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Abstract

A Surface-Integral-Modeling technique has been developed to solve time-harmonic

boundary value problems in acoustics. The thesis focuses on describing the

methodology and testing the consistency of the method. The technique estab-

lishes and utilizes the concept of Distributed-Elementary-Source Self-regularized

Dyadic Green’s functions in order to analyze fully-anisotropic elastic media used

in micro-acoustic devices. A given device geometry is divided into rectangu-

lar subsections and subsequently detached from the original solid body. The

individual subsections are regarded as stand-alone problems and characterized

independently. Consecutively, a Library of precalculated Dyadic Green’s Func-

tions is generated for each isolated subsection. The content of the Library along

with the proposed Sufficiency principle and Exhaustion principle, fully suffice to

solve arbitrary physically-realizable boundary conditions for a given anisotropic

device. A major advantage of precalculating Green’s functions is the ability to

reduce the usage of computational resources by recycling accurately precomputed

numerical data. An additional data compression has been achieved by evaluating
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the Green’s functions and their spatial derivatives on bounding surfaces of the

introduced isolated subsections. The underlying ideas have been explained in

terms of four test examples in two- and three-dimensions. The computed results

are verified against the results obtained by commercially available Finite Element

Simulation package.
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Chapter 1

Introduction

1.1 Massloading Effect in SAW-devices

Simulation of the massloading effect continues to be of great interest and paramount

significance in micro-acoustic devices community. Efforts in miniaturizing de-

vices, stringent constraints in the design, along with challenges for protecting

individual components from the influence of the neighboring elements, have all

added substantially to the relevance of the massloading phenomenon. The mass-

loading effect is a major higher order effect. It is a phenomenon which is under-

stood as altering the acoustic impedance of propagating surface- or bulk waves

by the mass- and the elasticity property of metallic electrodes. Thereby, waves

propagating along the substrate surface, or within the substrate, interact elec-

trically and acoustically with electrodes which are deposited in large numbers

on the plane surface of a piezoelectric substrate, before getting scattered into
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various types of coupled surface- and bulk waves. Examples for the piezoelec-

tric substrates are LiNbO3, LiTaO3 or Quartz, which typically support several

hundreds to a few thousands metallic electrodes made of, in majority of cases,

aluminium or, in some cases, of much heavier gold. The massloading effect may

decisively deteriorate the device performance or be exploited advantageously in

signal forming, shaping and processing devices. To account for the massload-

ing effect we need to solve a boundary value problem subject to fairly complex

boundary conditions. A routine complexity analysis would reveal that in mod-

ern devices the number of unknowns in computations may easily exceed tens of

millions. Traditional simulations based on the almighty Finite Element Method

(FEM) and the elegant Boundary Element Method (BEM) or a hybridization of

both, are quite general tools in terms of the geometry of electrodes, the substrate

and their material constitutions. These methods however, lack a most desirable

property - the flexibility in producing pre-calculated data, so that the data can

be stored in libraries for frequent future usage in device design cycles. Ordinarily,

pre-calculating data is regarded to be particularly challenging as stress distribu-

tions on the bounding surfaces of the metallic electrodes are not only dependent

on various topological and material parameters, but are also strongly frequency-

dependent. The pre-calculation of such primary data and storing them for future

use, is an important feature of this work. Furthermore, measure for drastically

reducing the number of of unknowns and ideas for accelerating computation will

be discussed.

Introduction
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1.1.1 Introduction to Modeling of Micro-acoustic Devices:

A Brief Literature Review

Since early 70s, many analytical, semi-analytical and numerical techniques have

been proposed for the analysis of piezoelectric structural devices. We here mainly

limit ourselves to the techniques adopted by ultrasonics community. Modeling

and simulation of micro-acoustic devices such as Surface Acoustic Wave (SAW)

and Bulk Acoustic Wave (BAW) devices are generally considered to be a chal-

lenging task. The complexities in modeling is due to inherent features such as

multi-physics phenomena and multi-scale sub-structures. Various methods have

been adapted, from a wide range of scientific and engineering fields to solve the

involved Boundary Value Problems (BVPs). Most prominent methods are:

• Perturbation Techniques

• Coupling of Modes

• Variational Techniques

• Finite Element Method

• Finite Difference Method

• Boundary Element Method (Method of Moments)

• Combined Finite Element/Boundary Element Method

Introduction
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These techniques have served, in one way or another, the SAW- and BAW com-

munity significantly. During late 60’s and early 70’s the solution strategy was

revolving around perturbation analysis, variational techniques, finite difference

methods and equivalent circuit types of analysis. Perturbation analysis, being an

analytical method, was concerned with small changes in solution, caused due to

small changes in physical parameters of the problem. Considering such as minor

changes in resonant frequencies or propagation velocities, the perturbation theory

was providing satisfactory results [1, 2]. However, in describing major higher-

order effects, e.g. the massloading, where the exact solutions are not available,

the Perturbation theory fails to impress. This is where variational techniques,

being numerical in nature, had upper hand. In the variation techniques, in order

to calculate the desired physical quantity, a test or trial solution is estimated

providing the minimum error. Such direct approximation techniques of variation

calculus have been introduced for the analysis of electroelastic vibration prob-

lems [3, 4]. The numerical computation in variation methods is quite involved

and rigorous, compared to the Perturbation analysis [1, 5]. The equivalent cir-

cuit analysis found its traces in modern Coupling-of-modes, which are utilized for

various resonator and SAW filter analysis. Both, equivalent circuit analysis and

Coupling-of-modes, have there own advantages and disadvantages [6, 7].

Introduction



5

Boundary Element Method and Green’s Functions Based Techniques

The Boundary Element Method (BEM) is a method in which the boundary of

the region under consideration is sub-divided and then the problem is solved with

the help of weighted residual technique; hence being referred to as the ‘Boundary

Element Method.’ Brebbia and Dominguez [8] introduced and discussed the us-

age of different types of boundary elements, namely constant and linear variation

for potential problems. Milsom et. al. [9] applied the method to the coupled

electromagnetic and acoustic fields under quasi-static approximation. They were

able to analyze SAW transducers with a few electrodes deposited on the plane

surface of a piezoelectric semi-space. They included in their analysis generation

of bulk waves but neglected all other higher order effects including the mass-

loading phenomenon. In most applications of BEM 2D piezoelectric models were

considered. This is accomplished by considering electrodes with infinitely long

aperture length and thus neglecting transversal effects. The second- and higher-

order effects such as massloading, conductivity of electrodes and other effects due

to diffraction and scattering of the surface waves were also ignored. The major

disadvantage of the method was the amount of computational storage space and

time required for solving the involved integrals, and the system of coupled linear

equations. However, BEM has only been widely accepted in the SAW community

since early 90s.

Generally, considering a semi-infinite of finite substrate, electrical and mechanical

Introduction
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Figure 1.1: A typical artistic view of a SAW devise geometry

responses to delta functions type of excitations (point-and line-source charges and

forces) are referred to as the (dyadic) Green’s function. These Green’s functions

play a key role in any BEM implementation. In case of electrostatic problems

one can solve the problem analytically. However, in general quasi-static piezo-

electric problems, under the assumption of harmonic time-dependence (e−jωt),

the Green’s functions can only be calculated numerically. Most often the Green’s

functions constructed under the afore-mentioned delta function excitations pos-

sess singularities. Consequently, the double convolution surface integrals, involv-

ing the Green’s functions as their kernels are as a rule notoriously difficult to

calculate numerically. These are but a few reasons why an efficient modeling of

wave propagation in SAW devices is highly challenging even in 2D models. Many

Introduction
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proposals have been made for the construction of Green’s functions in infinite

and semi-infinite media [8, 10, 11, 12]. Mid 80’s the SAW community was facing

challenges by necessity of accounting of the Bulk Acoustic Waves (BAW) in addi-

tion to SAW. The rigorousness and efficiency of the analysis methods in terms of

computational time became inevitable as complex-structured devices demanded

increasingly higher precision level. Few attempts were made using BEM (or as it is

alternatively called Method-of-Moments) along with Green’s functions technique

and Ritz-Galerkin method to fully account for bulk- surface waves interaction

(Wagner & Visintini, Wagner et. al. [13, 14]). Furthermore, the Method-of-

Moments (MoM) was applied to model 2D and 3D elemental charge distribution

in leaky acoustic wave devices [15]. The paper demonstrated the derivation of

spectral-domain Green’s functions using Floquet Theorem for characterizing pe-

riodic problems. Were, the singularities of Green’s functions were isolated and

treated separately. The asymptotic behavior of Green’s functions are also treated

explicitly at infinity and at origin [15, 16, 17]. The massloading has been con-

sidered as a higher-order effect, which requires attention due to the technological

advances in utilizing different types of electrodes with comparatively larger di-

mensions to achieve a desired reflectivity and interaction with acoustic fields. A

brief survey of the method was presented by Baghai-Wadji and Ringhofer [18],

the paper also introduces to the idea which is core to this chapter; the interaction

between the two acoustic elements manifests itself through an energy exchange

in such a way that the boundary- and interface conditions are satisfied.
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Figure 1.2: Example showing the section of the device geometry

Finite Element Method and Related Advanced Techniques

There are a number of advantages in considering Finite Element Method (FEM)

as a primary analysis techniques [19]. The advances of FEM modeling, during

the last decade have been presented in [20] and references therein. One of the

advantages of the FEM is the capability of handling complex geometries with ease

not just in 2D but also in 3D piezoelectric media [21]. However, FEM applied to

a realistic model of a complete 3D SAW device is still farfetched. For an accurate

analysis of the dominant mode of surface acoustic wave propagation in plate-like

finite piezoelectric solids, Wang J. and Jingbo L.[22] has developed a 2D theory

utilizing an exponential expansion of displacements and electrical potential in the
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thickness direction, essentially, creating a theory similar to popular plate theory

of Mindlin [23]. Additionally, in FEM the structural geometry is subdivided or

meshed to form finite elements, where the system of coupled equations is solved

over each elements and assembled. Generally, increasing the number of these

mesh elements increases the accuracy of the total solution. For a typical 3D radio

frequency resonator, considering ten elements per wavelengths will blow up the

number of discritization necessary to the order of 1010. Handling such enormous

number of data is a huge task, even with the current advancements in compu-

tational technologies [24]. These concerns forced the analysis to look for other

formalisms free from meshing, such as, Mesh-free Methods [25, 26], and Element-

free Galerkin Methods [27, 28]. These methods improved the convergence of the

solutions. However, the proposed methods where still computationally expensive,

which limited the scope of their applicability. Domain Decomposition methods

[29, 30], Interface Element Methods [31, 32], Dynamic Substructuring methods

[33, 34, 35, 36], Multidomain Spectral Methods [37], were among few other meth-

ods, which provide the solutions to the problems in various engineering fields.

The central idea of these methods is substructuring the media and solving each

sub-domain individually and thus reducing the computational time for each do-

main. The domains are then assembled using conventional techniques such as

Lagrange multiplier, penalty parameter, conservative coupling approach, Moving

Least-squares Interpolate Technique [30, 35, 36].
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Hybridization of FEM/BEM Techniques

Both FEM and BEM exhibit their own characteristic advantages and disadvan-

tages. Constant efforts have been made to hybridize the two methods such that

one can benefit from the advantages of both methods simultaneously. The combi-

nation of FEM/BEM is achieved by merging BEM formulation using semi-infinite

Green’s functions and FEM computation of the mechanical behavior of each

metallic electrode [38, 39, 40, 41]. Analysis of the reflectivity of the arbitrarily-

shaped electrodes considering the massloading effect was also possible through the

combination of periodic Green’s functions with simulation of massive electrodes

utilizing FEM [38, 42].

1.2 On the Notions of Self-regularized Dyadic

Green’s Function Technique

There has been numerous attempts in order to circumvent the drawbacks asso-

ciated with the afore-mentioned methods. While, FEM adapted hybrid versions

such as mixed FEM/BEM techniques, BEM is still thriving on various Green’s

functions techniques. Generally, BEM is considered to be a most powerful anal-

ysis technique. However, BEM is accompanied by a number of drawbacks: 1)

Problem-specific Green’s functions are sought where the underlying integral for-

mulation leads to the singularities, which are not easy to handle. (The Green’s
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Cuboid type Name Type of problem

Basic cuboid-I One-port problem

Basic cuboid-II Two-port problem

Basic cuboid-III Three-port problem

Basic cuboid-IV Four-port problem

Basic cuboid-V Five-port problem

Basic cuboid-VI Six-port problem

Table 1.1: Categorization of basic cuboids. The numbers characterizing Basic
cuboids depend on the number of sides permitted for exchanging energy with
environment
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functions also become singular whilst calculating the interaction of an element on

the boundary with itself, self-action.) 2) The numerical calculations of Fourier-

type integrals which are oscillating are in general complicated. This is in par-

ticular the case when mutual interaction of two nearby elements are computed.

3) In BEM, the system matrices are dense as oppose to banded matrices appear-

ing in FEM, thus resulting in more computational time in solving the system of

equations.

The Self-regularized Dyadic Green’s Functions technique proposed in this work

makes sure that no singularities arise in computations in the first place. The

device geometry is subdivided into appropriate number of cuboids (3D solid fig-

ure bounded by six rectangular faces) and then solved individually. For solving

each cuboids, employed basis- and test functions, constitute a set of smooth func-

tions. The smoothness property ensures that the derivatives of the analysis-and

synthesis functions are smooth and easily calculable. The integrals are derived

in closed-form with virtually no additional computational time. The distributed

nature of the analyzing- and synthesizing functions results in the fact that there

is no singularities in integrands. Furthermore, the associated system matrices

involving orthonormal basis functions, are sparse matrices, a fact which reduces

not only the computational storage space but also the computational time. De-

tails of the proposed technique are presented next by considering 3D one-port

and two-port problems.
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1.2.1 Preliminary Considerations

The proposed method of Self-regularized Dyadic Green’s functions is conceptu-

ally a sophisticated process. We shall make a number of assumptions, merely

to ease the description of our method. However, we fully take into account the

massloading to make the problem relevant to SAW- and BAW device community.

We will consider a purely mechanical problem, assuming that the electrodes and

all the other sub-structures are mechanically excited by sources which oscillate

time harmonically at a given frequency ω. We subdivide the geometry into sec-

tions. For each section we construct the Distributed-Elementary-Source (DES)

Self-regularized (SR) Dyadic Green’s Functions (DGFs), abbreviated as GFs. We

assemble the sub-sections following the matching process (solving interface prob-

lem). This recipe is introduced further, where we also describe the tools that are

core to the GFs method.

