute the desired service).

A cost function based on the various cost components al-
lows flexibility in specifying different goals easily. The cost
function specify that an arbitrary weighting of the various
cost components either meet a threshold or should be mini-
mized. In the former case, the process is adapted only when
the threshold is violated, while in the latter, process adap-
tation occurs whenever a more optimal placement is found.
For example, Table 2 shows cost functions that ensure that
the response time of a process is within three seconds, and
that minimize the network overhead of a process.

3.3 Distributed Execution
As discussed earlier, we take a distributed approach to the

execution of business processes, whereby individual tasks in
a process are executed by autonomous agents which collab-

Agent Server

Atomic Redeployer

Candidate
Discovery

Messaging

Execution Engine

Tasks

Execution Resource

Monitor Estimators

L
a
te

n
c
y

B
a
n
d
w

id
th

E
n
g

in
e
 R

e
s
o
u
rc

e

Redeployment

Manager

SLAs

Cost models

Ranking algorithms

Instance states

Input, output queues

Figure 4: Distributed Execution Engine

orate to execute the original process. The agents execute
within a distributed execution engine whose architecture is
shown in Figure 4.

In the spirit of the distributed nature of the system, each
agent is autonomous in deciding which engine it should ex-
ecute on and when it should move itself to another engine.
These decisions are based on the cost function associated
with the process, which is known to each agent in the pro-
cess. Notably, there is no centralized component that is used
to gather statistics, or to make agent placement decisions.

The distributed execution engine shown in Figure 4 con-
sists of a core Execution Engine that provides support ser-
vices for agents to collaborate among one another to execute
a particular business process. A Candidate Discovery com-
ponent is used to find other execution engines in the system.
In the current implementation, the discovery component re-
turns all immediate neighbours of an engine and uses a ran-
dom walk to find a random set of distant engines. The dis-
covered candidates are periodically probed by the Estimator
components to gather various statistics. The Redeployment
Manager computes the cost function for each agent execut-
ing in the engine, and determines if a more optimal place-
ment of the agent is available among the known candidate
engines. Finally, agents that are to be moved are redeployed
using the Atomic Redeployer component which is responsi-
ble for ensuring that the movement of the agent does not
affect the execution of the process. Briefly, the redeployer
pauses the triggering of new instances of the agent, transfers
the agent state to the new engine, rebinds the agent to its
successors and predecessors in the process, and resumes the
execution of the agent.

3.3.1 Redeployment Manager
The Redeployment Manager maintains for each agent Ai

the agent server is currently hosting, the cost function F (Ai)
associated with the agent, a running average of the cost
C(Ai, Sj) imposed by the agent were it hosted by agent
server Sj , and the agent servers where agent Ai’s prede-
cessors and successors are hosted. For convenience, the cost
of deploying Ai at the current server is denoted as C(Ai).
The cost C(Ai) has two different interpretations depending
on the type of cost function. For threshold functions, C(Ai)
is the accumulated cost by all agents from the beginning of
the process to the current agent, whereas for minimum or
maximum cost functions, C(Ai) is the local cost of the agent.
An example should make the reason for the difference clear.
Consider a cost function to minimize the message latency
of a process: min(Cd3). In this case, the local cost of an
agent is the latency of communicating with its predecessors

and successors. To minimize the overall latency, each agent
should attempt to minimize its local latency cost. On the
other hand, for a cost function that requires the message
latency to stay below a threshold, such as Cd3 < 10, it is
necessary to keep track of how much each agent contributes
to the overall latency of the process. The local latency cost
of each agent must be accumulated as the process flow exe-
cutes. To achieve this, for agents associated with threshold
cost functions, messages between agents are annotated with
the accumulated cost.

The running average of the cost C(Ai, Sj) of an agent is
computed and maintained by the Redeployment Manager
based on information from various Estimators or the Execu-
tion Resource Monitor. The Redeployment Manager recom-
putes the costs C(Ai, Sj) when one of two conditions occurs.
When the agent Ai executes (including when it sends and re-
ceives messages with its successors or predecessors), the cost
is updated for the current server, i.e., C(Ai, Scurrent). Like-
wise, when an estimator updates a metric that is included in
the cost function associated with Ai, the cost of hosting the
agent at the candidate server whose metric was just updated
is recomputed. To facilitate the latter case, each estimator
given a list of agents which are relevant to the metric the
estimator is computing. Therefore, the estimator will only
notify the Redeployment Manager when necessary.

