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Background

= X10 tackles the challenge of programming at scale
» HPC, cluster, cloud

» scale out: run across many distributed nodes => this talk & PPAA talk

= scale up: exploit multi-core and accelerators = CGO tutorial
= resilience and elasticity = next talk
= X10 is

* a programming language

» imperative object-oriented strongly-typed garbage-collected (like Java)

= concurrent and distributed: Asynchronous Partitioned Global Address Space model
» an open-source tool chain developed at IBM Research = X10 2.4.2 just released
= a growing community

= X10 workshop at PLDI'14 = CFP at htip://x10-lang.org

» Double goal: productivity and performance



Outline

X10
» programming model: Asynchronous Partitioned Global Address Space

Optimizations for scale out

= distributed termination detection
» high-performance networks

* memory management

Performance results
= Power 775 architecture
= benchmarks

Global load balancing
= Unbalanced Tree Search at scale



X10 Overview



APGAS Places and Tasks
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APGAS Idioms

» Remote procedure call
v = at(p) f(argl, arg2);

= Active message

at(p) async m(argl, arg2);

= SPMD

finish for(p in Place.places())

at(p) async {
for(i in 1..n) {

async doWork(i);

= Atomic remote update

at(ref) async atomic ref() += v;

» Divide-and-conquer parallelism
def fib(n:Long):Long {

if(n < 2) return n;
val x:Long;
val y:Long;

finish {
async x = fib(n-1);
y = fib(n-2);

}

return x + y;

= finish construct is transitive and can cross place boundaries



Example: BlockDistRail.x10

public class BlockDistRail[T] {
protected val sz:Long; // block size
protected val raw:PlaceLocalHandle[Rail[T]];

public def this(sz:Long, places:Long){T haszero} {
this.sz = sz;
raw = PlacelLocalHandle.make[Rail[T]](PlaceGroup.make(places), ()=>new Rail[T](sz));

}

public operator this(i:Long)

(v:T) { at(Place(i/sz)) raw()(i%sz) = v; }
at(Place(i/sz)) raw()(i%sz);

public operator this(i:Long)

public static def main(Rail[String]) {
val rail = new BlockDistRail[Long](5, 4);
rail(7) = 8;
Console.OUT.println(rail(7));
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Optimizations for Scale Out



Distributed Termination Detection

Local finish is easy
= synchronized counter: increment when task is spawned, decrement when task ends

Distributed finish is non-trivial
= network can reorder increment and decrement messages

X10 algorithm: disambiguation in space ->

= one row of n counters per place with n places

» when place p spawns task at place g increment counter g at place p
» when task terminates at place p decrement counter p at place p

» finish triggered when sum of each column is zero

Charm++ algorithm: disambiguation in time ->
= successive non-overlapping waves of termination detections



Optimized Distributed Termination Detection

Source optimizations
= aggregate messages at source

= compress
= Software routing “get”

= aggregate messages at intermediate nodes

SPMD finish

» Pattern-based specialization

= “put”: a finish governing a single task =» wait for one ack

= “get”: a finish governing round trip =>» wait for return task

= |ocal finish: a finish with no remote tasks =» single counter

= SPMD finish: a finish with no nested remote task =» single counter

» irregular/dense finish: a finish with lots of links =» software routing

Runtime optimizations + static analysis + pragmas =» scalable finish
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High-Performance Networks

= RDMAs
» efficient remote memory operations

= asynchronous semantics = good fit for APGAS
= just another task

Array.asyncCopy[Double] (src, srcIndex, dst, dstIndex, size);

= Collectives

= multi-point coordination and communication
» networks/APIs biased towards SPMD today >

Team.WORLD.barrier (here.id);
columnTeam.addReduce (columnRole, localMax, Team.MAX);

= future: MPI-3 and beyond = good fit for APGAS
» one-sided collectives, endpoints, etc.
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Memory Management

» Garbage collector
= problem: distributed heap
» distributed garbage collection is impractical
» solution: segregate local/remote refs
= only local refs are automatically collected

= Congruent memory allocator

= problem: low-level requirements

» |arge pages required to minimize TLB misses

» registered pages required for RDMAs

= congruent addresses required for RDMAs at scale
» solution: dedicated memory allocator

= congruent registered pages

» large pages if available

= only used for performance-critical arrays

= only impacts allocation & deallocation

=» issue is contained

=» issue is contained
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Performance Results
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DARPA HPCS/PERCS Prototype (Power 775)

= Compute Node

= 32 Power7 cores 3.84 GHz
= 128 GB DRAM

= peak performance: 982 Gflops
» Torrent interconnect
Drawer

= 8 nodes

Rack

» 8to 12 drawers

Full Prototype

= up to 1,740 compute nodes
= up to 55,680 cores

= up to 1.7 petaflops
» 1 petaflops with 1,024 compute nodes
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DARPA HPCS/PERCS Benchmarks

= HPC Challenge benchmarks

» Linpack TOP500 (flops)

= Stream Triad local memory bandwidth

= Random Access distributed memory bandwidth
» Fast Fourier Transform mix

= Machine learning kernels

= KMeans graph clustering

= SSCAT pattern matching

= SSCA2 irregular graph traversal
= UTS unbalanced tree traversal

» Implemented in X10 as pure scale out tests

" one core = one place = one main task
= native libraries for sequential math kernels: ESSL, FFTE, SHA1



Performance at Scale (Weak Scaling)

number absolute relative efficiency performance at scale
of cores | performance | compared to single relative to best
at scale at scale host (weak scaling) | implementation available
Stream 55,680 397 TB/s 98% 87%
FFT 32,768 28.7 Tflop/s 100% 41% (no tuning)
Linpack 32,768 589 Tflop/s 87% 85%
RandomAccess 32,768 843 Gup/s 100% 81%
KMeans 47,040 98% ?
SSCA1 47,040 98% ?
SSCA2 47,040 245 B edges/s  see paper for details ~ ?
UTS (geometric) 55,680 596 B nodes/s 98% prior impl. do not scale
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HPCC Class 2 Competition 2012: Best Performance Award
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Global Load Balancing
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Unbalanced Tree Search at Scale

= Problem
= count nodes in randomly generated tree =>» unbalanced & unpredictable
= separable random number generator =>» no locality constraint

» Lifeline-based global work stealing [PPoPP’11]
» n random victims then p lifelines (hypercube)
» steal (synchronous) then deal (asynchronous)

= Novel optimizations

= use of nested finish scopes =>» scalable finish
= use of “dense” finish pattern for root finish
= use of “get” finish pattern for random steal attempt

» pseudo random steals =» software routing

= compact work queue encoding (for shallow trees) =» less state, smaller messages
» |azy expansion of intervals of nodes (siblings)
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Conclusions

Performance
= X10 and APGAS can scale to Petaflop systems

Productivity
= X10 and APGAS can implement legacy algorithms
= such as statically scheduled and distributed codes

= X10 and APGAS can ease the development of novel scalable codes
* including irregular and unbalanced workloads

APGAS constructs deliver productivity and performance gains at scale

Follow-up work presented PPAA 14
» APGAS global load balancing library derived from UTS
= application to SSCA2