1.2.2 Geometrical Discritization and Basic Cuboids

One of the key features of the proposed Self-regularized Dyadic Green’s function

method is the way we partition the geometry. Let us consider the geometry

of a typical SAW device as shown in Fig. 1.1. The geometry consists of the

substrate structure loaded with electrodes and busbars surrounded by absorbing

wall structure. Focusing on the section of Fig. 1.1 allows us to narrate the
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Figure 1.3: Basic Cuboid-I as one-port problems, where springs suggests time
harmonistic nature of the problem. The surface attached to the spring should
symbolize the distributive nature of sources. The surfaces of the cuboid, where
no sources are applied, indicate stress-free boundaries
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Figure 1.4: Basic Cuboid-I and Basic Cuboid-II separated by equivalent forces.
The surface attached to the spring should symbolize the distributive nature of
sources. The surfaces of the cuboid, where no sources are applied, indicate stress-
free boundaries
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discritization process (Fig. 1.2): We subdivide the device geometry of the massive

structure into an adequate number of cuboids. Thereby, one electrode or the

entire busbar may be represented by one mesh-less cuboid. We appropriately

refer to these cuboids as mess-less since no further discretization (meshing) of

geometry is required as oppose to the FEM and BEM. This property allows us

to consider the entire electrode section as one basic cuboid. We categorize each

cuboid depending on the number of adjacent cuboids attached. For example, a

cuboid is called Basic Cuboid-I; Fig. 1.3, because only one port of the hexahedron

is allowed to exchange energy with the adjacent cuboid or environment. All the

electrodes in Fig. 1.2 are one-port cuboids, and hence Basic Cuboid-I, provided

they are not excited by any external sources. Obviously, if the same cuboid

exchanges energy with one adjacent side, and simultaneously with environment

through a different side makes the problem a two-port cuboid, and thus Basic

Cuboid-II. Consequently, device structure is a compilation of such basic cuboids

of different types (refer Table 1.1). Therefore, cuboids of particular types need

to be characterized and solved individually. Thereby, since each each cuboid

is mesh-less, it is necessary that the supports of the opted basis- and testing

functions occupies the entire domain of the cuboids.

Introduction



17

1.3 Boundary Value Problems Defining Two Test

Cuboid

In this chapter, two types of Boundary Value Problems are introduced: one- and

two port problems. We present a unified solution strategy to typical one- and

two port problems arising in the proposed method. Furthermore, it is shown that

more complex BVPs of interest can be reduced to the solution scheme developed

here.

1.3.1 BVP for Test Cuboid I

The equation of motion for the test cuboid I, sketched in Fig. 1.3 is given by the

governing equation

∇tT = −ρIω2u, in Ω, (1.1)

and the inhomogeneous Neumann boundary condition:

τ3|TestBoundary = F (1.2)

Our objective is the construction of Green’s functions associated with the one-

port problem formulated in Eqs. (1.1) and (1.2). A time-harmonic oscillation

according to e−jωt has been assumed throughout the work. For a detailed dis-

cussion of the properties of the differential operator ∇ and the constituent 6× 3

matrices Nn (n = 1, 3) the reader is referred to the discussion in [11]. Here, u
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is the mechanical displacement vector, and T stands for the stress tensor. The

stresses τn (n = 1, 3) are defined as follows: τn = Nt
nT = Nt

nC∇u

1.3.2 BVP for Test Cuboid II

The test cuboid II (Fig. 1.4) involves two cuboids occupying the volumina, Ωa and

Ωb, representing one electrode and the substrate hexahedron, respectively, having

a common interface. Additionally, cuboid “a” is subject to external forces oper-

ating at frequency ω. Thus the BVP characterizing the “ab”-composite structure

is given by:

∇tTa = −ρω2ua, in Ωa (1.3a)

and

∇tTb = −ρω2ub, in Ωb (1.3b)

By definition Ωa is a two-port cuboid, whereas, Ωb is a one-port cuboid. The

boundary- and interface conditions are given by

τ a3 |TestBoundary = F, (1.4)

along with

τ a3 |Interface = τ b3 |Interface (1.5a)

Introduction



19

and

ua|interface = ub|Interface. (1.5b)

At the interface between “a” and “b,” we shall introduce equivalent forces and

separate the bodies for independent analysis. The boundary sections other than

the interface and the test boundary are assumed to be stress free.

1.4 Outline of the Proposed Solution for Test

Cuboid I: Construction of DES SR DGFs

We follow the standard Galerkin scheme to solve the BVP given by Eqs. (1.1)

and (1.2) for the test cuboid I (Fig. 1.3). The solution comprises of the following

steps: 1) Expand the unknown functions in the problem in terms of a finite

number of appropriately selected basis functions; 2) carry out the standard rolling

over of the derivative operator; 3) apply Gauss’ divergence theorem to transform

volume integrals into their equivalent surface integrals; 4) transform the resulting

coupled system of equations to the master co-ordinate system, where the basis

functions, their derivatives and integrals are pre-defined. The latter step requires

the transformation of derivatives and integrals, expressed in the original domain;

a task which is discussed next.
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1.4.1 Transformation of Functions and Differential Oper-

ators from Local to Master Co-ordinate System

Consider the function g(x, y, z). Subject the Cartesian co-ordinates x, y and z to

the single-valued transformations x = x(ξ), y = y(η) and z = z(ζ). Then, we can

write:

g(x, y, z) = g(x(ξ), y(η), z(ζ))

= h(ξ, η, ζ) (1.6)

Furthermore, applying the chain rule the following relationship can be established:

∂g(x, y, z)

∂x
=

∂ξ

∂x

∂h(ξ, η, ζ)

∂ξ
+
∂η

∂x

∂h(ξ, η, ζ)

∂η
+
∂ζ

∂x

∂h(ξ, η, ζ)

∂ζ

∂g(x, y, z)

∂y
=

∂ξ

∂y

∂b(ξ, η, ζ)

∂ξ
+
∂η

∂y

∂b(ξ, η, ζ)

∂η
+
∂ζ

∂y

∂b(ξ, η, ζ)

∂ζ

∂g(x, y, z)

∂z
=

∂ξ

∂z

∂b(ξ, η, ζ)

∂ξ
+
∂η

∂z

∂b(ξ, η, ζ)

∂η
+
∂ζ

∂z

∂b(ξ, η, ζ)

∂ζ
(1.7)

In the particular case of linear transformations,

x(ξ) = a1 + a2ξ

y(η) = b1 + b2η (1.8)

z(ζ) = c1 + c2ζ
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the Eq. (1.7) can be cast in the following simple matrix representation:
∂g(x,y,z)

∂x

∂g(x,y,z)
∂y

∂g(x,y,z)
∂z

 =


1
a2

0 0

0 1
b2

0

0 0 1
c2




∂h(ξ,η,ζ)
∂ξ

∂h(ξ,η,ζ)
∂η

∂h(ξ,η,ζ)
∂ζ

 (1.9)

In addition, Auld’s differential operator ∇ in three dimensions transforms as

follows (refer to [11]):

∇ = N1∂x + N2∂y + N3∂z

= N1

[
1

a2

∂ξ

]
+N2

[
1

b2

∂η

]
+N3

[
1

c2

∂ζ

]
= ∇̃ (1.10)

Additionally, we have

∫
Ω

dxdydzg(x, y, z) = a2b2c2

∫
�

dξdηdζh(ξ, η, ζ). (1.11)

Here, the “ �” symbolizes the volume −1 ≤ ξ, η, ζ ≤ +1.

1.4.2 Basis- and Testing Functions

We take the polynomials bl(ξ), bm(η) and bn(ζ) to be orthonormalized Legen-

dre polynomials on the interval [-1,1]. We employ these 1D basis functions

to form a set of 3D Bi(ξ, η, ζ) basis functions: Bi(ξ, η, ζ) = Bl�m�n(ξ, η, ζ) =

bl(ξ)bm(η)bn(ζ), with l = 0, · · · , L, m = 0, · · · ,M, n = 0, . . . , N and

i = 0, · · · , L × M × N. Obviously, due to the resulting factorized form, the
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calculation of the derivatives of Bi(ξ, η, ζ) with respect to any of the indepen-

dent variables ξ, η and ζ can be reduced to calculation of the derivatives of 1D

functions. A similar conclusion can be made for the calculation of the inte-

grals, which arise in implementations. The integrals, carried out over the domain

−1 ≤ ξ, η, ζ ≤ +1, are obtained in closed-form and tabulated. The distributed

nature of the basis functions results in the property that no singularities arise in

the process of calculating Green’s functions. Furthermore, since the derivatives

and integrals are calculated in closed-form in 1D, there is hardly any additional

computation time required to calculate the derivatives and integrals involving 3D

polynomials.

As an example consider the ith component of the displacement vector u being

approximated in terms of a linear superposition of the constructed basis functions

Bj(ξ, η, ζ):

ui(ξ, η, ζ) ≈
L×M×N∑
j=0

u
(i)
j Bj(ξ, η, ζ), (1.12)

where, i = 1, 2, 3. The test functions, which are required in the implementation of

the standard Galerkin method are chosen from the set of composite basis functions

Bj(ξ, η, ζ). Correspondingly, the force functions, defined on the boundary surface,

can be synthesized a linear combination of 2D basis functions. As an example,

assuming the force function F (ξ, η), defined on the square (ξ, η) ∈ [−1, 1]×[−1, 1],
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Figure 1.5: Example of a system matrix showing the sparseness in the matrix for
an isotropic material

can be approximated by

F (ξ, η) ≈
L×M∑
j=0

αjBj(ξ, η). (1.13)

(Strictly speaking we should have introduced no symbolother than Bj(ξ, η) to

denote bl(ξ)bm(η). However, since there is no danger for confusion, the same

symbol was used.) Solving the involved system of coupled equations results in the

components of the displacement vector, and thus the solution to the underlying

BVP.
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The implementation of the Galerkin scheme is straightforward. However, for

varying source functions one needs to solve the system of equation anew, a pro-

cess, which can be exhaustive computationally. This bottleneck can be remedied

by utilizing the pre-calculated DES SR Dyadic Green’s Functions. By definition,

our Green’s functions are responses (displacement functions) to elementary exci-

tations defined on a section of the boundary surface, while keeping the remaining

prtion of the boundary to be stress free. In the case of one-port problem, the

elementary sources are 2D basis functions, which are distributed over the con-

sidered surface of the test structure I. Successive application of the 2D basis

functions, and solving the resulting system of equations, as described above, re-

sult in the associated displacement components, and thus to the required Green’s

functions, which will be collectively denoted by GFs. The computed information

defining GFs is then stored for frequent future usage. Since any displacement

distribution in response to an arbitrary excitation function can be modelled by

the pre-computed Green’s functions, we can write:

ui(x, y, z) ≈
L×M∑
j=0

α
(i)
j GF

(i)
j (x, y, z) (1.14)

Remark: Before proceeding further it should be pointed out that, Eqs. (1.9) and

(1.11) convey an important property, whose utilization may significantly reduce

the computational cost. These equations show that, upon linear transformation,

the integration and differentiation operators are not dependent on translation
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coefficients, a1, b1 and c1, appearing in transformation Eq. (1.9). Thus, if the

size of the basic cuboid does not change, it is not necessary to recalculate the

system of equations. Instead, whenever required, use the same stored GFs, by

just translating them to the desired position. This essentially meaning, computing

the GFs for one test structure I, solves the problem for any hexahedron identical

to the test cuboid I, regardless of its actual position in the device geometry.

In addition to this most advantageous feature, the associated system matrix is

sparse, evidence of which can be seen in Fig. 1.5.

1.4.3 Physics-based Model-Order-Reduction

Finally, before concluding this section it should be mentioned that both GFs and

their derivatives are defined on the entire simulation domain. The storage of these

functions is necessary for repeated future usage. However, storing entire-domain

solutions in their original form, as they stand, requires excessive amounts of stor-

age space, rendering the retrieval of data an exceedingly slow process. Instead the

calculated GFs and their derivatives are evaluated (collapsed) on the boundary.

This process effectively compress the data set involved, without compromising

the accuracy of the numerical results. In view of this most desirable feature

of the proposed method, it will also be referred to as the physics-based Model-

Order-Reduction (MOR) technique. The mentioned data compression becomes

particularly significant when three dimensional building blocks are put together

Introduction



26

to synthesize large number of cuboids, utilizing the Green’s functions in reduced

form.

Library of GFs and the Concept of Working Memory: The assumed finite

number of basis functions span a subspace of the Hilbert space; the computed

GFs carry sufficient information to describe any conceivable vibration of the con-

sidered canonical problems. The compressed GFs and their derivative functions

are stored in a storage space referred to as the Library. The stored GFs are cat-

egorized depending on the type of the material characterizing a given cuboid, size

of cuboid and the operating frequency. The created Library contains the GFs

for standard materials used in the micro-acoustic industry. The information in

the Library enables both 2D and 3D device modeling and simulation. The Li-

brary is made accessible to authorized designers, who only need to focus on the

design constrains, without being disrupted by the numerical and computational

difficulties. In applications only those encoded GFs are retrieved and copied into

the Working Memory which is unconditionally necessary for modelling a given

structure.
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1.5 Outline of the Proposed Solution for the

Test Structure II

The test cuboid II is a combination of basic cuboid I and Basic cuboid II. The

discussion of the solution for these type of problems, sketched in Fig. 1.4, is

rather complex. However, by restricting the discussion to scalar problems, the

complexity can be reduced significantly. A strategic outline has been drawn in the

following section. To convey the essence of the idea, it fully suffices to consider

scalar-valued sources and responses and thus talk about scalar Green’s functions

only for this section.