An update of the cost C(Ai, Sj) may reveal a better place-
ment for agent Ai. Every update to the cost of an agent ini-
tiates a call to the CheckDeployment(Ai) function to find
a more optimal deployment. The algorithm differs based on
the cost function associated with agent Ai.

If the cost function requires the cost to be minimized, then
the algorithm finds the server Smin ∈ S such that C(Ai, Si)
is minimized across all Si ∈ S where S is the set of known
candidate agent servers. The agent Ai is then moved to
agent server Smin. To avoid frequent redeployment, an agent
is redeployed only if the improvement in the cost exceeds
a given threshold Tbenefit and if the agent has not been
redeployed for some time duration Tduration. The values
Tbenefit and Tduration have default system wide values that
may be overridden by specific ones for each cost function.

If the cost function associated with agent Ai is a thresh-
old function, a check is made to see if the accumulated cost
C(Ai) exceeds the threshold. If the cost is still within the
threshold, nothing further is done. Otherwise, the Check-
Deployment() function finds the agent server Smin that
results in min

Si∈S
C(Ai, Si), and redeploys agent Ai to agent

server Smin. Now it may be that C(Ai, Smin) still exceeds
the required cost function threshold, in which case a message
is sent to the predecessor servers of agent Ai to force them
to redeploy. Notice that these predecessors would not have
normally chosen to redeploy because their accumulated cost
is still within the threshold. This “push back” by agents to
force a redeployment of their predecessors will occur repeat-
edly as long as the optimal placement of the agent is not
sufficient to satisfy the cost function threshold.

3.3.2 Estimators
Estimators compute various metrics necessary to rank pos-

sible placements of agents and determine the optimal place-
ment. To avoid unnecessary estimations, the Redeployment
Manager enables estimators only if there is a locally hosted
agent whose cost function depends on the metric computed
by the estimator. For example, if there is an agent Ai whose

A B C

p q

1-p 1-q

Figure 5: Business Process with Loops

1

A

2 3

C

Execution engineESB router

B

Figure 6: Experimental Topology

cost function is to minimize message latency, then the La-
tency Estimator would be enabled but not the bandwidth
estimator. Each estimator is also provided with additional
information necessary to perform the estimations. For ex-
ample, the latency estimator is given a set of the predecessor
and successor servers SN associated with relevant agents Ai.
The redeployment manager then estimates the latency be-
tween nodes in SN with the nodes SC discovered by the
Candidate Discovery component. The Service Latency Es-
timator, on the other hand, is provided a list of services
invoked by relevant agents and the estimator computes the
time to invoke the services from each node in SC .

3.3.3 Atomic Redeployer
The movement of an agent Ai from agent server S1 to

agent server S2 as determined by the Redeployment Man-
ager is carried out by the Atomic Redeployer. The challenge
is to move an agent without disrupting the process and to
ensure that failures during movement do not leave the sys-
tem in an inconsistent state.

The movement is modelled as a transaction consisting of
a move(Ai, S1, S2) operation. If the transaction aborts—
perhaps because S2 refuses to accept agent Ai—the agent
must remain at server S1. Otherwise the transaction com-
mits, and the agent must be instantiated at S2 and deal-
located from S1. In either case, the predecessors and suc-
cessors of agent Ai should be unaware of the movement, no
messages must be lost, and each message should be delivered
to the agent instance at S1 or at S2 but not both. These
requirements and others have been formalized in detail, and
the algorithms to achieve atomic movement satisfying these
requirements have been developed, their correctness proven,
and their performance quantified [5].

4. EVALUATION
In this experiment, we use the business process shown in

Figure 5 deployed to a set of execution engines in Figure 6.
The process is designed to model a business process with
time varying branch probabilities. Also, while the process
only consists of three tasks, the looping constructs in the
process results in many tasks being executed in the course
of a process instance. The agents associated with the tasks
in the process are initially deployed as shown in Figure 6.