1.5.1 Sufficiency Principle

Assume a certain force distribution F (s), (s ∈ [0, 1]), operating at the given

frequency ω, acts on the bounding surface Γ. The involvement of the frequency

is extraordinarily important in practical simulations but has no relevance in the

present discussion. It has been assumed that the boundary has been parameter-

ized: we traverse the entire (closed) boundary by varying the parameter s from

0 to 1. The problem is the determination of the domain response function in

terms of displacement to the force distribution F (s). In particular, we are in-

terested in the determination of the response of the medium R(s), evaluated on

domain’s bounding surface. A second quantity of interest is the derivative of the
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response function of the medium evaluated at the bounding surface, DR(s). The

rationale behind our interest in R(s) and DR(s) stems from the fact that if we

wish to interface the current domain with adjacent sections, we only need to be

equipped with the knowledge about R(s) and DR(s). Obviously, changing F (s),

the response functions R(s) and DR(s) will change accordingly. In our method

we fully exploit the advantages innate to Green’s functions. From a strategic

point of view (computationally), we wish to pre-calculate relevant data and store

them for future simulations. To this end we exploit the fact that F (s) can be

synthesized with sufficient accuracy from (N + 1) distributed elementary (basis)

functions bn(s) with n ∈ N0 and N0 = 0, · · · , N. Denote the individual responses

of the medium to bn(s) by Gn(s) and consecutively calculate their derivatives

DGn(s). Not surprisingly, the letters G and D are meant to remind us of Green’s

functions and their derivatives, respectively. The mentioned synthesis is valid if

we can assure that bn(s) (n ∈ N0) constitute a subset of a complete sequence of

functions. Assume the latter sequence exists. Then, the following inferences are

immediate: (i) F (s) can be expressed in terms of bn(s) by introducing (N + 1)

expansion coefficients cn (n ∈ N0). (ii) The responses Gn(s) and DGn(s) to the

individual bn(s) are already available, in the Library or calculable for a new

simulation domain. Therefore, the responses of the medium to F (s), i.e., G(s)

and DG(s), can be obtained by a linear combination of Gn(s) and DGn(s), re-

spectively, adequately weighted by the coefficients cn. The merit of the story is

that if the excitation, i.e. F (s) changes to, say, F̃ (s), we don’t need to solve the
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BVP from scratch. Instead, we just need to determine the expansion coefficients

c̃n of F̃ (s) by synthesizing F̃ (s) from the basis functions bn(s). The responses

of the medium to F̃ (s) can readily be obtained by weighting the pre-calculated

Gn(s) and DGn(s) by the coefficients c̃n and adding together the resulting terms.

1.5.2 The Principle of Exhaustion

In order to introduce this principle clearly a few comments are in place. (1)

The pre-calculated Green’s functions Gn(s) and their derivatives DGn(s), both

evaluated at the bounding surface, are scalar functions, which depend on one

variable only. Thus they are completely expressible in terms of the set of basis

functions bn(s). In fact by way of their construction, Gn(s) and DGn(s) are

already available in the desired form, each in terms of (N+1) numbers. This is of

paramount significance in computations: the availability of a set of 2(N+1) (pre-

calculated) numbers fully characterizes the solution of our problem (at a given

frequency). (2) To keep track of the pre-calculated functions Gn(s) and DGn(s)

and to further manipulate them we only need to take care of 2(N + 1) numbers.

Since (N + 1) independent excitations (independent numerical experiments) can

be carried out, 2(N + 1) × (N + 1) numbers fully characterize our BVP (again

at a given frequency); these numbers exhaust the knowledge about our BVP

(principle of exhaustion). (3) A further and very important fact is the following:

As we can show, the relevant types of boundary conditions such as, homogeneous
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and inhomogeneous Dirichlet, homogeneous and inhomogeneous Neumann, and

interface conditions can be calculated utilizing the aforementioned 2(N + 1) ×

(N + 1) numbers - a property which manifestly justifies the notion of exhaustion.

1.5.3 Application of the Sufficiency- and Exhaustion Prin-

ciples

In order to deal with the interface conditions in the test structure II, let us first

familiarize ourselves with the solution of a comparatively easier problem, namely,

the Dirichlet boundary condition. As it turns out, solving interface condition is

conceptually a minor modification of solving the Dirichlet boundary condition.

Consider the equation of motion

∇tT = −ρω2u, in Ω, (1.15)

and the Dirichlet boundary condition with U being a known function, defined on

the boundary:

u|TestBoundary = U (1.16)

It should be noted that while the displacement on Γ is known upon assumption,

the stress on Γ is a priori unknown. Assume that each of the three component

of the unknown stress distribution on the boundary can be synthesized using

N0 appropriately chosen orthonormal basis functions, weighted by N0 expansion

coefficients c0, c1, · · · , cN . The task is reduced to determination of the expansion
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coefficients such that the governing equation is satisfied in Ω and the displacement

on the boundary matches (in weak sense) the given displacement function. To

this end utilizing our constructed Library we proceed as follows. We excite

the (Ω,Γ)-medium by the force (basis) function bn(s), acting on Γ. Since bn(s)

is an elementary function, the response of the medium will be referred to as the

Green’s function associated with bn(s). The Green’s Function evaluated on the

boundary Γ, i.e., Gn(s), has been, however, pre-calculated and thus can be copied

from the Library into the Working Memory. It should be noted that the

Green’s function Gn(s), being a function defined on Γ, can be expressed in terms

of bi(s), i ∈ N0:

Gn(s) =
N∑
i=0

gnibi(s) (1.17)

By saying that the Green’s function Gn(s) is stored in the Library, it is meant

that the coefficients gni, i ∈ N0 have been stored in the Library. A further

realization is that Gn(s) is, upon construction, the displacement functions un(s)

evaluated on the boundary. Obviously, in virtue of linearity, exciting the medium

by cnbn(s), the corresponding displacement on Γ is cnGn(s). Retrieving Gn(s)

for n = 0, · · · , N from the Library, multiplying by c0, · · · , cN , and adding, we

obtain the displacement on Γ :

u(s)|Γ =
N∑
n=0

cnGn(s) (1.18)

The reader may ask why this peculiar way of expanding the displacement on the

boundary u(s) in terms of Gn(s), rather than the more intuitive way of expansion
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in terms of the basis functions bn(s), say, ũ(s)|Γ =
∑N

n=0 c̃nbn(s); after all u(s)

is a function defined on Γ and can thus be expressed in terms of basis functions

to any arbitrary accuracy, as we expressed the stress on Γ in terms of bn(s). A

little reflection shows that u(s)|Γ =
∑N

n=0 cnGn(s) is such that its continuation

into the Ω is unique and at the same time fulfills the governing equations.

Thus the computational task is reduced to the determination of the unknowns

cn, n ∈ N0. To this end we use the fact that the displacement on Γ is a given

function, i.e. U(s). Setting
∑N

n=0 cnGn(s) = U(s), and using Eq. (1.17) leads to:

N∑
n=0

cn

N∑
i=0

gnibi(s) = U(s) (1.19)

On the other hand since U(s) is known, we have U(s) =
∑N

k=0 αkbk(s) with known

αk. Substituting the latter equation into Eq. (1.19); multiplying both the sides

by bj(s) and integrating over Γ and using orthonormality condition for the basis

functions we obtain
N∑
n=0

cn

N∑
i=0

gniδij = αj, (1.20)

which is equivalent with
N∑
n=0

cngnj = αj. (1.21)

Proceeding similarly with the remaining basis functions we obtain N0 equations

for the determination of N0 unknowns cn. Thus, with the available coefficient ma-

trix [gnj] and, consequently, its inverse [gnj]
−1 the unknown expansion coefficients

Introduction



33

cn can be determined:

[cn] = [gnj]
−1[αj]. (1.22)

Note that effectively the computational cost for solving the Dirichlet problems

is negligible and is reduced to solving N0 equations. More precisely, given U(s),

we merely need to compute N0 inner-products αj =< bj|U > and multiply the

resulting vector [αj] from the left by the pre-calculated inverse matrix [gnj]
−1.

Remark: Above, to simplify the discussion, we made a few tacit assumptions

which need to be clarified. (1) We assumed that the force- and displacement

functions are scalar. (2) Furthermore, we assumed that the support of the basis

functions comprises the entire boundary Γ. Having explained the trust of the

method, the discussions in the following chapters will demonstrate how the above

constrained can be relaxed, respectively, removed. As the reader can expect

the solution procedure is straight forward, however, considerably more complex.

However, the application of the above recipe remains valid.

Copy the Distributed-Elementary-Source Self-regularized Dyadic Green’s Func-

tions (GFs) from the Library into the Working Memory individually for each

cuboids. Utilize the GFs employing the Sufficiency- and Exhaustion Principles,

to match the solutions at the interfaces. This completes the solution of the BVPs

with interface conditions.
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1.6 Thesis Organization

The presentation in this chapter profiles a brief introduction to the proposed

method of GFs technique. The method offers a number of novelties and advan-

tages compared with the standard techniques. The novelties and advantages will

be discussed in the forthcoming chapters in greater detail. Thereby, each chap-

ter has been adapted from the corresponding submitted journal paper to make

a coherent whole. The chapters should also reflect the progress of thoughts as

they developed in the course of the thesis as well as the incremental complexity

in the types of problems addressed. Necessarily, the chapters contain sections

which are repeated more then once. However, the repetitions are kept in the

chapters to maintain the similarity between the chapters and the submitted pa-

pers, as far as tolerable, also to reinforce the introduced concepts in addressing

the problems (2D and 3D). The reader who is only interested in gaining an overall

understanding of the proposed methodology, may wish to skip the repetitions, or

similar variations. The chapters are organized, depending on the choice of mate-

rial (isotropic or anisotropic), and the dimensionality of domain (2D or 3D), as

follows:
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1.6.1 Chapter 2: Distributed-Elementary-Source Self- reg-

ularized Dyadic Green’s Functions for Modeling the

Massloading Effect in Acoustic Devices: 2D Isotropic

Problems

A concept for the simulation of two dimensional isotropic models of massive elec-

trodes in micro-acoustic devices has been presented. The method is based on a

mesh-less analysis of the underlying boundary value problem. An efficient proce-

dure for the calculation of the involved dyadic Greens functions has been intro-

duced. Major advantage of the proposed method is in the ability of pre-calculating

and storing relevant data for the characterization of individual substructures. The

latter property is by construction amenable to parallel computing. A glimpse of

the numerical results and carefully drafted figures facilitate the discussion of the

underlying ideas.

1.6.2 Chapter 3: 2D Elastodynamic Simulation of Fully

- anisotropic Elastic Media Using Self - regularized

Dyadic Greens Functions

The presentation begins with the geometrical sub-sectioning of the simulation do-

main and discussing the types of Basic cuboids involved. Next a weak formulation

is presented for two dimensional rectangularly-shaped basic rectangles. The dis-

cussion then focuses on explaining the involved Distributed-Elementary-Source
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Self-regularized Dyadic Greens Functions (GFs). The GFs are then applied to

test problems emphasizing different types of boundary conditions. The numer-

ical results obtained show the successful application of the proposed GFs to a

multi-domain test cuboid, by comparing the numerical results against the data

obtained from a commercially available FEM simulation package. Utilizing the

GFs from the generated Library, the chapter concludes with an analysis of the

interface problem involving fully-anisotropic cuboids.

1.6.3 Chapter 4: 3D Elastodynamic Simulation of An-

isotropic/Isotropic Interface Problems in Elastic Me-

dia

A three dimensional problem of ideally-bonded fully-anisotropic interacting elas-

tic media, subject to harmonically time-varying loading at one edge has been ana-

lyzed. The underlying boundary value problem is considered as a group of bound-

ary integral equations each characterized by an associated independent bound-

ary value problem. The introduced subsystems are then excited individually by

distributed elementary forces rather than standard localized Dirac delta func-

tions. The corresponding Distributed-Elementary-Source Self-regularized Dyadic

Green’s functions are consecutively calculated and stored. The principle of Ex-

haustion and the Sufficiency principle along with the stored dyadic Green’s func-

tions enable the satisfaction of displacement- and stress continuity over the in-

terfaces. Furthermore, generalizations have been made, allowing interaction with
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much larger variety of material types and in particular, interactions between

isotropic and anisotropic subsystems. The developed technique offers the prospect

of assembling complex device geometries from pre-calculated canonical structures

and thus suggests a genuine shift in computational engineering.

1.7 Computational Platforms Utilized in Numer-

ical Calculations

To compute the test problems in the following chapters, a number of computa-

tional platform were utilized. Moreover, all the calculations were carried out on

a standard dual-core PC, running at 1.86 GHz with 2Gb of RAM. For the fun-

damental studies, MAPLE
TM

was used to calculate and plot the solutions, which

is a symbolic interpreted mathematical package. For the more rigorous analysis

and numerical implementations, the scripting language ‘Python’ was utilized. In

addition, open-source libraries such as Scipy, Numpy, and Pysparse were utilized,

which are fundamental and specialized packages needed for scientific computing

with Python. For visual display of 1D basis functions, the open-source python

package Matplotlib was employed. For displaying the results in two- and three

dimensional, a freeware version of Paraview was used, which is a visualization

program based on the Visualization toolkit (VTK).
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Chapter 2

Distributed-Elementary-Source

Self- regularized Dyadic Green’s

Functions for Modeling the

Massloading Effect in Acoustic

Devices: 2D Isotropic Problems

2.1 Introduction

Simulation of the massloading effect in surface acoustic wave (SAW) and bulk

acoustic wave (BAW) devices has been of paramount interest and significance

in the micro-acoustic device community ([7, 39, 43] and the references therein).

Traditional calculations, based on the Finite Element Method (FEM), Boundary

Element Method (BEM) or a combination of both, lack the desired ability in
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precalculating and storing data in a Library for frequent future usage in device

design cycles. Ordinarily, the idea of identifying pre-calculable data is regarded

as a challenging task because stress distributions on the bounding surfaces of the

metallic electrodes, used in micro-acoustic devices, are strongly frequency depen-

dent. In addition to our desire of having more efficient numerical techniques,

inherent limitations of FEM and BEM also need to be addressed: While BEM

easily applies to open-boundary problems and provides comparatively accurate

results, it is not suitable for solving problems related to strongly varying material

inhomogeneities. On the other hand, despite the fact that FEM straightforwardly

accommodates material inhomogeneities, its application to open-boundary prob-

lems is plagued by compromising achievable accuracies. (In general, the accuracy

achievable by FEM is inferior to that obtainable by BEM.) Part of these and

related difficulties can be remedied by hybridizing FEM and BEM at the cost

of higher computational requirements. Alternatively, in order to improve the ac-

curacy of the solutions, new mesh-less methods such as Element-free Galerkin

Method, Mesh-less local Petrov-Galerkin Method, Point Interpolation Method,

etc. have generated considerable interest along with hp-Finite Element Methods

[19, 26, 28, 44]. Further complications arising in BEM are due to the existence of

the strong- and hyper strong singularities in the involved Green’s functions and

their spatial derivatives [11]. Computationally, the origin of these singularities

can be traced back to the utilization of idealized localized sources. In our tech-

nique we employ smoothly distributed sources and test the resulting residua by

Distributed-Elementary-Source Self- regularized Dyadic Green’s Functions for
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means of distributed and smooth functions, thus eliminating most of the men-

tioned problems in one stroke.

The presentation in this chapter limits itself to the “proof of concept.” The

method promises to be powerful enough to tackle complex problems which typ-

ically arise in SAW- and BAW devices. At the same time, the technique being

semi-numerical in its nature, is sufficiently simple to elucidate “thought” experi-

ments, underpinning the construction of the associated Dyadic Green’s Functions

(DGFs). In order to emphasize the distinct way of constructing inherently Self-

regularized (SR) DGFs, we graphically and computationally illustrate the rele-

vant steps involved. We shall underline this important feature in our method, by

referring to the constructed Green’s functions, Distributed-Elementary-Source

Self-regularized Dyadic Green’s Functions (DES SR DGFs). To save space we

shall use GFs when referring to DES SR DGFs. Utilizing our pre-computed GFs

for suitably-chosen structural sub-domains, we are then well positioned to intro-

duce a procedure for matching the constituent substructures of a given complex

domain: A metallic electrode positioned on a piezoelectric substrate in SAW-

and BAW devices manifests its influence by generating stress distributions at the

electrode/substrate interface. (To focus on the introduced technique, the electric

charges on the bounding surfaces of the electrodes have been ignored in this chap-

ter. The effect of electric charges can be included in the analysis by the method

presented in Ref. [10].) Viewed in this way, electrodes determining the device

Distributed-Elementary-Source Self- regularized Dyadic Green’s Functions for
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characteristics, can be replaced by their stress footprints on the substrate surface.

The resulting stress distributions can be regarded as sources for the excitation of

acoustic waves in these devices. Indeed being in control of the stress distribution

functions on the electrode/substrate interfaces, in addition to the electric charge

distribution functions on the bounding surfaces of the electrodes, at a given fre-

quency, we can manipulate excitation and scattering of acoustic waves in any

desired way. Distant analogies to this description can be found in well-known

methods such as domain decomposition, tearing and interconnecting methods,

penalty-based finite element interface technology, etc.[30, 32, 33, 37]. However,

this analogy is merely limited to the problem description, as will be clear in the

course of our discussion. The introduced method utilizes entire-domain basis

functions and exploits the property of orthogonality. The integrals and deriva-

tives, required to solve the Boundary Value Problems (BVPs) of interest, are

also calculated over the entire domain rather then at discrete nodes, allowing the

method to fall into the category of mesh-free or element-free methods, leading to

numerous advantages over standard FEM. These tools are employed in a sophis-

ticated manner to pre-calculate and generate a Library of problem-related GFs,

which are computed by minimizing the associated residua (Galerkin Method).

In this chapter we demonstrate the implementation of our ideas as follows: A weak

formulation will be presented first assuming three dimensional (3D) spatial de-

pendence. We then restrict our discussion to 2D problems in order to thoroughly

Distributed-Elementary-Source Self- regularized Dyadic Green’s Functions for
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Table 2.1: Main Symbols and abbreviations used in the chapter

Symbols Description
∇ . . . Auld’s divergence-type operator [11]
C . . . Stiffness matrix [1]
ρ . . . Mass density
ω . . . Operating frequency
u . . . Mechanical displacement vector
v . . . Test vector
T . . . Stress tensor

F a
s,‖(x) . . . External force component parallel (‖)

to the “southern” (s) boundary surface of
quadrangle “a”

(·)t . . . Transposition operator
Ω . . . Volume of the 3D medium
S . . . Bounding surface of the 3D medium
A . . . Area of the 2D medium
Γ . . . Boundary line of 2D medium
� . . . −1 6 ξ 6 1 and −1 6 ζ 6 1∮
S

. . . Closed surface integral
δn,n̄ . . . Kronecker delta symbol
N . . . The set of numbers 1, · · · , N
N0 . . . The set of numbers 0, 1, · · · , N

f ⇐⇒ F . . . F is a discrete representation of the
continuum entity f

DES . . . Distributed Elementary Source
SR . . . Self-regularized

DGFs . . . Dyadic Green’s Functions
GFs . . . DES SR DGFs

Distributed-Elementary-Source Self- regularized Dyadic Green’s Functions for
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Figure 2.1: Co-ordinate of an arbitrarily-located cuboid with the volume Ω and
surfaces S±i (i = 1, 2, 3)
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communicate details of our method related to the process of “tearing” a domain

into sub-domains, and the matching procedure. In this way, the enabling power

of the introduced GFs should become more clear. Next the superior properties of

the utilized basis functions are described along with calculating their derivatives

and integrals. The GFs are then utilized to satisfy the interface conditions leading

to the results and conclusion sections.

Convention: We shall take the x−axis to be in the horizontal direction, the

y−axis pointing into this plane and the z−axis to be in the vertical direction.

For 2D analysis, there will be no variation in the y−direction (∂y ≡ 0).

2.2 Preparatory Considerations

2.2.1 Weak-Galerkin Formulation in 3D

Consider an isotropic homogeneous elastic cuboid as shown in Fig. 2.1. The

elastic medium being characterized by the stiffness matrix C and the constant

mass density ρ, occupies the volume Ω with the boundary surface S. The equation

of motion for this medium reads:

∇tT = −ρω2u, in Ω, (2.1)
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or, equivalently,

[
Nt

1∂x + Nt
2∂y + Nt

3∂z
]
T = −ρω2u, in Ω. (2.2)

The superscript t signifies transposition. A harmonic time-dependence according

to e−jωt has been assumed. For a detailed discussion of the properties of the

operator ∇ and the constituent 6 × 3 matrices Ni (i = 1, 2, 3) we refer to the

discussion in [11]. Here, u is the mechanical displacement vector and T stands

for the stress tensor, which appears in our calculations as a column vector with

six components Ti (i = 1, · · · , 6). Introducing stresses τi, (i = 1, 2, 3) according

to

τi = Nt
iT = Nt

iC∇u (2.3)

we can transform Eq. (2.2) into the following convenient form:

∂xτ1 + ∂yτ2 + ∂zτ3 = −ρω2u (2.4)

Here, τi comprises the stress components T1i, T2i, T3i which act on the surface

with the outward unit normal vector ni. Multiplying both sides of Eq. (2.4) by

the transpose of a 3×1 test vector v (elementary weighting function representing

any of the vectors (v1 0 0)t, (0 v2 0)t, or (0 0 v3)t) we obtain:

vt∂xτ1 + vt∂yτ2 + vt∂zτ3 = −ρω2vtu (2.5)
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Obviously Eq. (2.5) is equivalent with:

∂x(v
tτ1)− (∂xv

t)τ1 + ∂y(v
tτ2)− (∂yv

t)τ2

+ ∂z(v
tτ3)− (∂zv

t)τ3 = −ρω2vtu (2.6)

Interpreting the scalar quantities vtτi (i = 1, 2, 3) as the components of a 3 × 1

vector P, the terms with a plus sign at the LHS of Eq. (2.6), taken collectively,

constitute the divergence of P:

∂x(v
tτ1) + ∂y(v

tτ2) + ∂z(v
tτ3) = divP (2.7)

In view of Eq. (2.7), and integrating both sides of Eq. (2.6) over the volume Ω,

we obtain:

−
∫

Ω

dΩ(∂xv
t)τ1−

∫
Ω

dΩ(∂yv
t)τ2−

∫
Ω

dΩ(∂zv
t)τ3

+

∫
Ω

dΩdivP = −ρω2

∫
Ω

dΩvtu (2.8)

Here, the divergence term deserves particular attention: Consider Gauss’ Diver-

gence theorem

∫
Ω

dΩdivP =

∮
S

dSntP, (2.9)
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Figure 2.2: Partitioning the cuboid given in Fig. 2.1 into two hexahedrons “a”
and “b”
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with n being the unit vector normal to the closed boundary S of the volume Ω

pointing outwards (Fig. 2.1):

∮
S

dSntP =

∫
S+

1

dydz

1

0

0


tP1

P2

P3

+

∫
S−

1

dydz

−1

0

0


tP1

P2

P3



+

∫
S+

2

dxdz

0

1

0


tP1

P2

P3

+

∫
S−

2

dxdz

 0

−1

0


tP1

P2

P3



+

∫
S+

3

dxdy

0

0

1


tP1

P2

P3

+

∫
S−

3

dxdy

0

0

−1


tP1

P2

P3

 (2.10)

In view of the definitions Pi = vtτi (i = 1, 2, 3), introduced above, Eq. (2.10) can

be written in the following compact form:

∮
S

dSntP =

∫
S+

1

dydzvtτ1 −
∫
S−

1

dydzvtτ1

+

∫
S+

2

dxdzvtτ2 −
∫
S−

2

dxdzvtτ2

+

∫
S+

3

dxdyvtτ3 −
∫
S−

3

dxdyvtτ3 (2.11)

With Eqs. (2.9) and (2.11), Eq. (2.8) reads:

−
∫

Ω

dΩ(∂xv
t)τ1−

∫
Ω

dΩ(∂yv
t)τ2−

∫
Ω

dΩ(∂zv
t)τ3

+

∫
S+

1

dydzvtτ1+

∫
S+

2

dxdzvtτ2 +

∫
S+

3

dxdyvtτ3

−
∫
S−

1

dydzvtτ1 −
∫
S−

2

dxdzvtτ2 −
∫
S−

3

dxdyvtτ3

= −ρω2

∫
Ω

dΩvtu (2.12)
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Figure 2.3: A composite 2D structure with a distributed excitation source acting
on the bottom surface of quadrangle “a,” with the remaining surfaces being stress
free

2.2.2 Partitioning into Quadrangles

As shown in Fig. 2.2 we partition Ω into Ωa and Ωb (Ωa∪Ωb = Ω and Ωa∩Ωb = ∅).

The two quadrangles a and b touch each other at the common interface S+
3,a = S−3,b

(Figure 2.2 shows the locations of S+
3,a and S−3,b.) Considering stress-free boundary
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conditions on all the surfaces except S−3,a, S
+
3,a and S−3,b, and in view of Eq. (2.12),

we obtain the following simplified equation for characterizing the quadrangle “a”:

−
∫

Ωa

dΩa(∂xv
t)τ1−

∫
Ωa

dΩa(∂yv
t)τ2

−
∫

Ωa

dΩa(∂zv
t)τ3 −

∫
S−

3,a

dxdyvtτ3

+

∫
S+

3,a

dxdyvtτ3 = −ρω2

∫
Ωa

dΩav
tu (2.13)

Proceeding analogously, for the quadrangle “b” we have:

−
∫

Ωb

dΩb(∂xv
t)τ1−

∫
Ωb

dΩb(∂yv
t)τ2

−
∫

Ωb

dΩb(∂zv
t)τ3 −

∫
S−

3,b

dxdyvtτ3

= −ρω2

∫
Ωb

dΩbv
tu (2.14)

These equations build the foundation for the discussion of GFs and their utiliza-

tion in solving BVPs we are interested in. We have implemented and thoroughly

tested the applicability of Eqs. (2.13) and (2.14) to 3D problems. However, to

ease the discussion, we shall reduce Eqs. (2.13) and (2.14) to 2D by considering

problems in the (x, z)−plane. The next section is devoted to this task.

2.3 Statement of The Problem

Connecting a system of partitioned quadrangles by utilizing pre-calculated GFs

for individual quadrangles.
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2.4 Proposed Methodology

2.4.1 Weak Galerkin Formulation in 2D

Suppressing y-derivatives (Ωa → Aa), and replacing Ωa by Aa and S±3,a by Γ±3,a

(Fig. 2.3), Eq. 2.13 reduces to:

−
∫
Aa

dAa(∂xv
t)τ1−

∫
Aa

dAa(∂zv
t)τ3

−
∫

Γ−
3,a

dxvtτ3 +

∫
Γ+

3,a

dxvtτ3 = −ρω2

∫
Aa

dAav
tu (2.15)

The boundary sections Γ+
1,a, Γ−1,a, Γ+

3,a and Γ−3,a represent surfaces facing ‘‘east,’’

‘‘west,’’ ‘‘north,’’ and ‘‘south,’’ respectively (Fig. 2.3). Substituting the expres-

sion for τ1 and τ3 from Eq. (2.3) into the first two terms we have:

−
∫
Aa

dAa(∂xv
t)Nt

1C∇u−
∫
Aa

dAa(∂zv
t)Nt

3C∇u

−
∫

Γ−
3,a

dxvtτ3 +

∫
Γ+

3,a

dxvtτ3 = −ρω2

∫
Aa

dAav
tu (2.16)

Here, the differential operator∇ reduced to two dimensions, has the explicit form:

∇ = N1∂x+N3∂z.[11]
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2.4.2 Discretization of Eq. (2.16) as Applied to the Master

Square

Consider an arbitrarily-located rectangularly-shaped elastic body with sides be-

ing parallel to the (x, z)−coordinate axes. With reference to the discussion in

Appendix 2.8.1, such an quadrangle can be transformed (translated) to the mas-

ter square positioned at the center of the (ξ, ζ)−coordinate system, Eq. (2.16)

becomes:

−
∫
�
dξdζa2c2

[
1

a2

∂ξṽ
t

]
Nt

1C ∇̃ ũ−
∫

Γ̃−
3,a

dξa2ṽ
tτ̃3

−
∫
�
dξdζa2c2

[
1

c2

∂ζṽ
t

]
Nt

3C ∇̃ ũ +

∫
Γ̃+

3,a

dξa2ṽ
tτ̃3

= −ρω2

∫
�
dξdζa2c2ṽ

tũ (2.17)

Quantities carrying a tilde refer to the transformed variables in (ξ, ζ)−coordinate

system. In particular, ũ stands for the displacement vector with the components

ũ1(ξ, ζ) and ũ3(ξ, ζ):

ũ =

[
ũ1(ξ, ζ)

ũ3(ξ, ζ)

]
(2.18)

The scalar functions ũi(ξ, ζ) (i = 1, 3) can be expressed in terms of the complete

set of orthonormal basis functions Bl,n(ξ, ζ) (refer to Appendix 2.8.3 for details).

For ũ1(ξ, ζ), e.g., by keeping a finite number of expansion terms, we have:

ũ1(ξ, ζ) ≈
L∑
l=0

N∑
n=0

u
(1)
l,nBl,n(ξ, ζ) (2.19)
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Figure 2.4: An example showing the separation of the composite structure shown
in Fig. 2.3 into two solid bodies by introducing equivalent traction forces on the
interface. In this problem body “a” is considered as a two-port quadrangle, while
body “b” is a one-port quadrangle
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For brevity, the spatial variables ξ and ζ in Bl,n(ξ, ζ) will be suppressed in the

remaining discussion. A similar series expansion can be written for ũ3(ξ, ζ).