In this process, the branch probabilities of tasks B and C
are varied and the reactions of the redeployment algorithms
are observed. In the experiment, the SLO associated with
the process seeks to minimize the bandwidth used by the
process (see Table 2). Consequently, the metric we observe is

0

1000

2000

3000

4000

5000

Dynamic Static

Algorithm

C
ro

s
s

-s
e

rv
e

r
c

o
m

m
.

(m
e

s
s

a
g

e
s

)

(a) Scenario 1

0

500

1000

1500

2000

2500

Dynamic Static

Algorithm

C
ro

s
s
-s

e
rv

e
r

c
o

m
m

.

(m
e

s
s
a

g
e

s
)

(b) Scenario 2

Figure 7: Message Cost for Process in Figure 5

the number of messages sent between the execution engines.
Note that messages between agents deployed on the same
engine are not counted in this measurement.

The metric to minimize bandwidth results in all agents
being deployed on the same execution engine regardless of
the workload. To make the experiment more interesting, we
fix the agents associated with tasks A and C to their initially
deployed engines in Figure 6, and allow agent B to move
freely to any engine. This represents the case where certain
tasks must be executed on engines owned by a particular
department for administrative or security reasons.

Figure 7(a) shows the results of an experiment in which
the branch probabilities of the process are fixed at p = 0.9
and q = 0.1 and 100 instances of the process in Figure 5 are
invoked. Note that this workload is biased toward the loop
involving tasks A and B. We observe that the system recon-
figures itself from the initial deployment in Figure 6 to one
where agent B runs on the same execution engine as agent
A. In Figure 7(a), this results in the dynamic algorithm hav-
ing about 10% of the message cost of the static algorithm in
which reconfiguration is disabled and the agents remain in
the initial deployment in Figure 6. The point here is that
it is not necessary to manually deploy agents in a strate-
gic manner — a possibly complex task — but to allow the
system to configure itself.

In another experiment, the branch probabilities are var-
ied, starting out with p = 0.9 and q = 0.1 for the first half
of the experiment, and changing to p = 0.1 and q = 0.9 for
the second half. Therefore, the workload initially results in
a lot of communication between tasks A and B, and then
becomes biased towards tasks B and C. This time, the de-
ployment starts with agent B at the same engine as agent
A, which is the optimal placement for the initial branch
probabilities in this experiment. Again, we observe that the
dynamic algorithms keeps agent B in the initial optimal en-
gine, and only when the branch probabilities change, the
system moves agent B first to the middle execution engine
and then to the one with agent C. The results in Figure 7(b)
confirm that the dynamic reconfiguration algorithms adapt
to the changing workload to achieve the desired goal with
less than 30% of the message cost of the static case. A no-
table point about this experiment is that because the con-
ditions of the system change over time, there is no optimal
static deployment. Dynamic reconfiguration is required to
achieve the best results.

5. RELATED WORK
Distributed workflow processing has addressed scalabil-

ity, fault resilience, and enterprise-wide workflow manage-

ment [4, 11, 9]. Heinis et al. [4] develop a self-optimizing
distributed workflow engine. However it does not support
flexible optimization criteria as in this paper, and takes a
centralized approach to monitoring and reconfiguring the
workflow deployment. This differs from the design in this
paper which is fully distributed, but is less likely to find
globally optimal solutions. A behaviour preserving trans-
formation of a workflow into an equivalent partitioned one
is described in [9] and realized in the MENTOR system [11].
This is complementary to our work since we operate with the
original business process model without analysis.

Distributed stream processing engines [6, 1, 2, 10] install
a set of operators in the network to process streams of data
and execute SQL-like queries over the streams. However,
systems such as Borealis [1] use a proprietary query lan-
guage and do not support loops in the query network, which
makes it unsuitable for business processes. None of these
approaches consider the planning or scheduling of resources
based on SLAs determining higher-level business goals. In
IFLOW [6] nodes are organized in a cluster hierarchy, with
nodes higher in the hierarchy assigned more responsibility.
This differs from our completely distributed architecture.
As well, IFLOW associates utility with links rather than
the nodes, which makes it difficult to express requirements
such as minimizing sever load. These engines also do not
support service selection by, for example, requiring a task to
select a service with minimum latency.