Employing matrix notation, and introducing the 2 × [2 × (L + 1) × (N + 1)]

matrix B and 2× (L+ 1)× (N + 1) vector U, we can write:

ũ ≈

[
[· · · Bl�n · · · ] [· · · 0l�n · · · ]
[· · · 0l�n · · · ] [· · · Bl�n · · · ]

]


...

u
(1)
l�n
...
...

u
(3)
l�n
...


(2.20a)

= BU (2.20b)

Here, the symbol l � n refers to the arrangement of the indices in the following

form: [(0, 0), (0, 1), · · · , (0, N), (1, 0), · · · , (L,N)] . The matrix B accommodates

the basis functions, and the vector U comprises the unknown expansion coeffi-

cients, as indicated in the transition from Eq. (2.20a) to Eq. (2.20b).

On elaborating the integrals in Eq. (2.17), the first and third terms result in the

“stiffness” matrix K, whereas the term at the RHS leads to the “mass” matrix M.

Using Eq. (2.20b) and letting B, represent (⇐⇒) the known weighting function

v (with components v1 and v3), we obtain

a2c2

∫
�
dξdζṽtũ ⇐⇒ a2c2

∫
�
dξdζBtBU

= a2c2IU = MU (2.21)
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Figure 2.5: Distributive Elementary Sources: b0(ξ) (upper left), b1(ξ) (lower left),
b2(ξ) (upper right) and b3(ξ) (lower right)

for the mass matrix M. In the second transition, in Eq. (2.21), we used
∫
� dξdζB

tB =

I, (with I being the identity matrix of appropriate dimension) a fact which is the

manifestation of orthonormality property of the basis functions (refer to Ap-

pendix 2.8.3). The τ̃3 in the second integral at the LHS of Eq. (2.17) constitutes

the imposed “traction force” vector which can be conveniently symbolized in the

following manner:

∫
Γ̃−

3,a

dξa2ṽ
tτ̃3 ⇐⇒

[
F31

0

]
Γ̃−

3,a

= F−3,a (2.22)

Note that 0-augmentation of the (L+ 1)× (N + 1) vector, toF31|Γ̃−
3,a

is required

since any general excitation force acting on any of the four boundary surfaces of

the quadrangle “a” ought to be 2× (L+ 1)× (N + 1) dimensional.
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Remark: In Eqs. (2.21) and (2.22) we encounter one- and two dimensional in-

tegrals of matrices, which we denote, for the sake of brevity, by
∫
dκA. In our

formulation
∫
dκA is interpreted as a matrix, the entries of which are the in-

tegrals of the respective matrix elements:
∫
dκA =

[∫
dκAi,j

]
. (For details of

calculations refer to the Appendix 2.8.3.)

Summarizing our results Eq. (2.17), describing the quadrangle “a,” reads:

[
K− ρω2M

]
a
Ua = −F−3,a + F+

3,a (2.23)

The term F+
3,a corresponds to the fourth term at the LHS in Eq. (2.17). A similar

set of equations can be set up for the quadrangle “b” mutatis mutandis :

[
K− ρω2M

]
b
Ub = −F−3,b (2.24)

Solving Eqs. (2.23) and (2.24) for the given set of distributed elementary source

functions for each individual vector components of the traction force τi, results

in the expansion coefficients Ua and Ub of the dyadic Green’s functions, (GFs)

which uniquely specify the quadrangles “a” and “b,” respectively.
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2.5 The Concept of Distributed Elementary Sources

and GFs

Given a BVP, Green’s functions are conventionally defined as responses of the

medium to elementary excitations. Thereby, Dirac’s delta function excitations are

considered - a fact which has rendered Green’s functions the name tag “impulse

responses.” Isolated localized excitation forces result in Green’s functions which

are generally but not always singular. The Green’s function singularities can be

strong or hyper strong a fact which hampers the accuracy of numerical results

achievable. Consequently, considerable attention for the regularization of the

singularities is required [11]. By utilizing distributed sources we eliminate this

problem.

2.5.1 Distributed Elementary Sources

We assume distributed elementary sources (the components of the traction forces)

to be any of the basis functions bn(ξ) n ∈ N0, with bn(ξ) being a polynomial of

order n. The first four lowest order sources are shown in Fig. 2.5. For two-

dimensional (factorized) basis-functions, e.g., Bl,n(ξ, ζ) = bl(ξ)bn(ζ) evaluated at

the boundary, we write, Bl,n(const, ζ) = αlbn(ζ) and Bl,n(ξ, const) = γnbl(ξ) with

αl being the value of bl(ξ = const) and γn being the value for bn(ζ = const).
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2.5.2 Proposed GFs and Solution to Two-port/One-port

Interface Problem

Before delving into the discussion of the numerical results it is imperative to

clearly point out what is new in this chapter. This seems necessary not only to

position our method relative to existing techniques but also to help the reader

to have a better understanding of the proposed concept. The idea of domain

decomposition and equivalent forces in FEM and other numerical techniques is

common place. To convey the essence of differences between our work and conven-

tional techniques in engineering applications, it fully suffices to limit ourselves to

scalar-valued sources and the corresponding responses (scalar Green’s functions).

Further below, the idea will be extended to vector-valued quantities; consequently

DGFs will enter into our discussion. The introduced methodology utilizes (i) the

superposition principle along with (ii) the concept of exhaustion.

Application of Superposition and Exhaustion Principle by Utilizing

GFs

At this stage we are prepared to communicate the “punch” of our technique

and explain clearly how it allows to carrying out computations with enhanced

accuracy by simultaneously reducing the order of the complexity (physics-based

model-order-reduction, a notion which will be addressed in detail elsewhere).

Once again refer to the composite structure in Fig. 2.3. The external force func-
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tion F a
s,‖(x) excites the structure at a given frequency. Our goal is the determi-

nation of the displacement functions u1(x, z) and u3(x, z) in the entire structure

comprising the quadrangles “a” and “b,” under the boundary conditions that

the surfaces facing east, west and north are stress-free. Figure 2.4 shows the

composite structure being segmented into two quadrangles by introducing stress

distributions T31(x) and T33(x) (only T31(x) has been shown in the figure). Note

that while F a
s,‖(x) is known, T31(x) and T33(x) are a priori unknown. We recognize

the problem “a” as a two-port problem since, it exchanges acoustic energy with

environment over the s (southern) and n (northern) ports. This consideration

also justifies the problem “b” to be called a one-port problem.

We introduce a few further abbreviations to ease the discussion. The force acting

at the southern port of “a” can be oriented in the x-direction or in the z-direction,

denoted, respectively, by F a
s,‖(x) and F a

s,⊥(x). In the current case F a
s,‖(x) is the

only excitation force (F a
s,⊥(x) ≡ 0). Similarly at the northern port of “a” we

have, F a
n,‖(x) and F a

n,⊥(x). Note that in general each of the four force functions

defines an independent physically realizable BVP. Furthermore, with the help of

the “superposition principle” each of these four force functions can be synthesized

from, say, (N + 1) basis functions b0(x), · · · , bN(x). For example, the southern

port can be exited by F a
s,‖(x) = bi(x), i ∈ N0, with all other boundaries being

stress free. Consecutively, by operating the remaining forces on southern and

northern ports, we obtain a total 4 × (N + 1) independent excitation problems.
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Note that all the excitations are well-behaved because of their distributive nature.

The solution to each excitation problem can be fully described in terms of the

resulting displacement functions ua1(x, z) and ua3(x, z), leading to a total of 2 ×

4× (N + 1) response functions (GFs). Each of these functions can be evaluated

at the southern and northern port (z = const.) resulting in 2× 2× 4× (N + 1)

x−dependent functions. The power of our technique manifests itself in the fact

that each of these GFs evaluated at the ports can be expressed in terms of (N+1)

basis functions. (Remember, these responses are after all functions of x, defined

on a finite support, which upon agreement, support (N + 1) basis functions).

Thus a total of (N+1)×2×2×4×(N+1) numbers characterize any conceivable

vibration of the quadrangle “a” as a result of the forces acting at the southern

and northern ports at a given frequency (principle of exhaustion applied to the

two-port problems in 2D). Similarly, for quadrangle “b” (one-port problem), we

can argue in following way. Here, we have two types of forces, F b
s,‖(x) and F b

s,⊥(x),

each of which can be expressed in terms of (N + 1) basis functions, leading to

2 × (N + 1) independent experiments. Each experiment leads to two responses

ub1(x, z) and ub3(x, z), producing a total of 2×2×(N+1) functions. These functions

need to be evaluated at the southern port of “b” resulting in 1× 2× 2× (N + 1)

functions depending on x. Since each function can be expressed in terms of (N+1)

basis functions, a total of (N +1)×1×2×2× (N +1) numbers fully characterize

the acoustic vibrations of the quadrangle “b,” at a given frequency.
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Refocusing on the quadrangle “a,” we summarize our results as follows: F a
s,‖(x)

being a given function, can be expressed in terms of basis functions bi(x) i ∈ N0,

resulting in (N + 1) known expansion coefficients αas,‖(i). The northern forces

F a
n,‖(x) and F a

n,⊥(x) are not given. However, F a
n,‖(x) and F a

n,⊥(x), can each be

expressed in terms of (N+1) basis functions, resulting in the unknown expansion

coefficients αan,‖(i) and αan,⊥(i), i ∈ N0. In view of the fact that the responses to

the DES (i.e. GFs) at the southern and northern ports are already available

and expressed in terms of the aforementioned 16 × (N + 1)2 numbers, we can

describe the vibrational behaviors of quadrangle “a” i.e. ua1(x, z) and ua3(x, z)

evaluated at the northern port by means of (N + 1) known expansion coefficients

αas,‖(i) and 2 × (N + 1) unknown expansion coefficients αan,‖(i) and αan,⊥(i). For

the determination of the 2 × (N + 1) expansion coefficients αan,‖(i) and αan,⊥(i)

we need to consider acoustic energy exchange between the quadrangles “a” and

“b” by accounting for the interface conditions (in the weak sense). This brings

quadrangle “b” into the picture. Assume arbitrary forces F b
s,‖(x) and F b

s,⊥(x) are

acting on the southern port of “b.” These sources are a priori unknown, but

obviously can be synthesized from bi(x) i ∈ N0 by introducing the 2 × (N + 1)

expansion coefficients αbs,‖(i) and αbs,⊥(i). Availability of the stored 4× (N + 1)2

responses of the quadrangle “b,” allows us to describe the vibrational behaviors

in terms of 2× (N+1) unknown coefficients αbs,‖(i) and αbs,⊥(i), i ∈ N0. Matching

ub1(x, z) and ub3(x, z) with ua1(x, z) and ua3(x, z), respectively, at the interface,

generates 2×(N+1) equations for the determinations of the 2×(N+1) unknown
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expansion coefficients α‖(i) and α⊥(i) i ∈ N0, with α‖(i) = αan,‖(i) = αbs,‖(i) and

α⊥(i) = αan,⊥(i) = αbs,⊥(i). This completes our discussion of determining the

dynamics of composite structures in terms of their reduced (collapsed on the

boundary) GFs, which are pre-calculated and stored as simple arrays of numbers.

2.6 Results and Discussions

2.6.1 Numerical Verification and Comparison with AN-

SYS: Eigenvalue Problem

A 2D master square consisting of an isotropic material (Aluminum) was consid-

ered as simulation domain in order to conduct eigenfrequency analysis in Fig. 2.6.

The comparison is a testimony for the accuracy and efficiency of the proposed

method in terms of computational resources required. The results shown in Fig.

2.6 are encouraging. Advantages of the utilized basis functions are plenty. The

“system” matrix is sparse due to the orthoganality of the basis functions leading

to moderate storage space requirements. Determination of the eigen-pairs for the

test structures we studied, show acceleration of computations by a factor of 10

compared with the results obtained by commercially available packages. Despite

the advantages concerning reduced storage space, and faster computation times,

the main feature of our method is the utility of the tabulated GFs. The results

in the next sections shed light on this important property.
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Figure 2.6: A comparison between eigenfrequencies obtained by the proposed
method and the numerical results obtained by FEM package ANSYS
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Figure 2.7: Displacement u1(ξ, ζ), as a response to the force b0(ξ) acting at ζ =
−1.0
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Figure 2.8: Associated stress distribution T31(ξ, ζ) in response to the force b0(ξ)
acting at ζ = −1.0
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Figure 2.9: Displacement u1(ξ, ζ), (in the figure, v(ξ, ζ)) as a response to the
force b1(ξ) acting at ζ = −1.0
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Figure 2.10: Associated stress distribution T31(ξ, ζ) in response to the force b1(ξ)
acting at ζ = −1.0
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Figure 2.11: Matched displacement u1(x, z) (in the figure, v(ξ, ζ)) for first DES
applied at z = −1.0
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Figure 2.12: Corresponding matched stress component T31(x, z) derived from the
matched displacement components
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2.6.2 Application of Proposed GFs: Enforced Problem

To demonstrate the applicability of the GFs, consider the enforced problem as

narrated in Fig. 2.4. The magnitude of the DESs are given in N/m2, with operat-

ing frequency being 2.01 GHz. The simulation domain models a massive elastic

isotropic medium (aluminum), with the mass density ρ = 2.77 × 103kg/m3 and

the stiffness constants C11 = 10.80 × 1010N/m2, C44 = 2.85 × 1010N/m2 and

C12 = 5.10× 1010N/m2.

Self-consistency Analysis of the Employed GFs

Consider the master square in two dimensions extending from −1 to 1 in both ξ−

and ζ− directions. We shall refer to the edge ξ = −1 the southern edge. In order

to test the self-consistency of the developed and pre-calculated GFs, we carried

out a series of numerical experiments two of which are analyzed next.

1. Experiment : (i) Excite the southern edge by a force function Fs,‖(ξ) = b0(ξ),

where b0(ξ) is as shown in Fig 2.5 (upper left) (ii) Compute the resulting displace-

ments u1(ξ, ζ) and u3(ξ, ζ). Fig. 2.7 shows the function u1(ξ, ζ). (iii) Calculate the

associated stress distributions T31(ξ, ζ) and T33(ξ, ζ) from the computed u1(ξ, ζ)

and u3(ξ, ζ). (iv) Evaluate the latter functions at the southern edge. (v) Examine

how accurately the condition T31(ξ,−1) + Fs,‖(ξ) = 0 and T33(ξ,−1) = 0 are ful-

filled. A glance at the Figs. 2.8 and 2.5 (upper left) shows that even a moderate
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number of basis functions ensure the validity of the former condition, which is

exemplified here.

2. Experiment : Figures 2.9 and 2.10 show the displacement- and stress distribu-

tions, respectively, for the case Fs,‖(ξ) = b1(ξ). As it is evident from Figs. 2.10

and 2.5 (lower left), the condition T31(ξ,−1) +Fs,‖(ξ) = 0 is excellently satisfied.

Remark : In building our Library of GFs, the consistency of the GFs where

tested for all elementary excitations relevant to our analysis.

Self-consistency Analysis of the Interface Problem

The following numerical experiment requires special attention due to its complex-

ity. In this section we shall revisit the First Experiment from the previous section

in order to reproduce the results depicted in Figs. 2.7 and 2.8 by utilizing a totally

different procedure. (i) Consider the set up for the First Experiment. In partic-

ular note that Fs,‖(x) = b0(x). (ii) Subdivide the structure into two quadrangles

(to get a better idea have a glance at Fig. 2.4). In our calculations, quadrangles

“a” covers the area −1 6 x 6 1 and −1 6 z 6 0, and quadrangle “b” occupies

the region −1 6 x 6 1 and 0 6 z 6 1. This partitioning introduces the ‘fictitious’

interface x = 0. (iii) Consider quadrangle “a” as a two-port and quadrangle “b”

as a one-port problem. (iv) Consecutively, transform each quadrangle into the

master square and employ the Library of pre-calculated GFs. (v) Utilizing the
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methodology introduced in the body of solve the interface problem.

Figures 2.11 and 2.12, respectively, show the computed displacement- and stress

functions. Obviously, these solutions should match those produced in Figs. 2.7

and 2.8. Excellent agreement achieved between the two solutions is an encourag-

ing testimony for the validity of our proposed method.

Remark: A comprehensive series of numerical tests were carried out for composite

structures involving isotropic/anisotropic- and anisotropic/anisotropic interfaces.

Both 2D and 3D structures were considered. Invariably in all experiments we

found encouraging results. Details of the latter experiments will be presented

elsewhere. Here, it should be merely mentioned that the created Library is

powerful enough to allow 2D and 3D mass-loading analysis in conventional, as

well as, more exotic SAW and BAW structures.

2.7 Conclusion

We considered BVPs which typically arise in the analysis of the massloading prob-

lems in micro-acoustic devices. Letting appropriately-selected distributed forces

act on the bounding surface of the medium under consideration, we introduced

the notion of distributed-elementary-source self-regularized dyadic Green’s func-

tions denoted by GFs. It was pointed out and numerically demonstrated that

due to the employment of distributed sources, the resulting Green’s functions are
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automatically regularized. This property which results in well-conditioned sys-

tem matrices is in contrast to conventionally constructed Green’s functions which

are ordinarily plagued with strong or hyper-strong singularities, requiring special

attention for their regularization. We demonstrated that the information con-

tents of GFs and their spatial derivatives, evaluated at the boundary surface, can

be efficiently and compactly stored in terms of a reasonable number of vectors,

and conveniently retrieved for frequent future applications. Indeed the result-

ing long string of data “naturally” imposes itself as the DNA of the underlying

BVPs. This analogy is further reinforced by the ability that the stored infor-

mation (GFs) fully suffices to solve all types of homogeneous and inhomogeneous

boundary conditions (Dirichlet, Neumann) and interface condition. Utilizing pre-

constructed basis functions we tested the applicability of the proposed technique

against the professional software package ANSYS. An application of proposed

GFs to interface problem was also demonstrated.

Utilization of the constructed orthonormal polynomials enabled the calculation

of derivatives and integrals in analytical form, making the computation efficient

and amenable to parallel computing. Additional aspects of the proposed GFs

were also touched upon in recently published contributions [45, 46, 47]. A further

favorable features of our technique will be elaborated in the forthcoming chapters.
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2.8 Appendix

2.8.1 Affine Transformation to Master Coordinate Sys-

tem

Consider a function g(x, z). Subjecting the Cartesian coordinates x and z to the

transformations x = x(ξ) and z = z(ζ), we can write

g(x, z) = g(x(ξ), z(ζ))

= b(ξ, ζ). (2.25)

Additionally with the help of chain rule we have:

∂g(x, z)

∂x
=

∂ξ

∂x

∂b(ξ, ζ)

∂ξ
+
∂ζ

∂x

∂b(ξ, ζ)

∂ζ

∂g(x, z))

∂z
=

∂ξ

∂z

∂b(ξ, ζ)

∂ξ
+
∂ζ

∂z

∂b(ξ, ζ)

∂ζ
(2.26)

In the case of linear transformations,

x(ξ) = a1 + a2ξ,

z(ζ) = c1 + c2ζ, (2.27)

the Eq. (2.26) can be cast in form:

[
∂g(x,z)
∂x

∂g(x,z)
∂z

]
=

[
1
a2

0

0 1
c2

] ∂b(ξ,ζ)
∂ξ

∂b(ξ,ζ)
∂ζ

 (2.28)
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Consequently, Auld’s operator ∇ in 2D transforms as follows:

∇ = N1∂x+N3∂z

= N1

[
1

a2

∂ξ

]
+N3

[
1

c2

∂ζ

]
= ∇̃ (2.29)

Additionally, we have

∫
A1

dxdz = a2c2

∫
�
dξdζ. (2.30)

2.8.2 Normalization of Jacobi-Polynomials

Three types of orthogonal polynomials are dominant in the mathematical physics:

Jacobi, Hermite and Laguerre. The Jacobi polynomials offer themselves as the

natural choice for our problem since they are orthogonal on the finite interval

[-1,1]. The Jacobi polynomials denoted by P
(α,β)
n (κ), have been extensively used

for mathematical analysis and implementation in spectral methods [48, 49, 50].

They are conveniently presented by the well-known Rodrigues formula:

P (α,β)
n (κ) =

1

2nn!
(κ − 1)−α (κ + 1)−β

×
(
d

dκ

)n[
(κ − 1)n+α (κ + 1)n+β

]
(2.31)

Here, the independent variable κ represents any of the variables ξ, η or ζ in

the Cartesian. The classical Jacobi polynomials associated with the parameters
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α, β > −1, are a sequence of polynomials P
(α,β)
n (κ)(n = 0, 1, 2, · · · ), of degree n,

satisfying the orthogonality relation

∫ +1

−1

dκ g(κ)P (α,β)
m (κ)P (α,β)

n (κ) =

{
0, m 6= n,

hn, m = n,
, (2.32)

with the weighting function

g(κ) = (1− κ)α(1 + κ)β, (2.33)

and

hn =
2α+β+1Γ (n + α + 1) Γ (n + β + 1)

(2 n + α + β + 1) n! Γ (n + α + β + 1)
. (2.34)

The Jacobi polynomials satisfy the recurrence relation

P
(α,β)
n+1 (κ) =

α2−β2(2n+α+β+1)+(2n+α+β)3

2(n+1)(n+α+β+1)(2n+α+β)
κP (α,β)

n (κ)

− (n+α)(n+β)(2n+α+β+2)

(n+1)(n+α+β+1)(2n+α+β)
P

(α,β)
n−1 (κ),

(2.35)

with (a)3 = a (a+ 1)(a+ 2) and a = 2n + α + β. In view of Eq. (2.32), the

normalizing factor is given by h
1/2
n for P

(α,β)
n (κ). In particular, considering the

special case α, β = 0 in Eq. (2.35) (leading to Legendre polynomials), denoting

the normalized version of P
(0,0)
n+1 (κ) by P̃

(0,0)
n+1 (κ), incorporating the normalized
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factor hn = 2/(2n+ 1) and rearranging terms in Eq. (2.35) we obtain:

P̃
(0,0)
n+1 (κ) =

2n + 1

n + 1

(
2n + 3

2n + 1

)1/2

κ P̃ (0,0)
n (κ)

− n

n + 1

(
2n + 3

2n − 1

)1/2

P̃
(0,0)
n−1 (κ) (2.36)

In particular, the first two normalized polynomials are

P̃
(0,0)
0 (κ) = 1/

√
2 and P̃

(0,0)
1 (κ) =

√
3/2κ. (2.37)

2.8.3 Construction of Basis Functions

We utilized the classical Jacobi (Legendre) polynomials as our starting point for

construction of the basis functions [46, 50].

Properties of the Set of Polynomials Used in This Analysis

In appendix 2.8.1, we incorporated the weighting function, g(κ) = (1−κ)α(1+κ)β

into the definition of the basis functions. Exhaustive testing with the various

permissable values for α and β showed that the choice α = β = 0 fully suffices

for our purposes. Thus with

bn(κ) = b(0,0)
n (κ) = P̂ (0,0)

n (κ) (2.38)
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we have:

∫ +1

−1

dκ bn(κ)bn̄(κ) = δn,n̄ (2.39)

The construction procedure of orthonormal basis functions in two- and three

dimensions is immediate: by simply multiplying 1D basis functions we obtain the

desired 2D and 3D basis functions. More explicitly, for 2D case we have:

Bl,n(ξ, ζ) = bl(ξ)bn(ζ) (2.40)

In view of Eqs. (2.39) and (2.40), the orthonormality condition reads:

∫
�
dξdζ Bl,n(ξ, ζ)Bl̄,n̄(ξ, ζ) = δl,l̄δn,n̄ (2.41)

Calculating Derivatives of the Employed Basis Functions

From Eqs. (2.40) and (2.39) it follows that the daunting task involved in solving

2D BVPs can be essentially reduced to much simpler 1D analysis in each of

the spatial directions. Thus it suffices to focus on the derivatives of 1D basis

functions. Consider a set of N + 1 basis functions arranged to build a column

vector:

b =
[
b0(ξ) b1(ξ) · · · bn(ξ) · · · bN(ξ)

]t
(2.42)
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Since bn(ξ), n ∈ N0 is a polynomial of order n, Eq. (2.42) can be re-written as

b=



k
(0)
0 0 · · · 0 · · · 0 · · · 0

k
(1)
0 k

(1)
1 · · · 0 · · · 0 · · · 0

...
... · · · . . . · · · ... · · · ...

k
(m)
0 k

(m)
1 · · · k

(m)
n · · · k

(m)
m · · · 0

...
... · · · ... · · · ...

. . .
...

k
(N)
0 k

(N)
1 · · · k

(N)
n · · · k

(N)
m · · · k

(N)
N


ξ, (2.43)

with, ξ =
[
ξ0 ξ1 · · · ξn · · · ξN

]t
, and m,n ∈ N0. Denoting the derivative

of b with respect to ξ by b′ we have

b′=



0 0 · · · 0 · · · 0 · · · 0

κ
(1)
0 0 · · · 0 · · · 0 · · · 0
...

. . . · · · ... · · · ... · · · ...

κ
(m)
0 · · · κ

(m)
n−1 · · · κ

(m)
m−1 0 · · · 0

... · · · ... · · · ...
. . . · · · ...

κ
(N)
0 · · · κ

(N)
n−1 · · · κ

(N)
m−1 · · · κ

(N)
N−1 0


ξ (2.44)

where, κ
(m)
n = (n+ 1)k

(m)
n+1, m ∈ N and n = 0, · · · ,m− 1.

Calculating Definite Integrals Involving the Elements of b and b′

For efficiently calculating integrals of the products bm(ξ)b′n(ξ) we first need to cast

products of this form in a symbolically more tractable fashion:

bm(ξ)b′n(ξ)=


k

(m)
0

k
(m)
1
...

k
(m)
m

⊗

κ

(n)
0

κ
(n)
1
...

κ
(n)
n−1

:


ξ0

ξ1

...

ξm

⊗


ξ0

ξ1

...

ξn−1

 (2.45)
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The symbols ⊗ and : have to be interpreted as follows: Let p and q stand for two

column vectors with the components p0, p1, ..., pm and q0, q1, ..., qn−1, respectively.

The exterior product p ⊗ q is defined as p ⊗ q = pqt. Next, let P and Q be

two (I + 1) × (J + 1) matrices with the components Pi,j and Qi,j. The symbol

P : Q is defined as P : Q =
∑I

i=0

∑J
j=0 Pi,jQi,j. Based on these conventions the

expression p⊗q : r⊗s = P : Q, (Note that ⊗ precedes :). Integrating both sides

of Eq. (2.45) with respect to ξ from −1 to 1 results in:

∫ +1

−1

dξ bm(ξ)b′n(ξ) =k⊗κ :

∫ +1

−1

dξ



ξ0

ξ1

...

ξi

...

ξm


⊗



ξ0

ξ1

...

ξj

...

ξn−1


(2.46)

Here, k and κ, respectively, stand for the first and the second vectors at the RHS

of Eq. (2.45). Interpreting ⊗ and : as described above and

∫ +1

−1

dξξi+j =

{
2

i+j+1
for i+ j even,

0 for i+ j odd,
(2.47)

we can determine the results for 1D case. Results for 2D and 3D can be obtained,

with virtually no additional computational cost.
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Chapter 3

2D Elastodynamic Simulation of

Fully-anisotropic Elastic Media

Using Self-regularized Dyadic

Greens Functions

3.1 Introduction

Micro-acoustic devices involve anisotropic elastic substrates which are typically

loaded by a large number of massive metallic electrodes or anisotropic elastic bod-

ies to achieve desirable device characteristics [7, 43]. The presence of the large

number of electrodes (several hundreds to a few thousands) in modern devices

makes simulation of these devices a herculean task. Additional challenges are due

to the extremely high precision of the numerical results required in simulations.
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These requirements have prompted the development of customized numerical

techniques. The Surface Integral Modeling (SIM) technique for wave propaga-

tion problems has been known for quite some time to the micro-acoustic device

community. Thereby, particular effort has been devoted to the study of mass-

loading effects due to massive electrodes. Approximate numerical solutions to

a given system of Partial Differential Equations (PDEs) have traditionally have

been obtained by means of Boundary Element Method (BEM), Finite Element

Methods (FEM), Finite Difference Methods (FDM), spectral methods in various

realizations, or by hybridizing any of these methods [10, 11, 51, 52, 53]. The limi-

tations of BEM, FEM and FDM are widely known. Although, FEM and FDM are

straight forward to implement, they are generally not amongst the most accurate

techniques. Shortcomings of the methods are well documented in the literature

([54, 55] and references therein). As a general rule, in case of FEM, higher ac-

curacy in the solutions requires denser discretization (finite element meshing).