While stream processing engines may bear some architec-
tural resemblance to a set of agents executing a business pro-
cess, there are issues related to business process execution
that are not easily handled by stream processing engines.
First, the stream processing work above is based on propri-
etary languages, not an industry standard such as BPEL.
More significantly, a business process is conceptually not
simply a data stream. There are notions of process instances
and the accompanying state and isolation semantics that are
not required in streams.

In addition to the semantic differences between processes
and streams, process distribution in our approach differs
from the above work by exploiting an underlying messaging
substrate. Like [6], our agents are decoupled by communi-
cating using content-based names instead of network iden-
tifiers. In addition, we plan to utilize the advanced features
of our messaging substrate, developed in earlier research, to
offload some of the agent processing to the network [7]. This
simplifies the agents, and allows the network to optimize this
processing logic.

This paper builds on our prior work on efficient messaging
systems [3, 7]. We also leverage our research on the NIÑOS
system [8], which develops a distributed BPEL execution en-
gine, and provides a platform for task decoupling, dynamic
reconfiguration, system monitoring, and run-time control.

6. CONCLUSIONS
The development of business processes in Service Oriented

Architectures involves several stages in which different ac-
tors concerned with different aspects of the process con-
tribute to the realization of the final process. Each actor
must be aware of and fulfill any goals associated with the
process. In this paper we present a vision where these goals
are formally represented in an SLA specification in the de-
velopment tools, and used to simplify each stage of the de-
velopment cycle from the modelling of the process, through

the development, to the deployment, execution and runtime
monitoring of the process.

A distributed architecture is proposed for the execution
of business processes in which light-weight agents collabo-
rate to execute a larger process. This architecture affords
scalability by allowing more fine-grained resource allocation,
and the ability to strategically move computation close to
the data it operates on. To simplify the management of this
process execution architecture, a cost model is developed
to allow goals, such as minimizing bandwidth resources and
process response times, to be independently specified on the
executing process, and algorithms are devised to redeploy
the executing process to satisfy the specified goals.

Evaluations support the ability of the system to repeat-
edly adapt to changing runtime conditions to achieve a declar-
atively specified goal. In one workload, the system was able
to save about 70% of the bandwidth by adapting a process
compared to an initially optimal, but static deployment.

We are evaluating the system further with more realistic
and complex processes, workloads and SLAs. We also plan
to compare the trade-offs between the non-optimal but dis-
tributed reconfiguration algorithms presented with central-
ized one with global knowledge of the system configuration.

Acknowlegements: The authors would like to thank
IBM CAS Toronto for their support towards this research.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. A. Shah. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.

[3] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira,
K. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In Proceedings of ACM SIGMOD, 2001.

[4] T. Heinis, C. Pautasso, and G. Alonso. Design and
evaluation of an autonomic workflow engine. In ICAC,
2005.

[5] S. Hu, V. Muthusamy, G. Li, and H.-A. Jacobsen.
Transactional mobility in distributed content-based
publish/subscribe systems. Technical report,
University of Toronto, Apr. 2008.

[6] V. Kumar, Z. Cai, et al. Implementing diverse
messaging models with self-managing properties using
IFLOW. In ICAC, 2006.

[7] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In
Middleware, 2005.

[8] G. Li, V. Muthusamy, and H.-A. Jacobsen. Ninos: A
distributed service oriented architecture for business
process execution. Technical report, University of
Toronto, Nov. 2007.

[9] P. Muth, D. Wodtke, J. Weisenfels, A. K. Dittrich, and
G. Weikum. From centralized workflow specification to
distributed workflow execution. JII, 1998.

[10] P. R. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. I. Seltzer.
Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[11] D. Wodtke, J. Weisenfels, et al. The Mentor project:
Steps toward enterprise-wide workflow management.
In ICDE, 1996.

	Introduction
	Service Level Agreements
	SOA Development Cycle
	Integration of SLAs

	System Architecture
	Execution Architectures
	Cost Model
	Distributed Execution
	Redeployment Manager
	Estimators
	Atomic Redeployer

	Evaluation
	Related Work
	Conclusions
	References