However, with increased mesh refinement, the process of mesh generation, as-

sembly and solving becomes excessively expensive in terms of computational re-

sources. Moreover, the analysts are faced with challenges related to large defor-

mation, low frequency analysis, interpolation errors, and inaccuracy in calculating

secondary (derived) variables such as stress and strain, over primary variables,

such as displacements. Other major difficulties include instability with respect to

changes in material properties, numerical dispersion, and the treatment of bound-

ary conditions. Various alternative methods are opted in order to overcome these

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
Self-regularized Dyadic Greens Functions
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shortcomings. Variations of classical techniques such as spectral methods and

comparatively recently developed methods such as meshless methods including,

Element-free Galerkin method, Meshless local Petrov-Galerkin method, Point in-

terpolation method, etc. have generated much interest [56, 57, 58, 59, 60]. The

finite element approach of substructuring, and domain decomposition methods

have also found their prominent places in literature [33, 61, 62]. The main advan-

tage of these techniques over the traditional methods is the reduction of amount

of time taken in solving the involved system of equations. The prime reason

for this is that substructuring and domain decomposition methods permit taking

advantage of parallel computing capabilities.

On the other hand, BEM is generally viewed as the most powerful method

amongst the above mentioned analysis techniques, in particular in terms of achiev-

able accuracy [63, 64]. However, BEM is accompanied by a number of drawbacks:

1) Problem-specific Green’s functions need to be constructed - a task which is

not trivial in the case of anisotropic media, due to the lack of closed-form ex-

pressions. 2) The associated surface integrals become singular when calculating

the “interaction” of an element on the boundary with itself (self-action), or with

nearby elements. 3) The numerical calculation of the involved highly oscillating

and/or slowly decaying Fourier-type integrals presents a challenge. This is often

the case when mutual interaction of two nearby boundary elements are computed.

4) In BEM, the system matrices are dense matrices as opposed to band matrices

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
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appearing in FEM; thus rapidly exhausting computational resources. For moder-

ately complex structures, the number of unknowns can easily exceed several mil-

lions, due to the desired accuracy of the solutions. Any changes made to material

parameters or geometric specifications, or varying the operating frequency, neces-

sarily mean re-calculating millions of unknowns. Thus, the traditional numerical

methods based on the FEM, BEM, or a combination of both, lack the desired

flexibility in producing pre-calculated data and storing them in a Library for

frequent future usage in device design cycles. Ordinarily, the creation of a Li-

brary is regarded as a challenging task because the displacement- and stress dis-

tributions are in general strongly frequency dependent. The method of attaching

and detaching two or more domains has increasingly gained significance in the

last two decades [30, 32, 33, 37]. The methods which have been particularly mak-

ing their mark are domain decomposition and dynamic substructuring methods.

Thereby, various iterative or direct procedures have been proposed in order to

ensure the continuity between the subdomains. The general approach in the case

of dynamic substructuring is to conserve energy when traversing the interfaces.

Where, the iterative techniques such as Penalty-based formulation, Lagrange

multipliers, mortar element method, interface element etc., utilized in domain

decomposition coupling and substructuring, have particularly gained popularity.

Furthermore, in recent works a general approach of hybridization of different

methods e.g. FEM/BEM/Spectral Methods FEM/Element-Free Galerkin meth-

ods/meshfree methods along with further refined task-sharing strategies have

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
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become necessary in order to utilize each method optimally [26, 65]. Prior to

delving into the details, it is perhaps instructive to highlight what is new in this

contribution to position it into the context of the existing methods.

Symbols Description

∇ Auld’s 6× 3 divergence-type differential operator, [1]

Ni Scaffolding matrices identified in ∇ [11]

ρ Mass density
C 6× 6 Stiffness matrix
ω Operating frequency

Ũ Given displacement function evaluated on the boundary

F̃ Given traction force evaluated on the boundary
u Mechanical displacement vector
v Test vector

(·)t Transposition operator
τi Nt

iT, i = 1, 2, 3, stress tensor
Ω Volume of the 2D medium
Γ Boundary line of 2D medium
N0 The set of numbers 0, 1, · · · , N

f ⇐⇒ F F is a discrete representation of the continuum entity f
SAW Surface Acoustic Wave
BAW Bulk Acoustic Wave
FEM Finite Element Method
BEM Boundary Element Method
DES Distributed Elementary Source
SR Self-regularized

DGFs Dyadic Green’s Functions
GFs Distributed-Elementary-Source Self-regularized

Dyadic Green’s Functions
SIM Surface Integral Method

Table 3.1: Main symbols and abbreviations used in this manuscript

Novelties presented in this chapter: A novel approach for tearing and intercon-

necting fully-anisotropic elastic media has been proposed. The method contains

distinguished characteristics which can be summarized as follows:

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
Self-regularized Dyadic Greens Functions



88

1. The given geometry is first divided into rectangularly formed macro-quadrangles.

The resulting quadrangles are then detached by introducing equivalent

Distributed-Elementary-Sources.

2. Individual Distributed-Elementary-Sources associated with a given anisotropic

quadrangle, and operating at a specific frequency, result in Distributed-

Elementary-Source Self-regularized Dyadic Green’s Functions (GFs).

3. The usage of Distributed-Elementary-Sources “naturally” ensures that the

singularities associated with the Green’s functions are inherently regularized

(self-regularized).

4. The proposed method applies equally well to 2D- or 3D boundary value

problems (BVPs).

5. The method can easily tackle Dirichlet-, and Neumann boundary condi-

tions, as well as, interface condition in a unified form. In particular, the

Dirichlet boundary- and interface conditions are treated in an unconven-

tional manner, enhancing efficiency, conceptually and computationally.

6. The Principles of Exhaustion and Sufficiency have been introduced and

implemented to solve different types of boundary- and interface conditions

in a unified form.

7. A proposition has been made for physics-based Model-Order-Reduction and

implemented in the process of constructing and storing the self-regularized
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dyadic Green’s functions.

8. A test quadrangle has been analyzed utilizing GFs from the generated Li-

brary and the numerical results are compared with the reference results,

obtained by a standard FEM simulation package.

In addition to the above features, the proposed method also exhibits further favor-

able properties for simulation of proposed GFs. The employed basis- and testing

functions, constitute a set of smooth functions, ensuring smooth and easily -

calculable derivatives. Moreover, the supports of these analyzing and synthesiz-

ing functions range over the entire simulation domain, without having any nodal

points as it is conventionally the case in FEM or Element-free methods. This

property renders the proposed method, purely meshless. Thereby, in construct-

ing GFs, the integrals are derived in a closed-form over the entire range with

virtually no additional computational cost. Furthermore, the distributed nature

of the analyzing- and synthesizing functions guarantees that there are no singu-

larities in the involved integrands. The resulting system matrices, constructed

with the help of orthonormal basis- and testing functions, consequently become

sparse, a property which not only reduces the storage space but also accelerates

computations significantly. Lastly, since each quadrangle is detached and treated

individually the simulation is amenable to the parallel computing.

The chapter is organized as follows: The presentation begins with the geomet-
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rical sub-sectioning of the simulation domain and discussing the types of basic

quadrangles involved. Next a weak formulation is presented for two dimensional

(2D) basic quadrangle. The discussion then focuses on explaining the involved

Distributed-Elementary-Source Self-regularized Dyadic Green’s Functions (GFs).

The GFs are then applied to test problems emphasizing different types of bound-

ary conditions. The numerical results obtained show the successful application

of the proposed GFs to a multi-domain test quadrangles, by comparing the nu-

merical results against the data obtained from a commercially available FEM

simulation package. Utilizing the GFs from the generated Library, the chapter

concludes with an analysis of the interface problem involving fully-anisotropic

quadrangles.

3.2 Statement of the Problem

The development of a computational method for interfacing and interconnecting

fully-anisotropic elastic media by utilizing pre-computed Self-regularized Dyadic

Green’s Functions in two dimensions.

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
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Figure 3.1: A simplified artistic view of typical SAW devise geometry

Figure 3.2: Example showing the cross-section of the device geometry

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
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3.3 Construction of the Proposed Distributed-

Elementary-Source Self-regularized Dyadic

Green’s Functions

3.3.1 Partitioning of Simulation Domain

Figure 3.3: Discretization of 2D fully-anisotropic test problem

One of the key features of the proposed SIM technique is the method of the

sub-sectioning of the geometry. Consider the geometry of a typical SAW device

sketched in Fig. 3.1. The geometry consists of an anisotropic substrate; in ma-

jority of cases substrate loaded by a large number of massive metallic (isotropic)

electrodes and busbars. In some design realizations the electrodes and the bus-

2D Elastodynamic Simulation of Fully-anisotropic Elastic Media Using
Self-regularized Dyadic Greens Functions



93

bars are circumferenced by a protective massive wall structure, as sketched in

the figure. Strictly speaking, the structure shown in Fig. 3.1, together with the

surrounding media (which may just be free space) defines the simulation domain.

Reference to free space is necessary since a more rigorous theory needs also to

include effects associated with the piezoelectricity property of the substrate ma-

terial. However, as it can be readily shown, the inclusion in the analysis of the

three dimensionality and the piezoelectric effect does not add anything substan-

tial to the discussion of the proposed method. Consequently, for the purposes in

this chapter we ignore the piezoelectric effect and restrict ourselves to 2D test

problems. Thus, assume the simplified 2D geometry as shown in Fig. 3.3 (which

is a cross-section of the geometry in Fig. 3.2). Then subdivide the geometry into

an adequate number of quadrangles. Thereby, one electrode or the entire busbar

may be represented by one meshless quadrangles. Each of these quadrangle is

appropriately referred to as a messless quadrangles, since there is no meshing

of the geometry necessary, as it is the case in FEM or BEM applications. In

this way the entire electrode can be considered as an elementary quadrangles in

isolation and characterized independently from the rest of the system. These

basic quadrangles are then categorized and cataloged for future usage, depending

on the number and the nature of the adjacent quadrangles. As an example, a

quadrangle is called Basic quadrangle I if only one port, out of four ports of the

quadrangle, is allowed to exchange acoustic energy with the adjacent quadrangle

or elastic environment. All the electrodes in Fig. 3.3 are one-port problems, pro-
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vided they are not additionally excited by any other external sources. However,

if the same quadrangle exchanges energy through one side, and with environment

through a different side, the quadrangle will more appropriately be referred to as

a two-port (Basic Quadrangle II). Consequently, the complete device section is

generally a composition of elementary quadrangles of varied types. Each particu-

lar type needs to be analyzed individually and systematically. Thereby, since the

quadrangles are meshless, the opted basis- and testing functions occupy the entire

domain and provide the solution for the entire domain. Consequently, based on

the ideas outlined above simulation process involves the following steps:

1. Subdivide the device structure into an adequate number of quadrangles.

Thereby, one electrode or the entire busbar may be represented by one

meshless quadrangle.

2. Affine transform a given quadrangle to a master square, centered at the

origin of the coordinate system, where the basis functions, their derivatives

and integrals are readily defined and pre-calculable.

3. Construct a complete set of 2D orthogonal expansion functions, following

the proposed recipe in this chapter. These functions possess richly detailed

and refined features and are equipped with distinct properties to describe

the displacement- and traction variations in quadrangles’ interior, surface

areas, their edges and corners with prescribed precision.
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4. Use Galerkin-type Surface-integral-Modeling technique, for the discretiza-

tion of the governing integral equations.

5. Derive the GFs and generate the Library.

3.3.2 Governing PDEs and their Equivalent Self-regularized

Surface-integral Equations

Consider a fully-anisotropic elastic medium as shown in Fig. 3.3. The elastic

medium is characterized by the 6× 6 stiffness matrix C, and the constant mass

density ρ. The ith quadrangle occupying the volume Ωi with the boundary surface

Γi is characterized by (C)i and ρi with i = a, b, c, · · · . The following discussion is

dedicated to the detailed explanation of proposed Distributed-Elementary-Source

Dyadic Green’s Functions (GFs) characterizing the basic quadrangle “a.” The

analysis of the Green’s function associated with the remaining types of quadran-

gles is immediate.

Remark : In Fig. 3.3 the intermediate bounding surfaces of each quadrangles

are, in a fact, fictitious interfaces, induced by the topology and/or inhomogeneity

of the structure. Nonetheless, assume that quadrangles are detached from one

another such that there is no transfer of energy between the partitioned quadran-

gles. (The transfer of energy or interconnection between quadrangles is explained

as an application of the proposed GFs.)
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It will be assumed that there is no variation in the y−direction, and consequently,

the y-derivatives are suppressed. Thus the equation of motion for the basic quad-

rangle “a” reads:

∇tT = −ρω2u, for (x, z) ∈ Ωa, (3.1)

or, more explicitly,

(
Nt

1∂x + Nt
3∂z
)
T = −ρω2u, for (x, z) ∈ Ωa. (3.2)

The superscript t signifies transposition. A harmonic time-dependence according

to e−jωt has been assumed. For a detailed discussion of the properties of the

differential operator∇ and the constituent 6×3 matrices Nn (n = 1, 3) the reader

is referred to the discussion in [11]. Here, u is the mechanical displacement vector

and T stands for the stress tensor. Introducing stresses τn (n = 1, 3)

τn = Nt
nT = Nt

nC∇u, (3.3)

we can transform Eq. (3.2) into the convenient form:

∂xτ1 + ∂zτ3 = −ρω2u (3.4)

Here, τn comprises the stress components Tn1, Tn3 which act on the surface with

the outward unit normal vector nn. Multiplying both sides of Eq. (3.4) by the

transpose of a 2 × 1 test vector v (elementary weighting function representing
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any of the vectors (v1, 0)t, or (0, v3)t) we obtain:

vt∂xτ1 + vt∂zτ3 = −ρω2vtu (3.5)

Integrate the terms on both sides of this equation over the volume Ωa, role over

the derivatives onto the test vector v, and apply the Gauss’ divergence theorem

to obtain boundary integrals, which involve terms with reduced order of the

derivatives by one:

−
∫

Ωa

dΩa(∂xv
t)τ1−

∫
Ωa

dΩa(∂zv
t)τ3 −

∫
Γ−

3,a

dxvtτ3

= −ρω2

∫
Ωa

dΩav
tu (3.6)

The boundary sections Γ+
1,a, Γ−1,a, Γ+

3,a and Γ−3,a represent surfaces of the quadrangle

“a” facing ‘‘east,’’ ‘‘west,’’ ‘‘north,’’ and ‘‘south,’’ respectively. Substitute the

expressions for τ1 and τ3 from Eq. (3.3) into the first two terms at the LHS of

Eq. (3.6):

−
∫

Ωa

dΩa(∂xv
t)Nt

1C∇u−
∫

Ωa

dΩa(∂zv
t)Nt

3C∇u−
∫

Γ−
3,a

dxvtτ3

= −ρω2

∫
Ωa

dΩav
tu (3.7)

Here, ∇ = N1∂x + N3∂z, as introduced in the transition from Eq. (3.1) to Eq.

(3.2).
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3.3.3 Distributed-Elementary-Sources and the Associated

Self-regularized Dyadic Green’s Functions

Rearranging the terms in Eq. (3.7):

∫
Ωa

dΩa(∂xv
t)Nt

1C∇u+

∫
Ωa

dΩa(∂zv
t)Nt

3C∇u− ρω2

∫
Ωa

dΩav
tu

= −
∫

Γ−
3,a

dxvtτ3 (3.8)

In order to solve the problem the primary field variables, here the displacement

vector, needs to be discretized. Let u stand for the displacement vector with the

components u1(x, z) and u3(x, z):

u =

[
u1(x, z)

u3(x, z)

]
(3.9)

The independent scalar functions ui(x, z) (i = 1, 3) have to be individually ex-

pressed in terms of a suitably chosen complete set of infinitely countable orthonor-

mal basis functions, denoted by Bl,n(x, z). Thus truncating the double series, by

keeping only a finite number of expansion terms, displacement components, say

u1(x, z), can be synthesized in terms of Bl,n(x, z) by introducing (L+1)×(N+1)

a priori unknown expansion coefficients u
(1)
l,n :

u1(x, z) ≈
L∑
l=0

N∑
n=0

u
(1)
l,nBl,n(x, z) (3.10)

For brevity the variables x and z in Bl,n(x, z) will be suppressed in the remaining

discussion. A similar series expansion can be written for u3(x, z). Employing
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matrix notation the displacement vector u can then be cast in the following

computationally convenient matrix form:

u ≈

[
[· · · Bl�n · · · ] [· · · 0l�n · · · ]
[· · · 0l�n · · · ] [· · · Bl�n · · · ]

]


...

u
(1)
l�n
...
...

u
(3)
l�n
...


(3.11a)

= BU (3.11b)

Introduction of the matrix B and the vector U, in the transition from Eq. (3.11a)

to Eq. (3.11b) should be self-explanatory. The matrix B accommodates the basis

functions, and the vector U comprises the unknown expansion coefficients. Here,

the symbol l� n refers to the arrangement of the indices l and n in the following

form: Fix a value for l in the the interval [0, L], say l0, and run over all the possible

n0 ∈ [0, N ]; obtaining, [l0, 0], · · · , [l0, n0], · · · , [l0, N ]. Subsequently vary the value

of l0 from 0 to L to obtain an (L + 1) × (N + 1) index matrix. Concatenating

the rows of the above matrix results in a string of (L+ 1)× (N + 1) index pairs

(l, n). More explicitly, we obtain:

[(0, 0), · · · , (0, n0), · · · , (0, N), · · · , (l0, 0), · · · , (l0, N), · · · , (L,N)] .

On elaborating the integrals in Eq. (3.8), the first and second terms result in

the “stiffness” matrix K, whereas the third term at the LHS leads to the “mass”

matrix M. Using Eq. (3.11b) and letting B, represent (⇐⇒) the known weighting
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function v (with components v1 and v3), we obtain

− ρω2

∫∫
dxdzvtu⇐⇒ −ρω2

∫∫
dxdzBtBU = −ω2MU (3.12)

for the diagonal mass matrix M. In performing the second transition in Eq. (3.12),

we used
∫∫

dxdzBtB = I, a fact which is the manifestation of orthonormality

property of the basis functions. Here, ‘I’ stands for identity matrix.

Remark: In the above, the integral of a matrix is understood as a matrix, the

entries of which are integrals of the underlying corresponding matrix elements,

a convention which is symbolized as
∫∫

dxdz[aij] = [
∫∫

dxdzaij]. A further com-

ment concerns the derivatives and integrals of the basis functions. The basis

functions considered here are normalized Legendere polynomials, orthogonal over

the domain [−1, 1]. Finding derivatives and integrals of these polynomials over

domain [-1,1] is an easy task and they can be pre-calculated and tabulated for

frequent use. This task was carried out in the current work for obtaining the

often-mentioned Library. The pre-calculated derivatives and integrals can then

be transformed to any desired domain by multiplying them with respective trans-

formation coefficients, as it is done in various other methods [45, 46].

The τ3 in the integral on RHS of Eq. (3.8) comprises the stress components T31

and T33, which act on the surface Γ−3,a.Making use of the introduced representation
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⇐⇒, we obtain the following symbolic form:

∫
Γ−

3,a

dxvtτ3 =

∫
Γ−

3,a

dxvtT31 ⇐⇒

[
F31

0

]
Γ−

3,a

(3.13)

Summarizing our results, Eq. (3.8) reads:

[
K− ω2M

]
a
U(31)
a = −

[
F31

0

]
Γ−

3,a

(3.14)

A similar set of equations can be set up for the stress component T33:

[
K− ω2M

]
a
U(33)
a = −

[
0

F33

]
Γ−

3,a

(3.15)

The 0-augmented vectors F31|Γ−
3,a

and F33|Γ−
3,a

appearing at the RHS of Eqs. (3.14)

and (3.15), have been introduced in the obvious form.

Figure 3.4: Distributive Elementary Sources: b0(x) (upper left), b1(x) (lower left),
b2(x) (upper, right) and b3(x) (lower right)
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Distributed Elementary Sources

The elementary excitation sources (the components of the traction forces) can be

any of the basis functions bn(x) n ∈ N0, with bn(x) being a polynomial of order n

(in the present case they are chosen to be normalized Legendre polynomials). The

first four lowest order polynomials (sources) are shown in Fig. 3.4. We remind

ourselves that traction component T31, acting on the test boundary Γ−3,a, is a one-

dimensional function of the variable x. Consequently, T31 can be approximated

in an N0−dimensional subspace by the superposition of N0 basis functions bn(x).

The nth component of T31 can then be represented by < bn, T31 > bn, where the

angled brackets stand for inner product. Thus if the test boundary is excited by a

force component bn(x) the response of the medium is corrected by the projection

< bn, T31 >, which returns the response of the medium due to the traction force

T31. Hence, the surface integral term in Eq. (3.13) is:

∫
Γ−

3,a

dxvtτ3 =

∫
Γ−

3,a

dxvt

[
T

(n)
31

0

]
Γ−

3,a

=

∫
Γ−

3,a

dxvt

[
bn(x)

0

]
Γ−

3,a

(3.16)

Here, n ∈ N0. Proceeding similarly with the remaining basis functions bn(x) we

realize that N0 independent experiments exhaust all possible excitations of the

boundary surface of interest with forces parallel to the surface (tangential forces).

A similar consideration leads to the further set of N0 independent excitations

bn(x) acting in the direction normal to the surface. Additionally, for composite 2D

basis-functions, e.g., Bl,n(x, z) = bl(x)bn(z) evaluated at the boundary, we write,
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Bl,n(const, z) = αlbn(z) and Bl,n(x, const) = γnbl(x), with αl and γn, respectively,

being the function values of bl(x = const) and bn(z = const).

Self-regularized Dyadic Green’s Functions (GFs)

Traditionally Green’s functions are defined as responses of the medium under con-

sideration to localized elementary excitations. Thereby, ordinarily Dirac’s delta

function excitations are considered - a fact which has rendered Green’s functions

the name tag “impulse responses.” Isolated localized excitation forces result in

Green’s functions which are in general singular. The Green’s function singular-

ities can be strong or hyper strong. The singularities may severely hamper the

accuracy of the numerical results achievable and thus, considerable effort is re-

quired for their regularization [51]. Utilizing the proposed DES, the complications

associated with the singularities can be simply and elegantly bypassed. Solving

Eqs. (3.14) and (3.15) for, b0(x), the first and the lowest order DES function,

results in the GFs,

G
[T31]

(0)

Γ−
3,a

(x, z) =


G

(1)

[T31]
(0)

Γ−
3,a

(x, z)

G
(3)

[T31]
(0)

Γ−
3,a

(x, z)

 (3.17)

and

G
[T33]

(0)

Γ−
3,a

(x, z) =


G

(1)

[T33]
(0)

Γ−
3,a

(x, z)

G
(3)

[T33]
(0)

Γ−
3,a

(x, z)

 . (3.18)
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In these equations, Green’s functions with the superscripts 1 and 3, respectively,

stand for the displacement components u1(x, z) and u3(x, z), which are displace-

ment field responses to the chosen DES. Consequently, collecting the N0 resultant

(2× 1) column vectors of a GFs, forms following 2×N0 matrix of DGFs:

[
G

[T31]
(0)

Γ−
3,a

(x, z) G
[T31]

(1)

Γ−
3,a

(x, z) · · · G
[T31]

(N)

Γ−
3,a

(x, z)
]

=


G

(1)

[T31]
(0)

Γ−
3,a

(x, z)

G
(3)

[T31]
(0)

Γ−
3,a

(x, z)

G
(1)

[T31]
(1)

Γ−
3,a

(x, z)

G
(3)

[T31]
(1)

Γ−
3,a

(x, z)
· · ·

G
(1)

[T31]
(N)

Γ−
3,a

(x, z)

G
(3)

[T31]
(N)

Γ−
3,a

(x, z)

 (3.19)

Similarly the series of elementary traction forces (DES) T
(n)
33 results in

[
G

[T33]
(0)

Γ−
3,a

(x, z) G
[T33]

(1)

Γ−
3,a

(x, z) · · · G
[T33]

(N)

Γ−
3,a

(x, z)
]

=


G

(1)

[T33]
(0)

Γ−
3,a

(x, z)

G
(3)

[T33]
(0)

Γ−
3,a

(x, z)

G
(1)

[T33]
(1)

Γ−
3,a

(x, z)

G
(3)

[T33]
(1)

Γ−
3,a

(x, z)
· · ·

G
(1)

[T33]
(N)

Γ−
3,a

(x, z)

G
(3)

[T33]
(N)

Γ−
3,a

(x, z)

 . (3.20)

Remark: Each of the above 2×N0× 2 GFs in Eqs. (3.19) and (3.20) corresponds

to a specific GF in the generated Library. For example, G
(1)

[T33]
(0)

Γ−
3,a

(x, z) stands for

a GF, which is the “1st” component of the displacement vector, i.e. u1(x, z), in

response to the applied stress component “T33” acting on the boundary section

“Γ−3,a.” Moreover, each of these GFs is the response to a specific DES. In the

present case the superscript ‘(0)’ reveals the fact that the selected basis function

has been b0(x).
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The GFs thus constructed provide complete information necessary to characterize

all types of excitation over the test boundary subject to any boundary conditions.

To further illuminate the construction of the GFs, we here constructed a set

of Green’s functions by exciting the boundary section Γ−3,a, and assuming the

remaining sections of the boundary to be stress free. Furthermore, it should be

pointed out that each of the GFs also depends on the operating frequency (ω),

once the size of quadrangle and the constitutive properties have been specified.

We have generated a Library of such GFs for each test boundary and commonly-

used material properties, such that they can be employed for future usage. We

thus proceed to the next section which is dedicated to solving various types of

boundary conditions with the help of aforementioned, Sufficiency- and Exhaustion

principles.

3.4 Interpretation and Solution Strategy for Var-

ious Boundary Conditions

Given the governing equations for the quadrangle Ω with the boundary surface Γ,

we proceed as follows. The surface of the quadrangle is subject to boundary condi-

tion which can be Dirichlet, Neumann or interface condition. Both displacement-

and stress functions evaluated on the boundary can be individually synthesized

in terms of N0 basis functions weighted by N0 a priori unknown expansion coeffi-

cients. The task is the determination of these expansion coefficients such that the
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governing equation are satisfied in Ω and the boundary condition matches given

function on the boundary, in weak sense. This objective can be achieved by em-

ploying various methods. The aim here is to utilize the constructed Library of

pre-calculated Green’s functions to solve the given BVPs.

Comment: The treatment of the eigenvalue problems, even though quite straight

forward and convenient, is not the subject of the current chapter.

3.4.1 Algorithm for Solving Inhomogeneous Neumann Bound-

ary Conditions

Consider the test quadrangle “a” shown in first row of Table 3.2. The imposi-

tion of the inhomogeneous Neumann boundary condition on the test boundary

(Γ−3,a) of this quadrangle implies that the traction force applied over the bound-

ary is prescribed and non-zero and stress free over remaining boundary sections,

identical to Eq. (3.8). It is important to mention that Eq. (3.8) is essentially

an inhomogeneous Neumann problem. The sources in previous case where DES,

whereas here the applied source is an arbitrary force function. Thus, for easy

reference it is instructive to reproduce Eq. (3.8):

∫
Ωa

dΩa(∂xv
t)Nt

1C∇u+

∫
Ωa

dΩa(∂zv
t)Nt

3C∇u− ρω2

∫
Ωa

dΩav
tu

= −
∫

Γ−
3,a

dxvtτ3 (3.21)
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Consider a force vector F̃ in (x, z) co-ordinate plane, with two-components F̃1 and

F̃3 operating at the frequency ω, and being applied on Γ−3,a. The traction force

term on the RHS of Eq. (3.21) is then:

τ3 = F̃ =

[
F̃1

F̃3

]
(3.22)

The components of force F̃1 and F̃3, can each be written as linear combina-

tions of an adequate number of basis functions with support Γ−3,a. Thus, F̃1 ≈∑
n∈N0

p
(1)
n bn|Γ−

3,a
and F̃3 ≈

∑
n∈N0

p
(3)
n bn|Γ−

3,a
, where coefficients p

(1)
n and p

(3)
n are

already known. Additionally, at this point it is imperative to remind ourselves

that the displacement responses to the involved basis functions in F̃1 and F̃3 are

already pre-calculated and available to us in the Library in the form of Green’s

functions GFs. (Strictly speaking only expansion coefficients of the Green’s func-

tions in terms of basis function have encoded and recoded compactly in the Li-

brary). Thus, the expression, providing the desired solution for the given inho-

mogeneous Neumann boundary condition over the edge Γ−3,a, while the remaining

boundary sections being characterized by homogeneous Neumann condition, is

given by:
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Figure 3.5: Discretization of 2D multi-quadrangle test problem with all the quad-
rangles exhibiting same material properties

u(x, z) =


G

(1)

[F̃1]
(0)

Γ−
3,a

(x, z)

G
(3)

[F̃1]
(0)

Γ−
3,a

(x, z)
· · ·

G
(1)

[F̃1]
(N)

Γ−
3,a

(x, z)

G
(3)

[F̃1]
(N)

Γ−
3,a

(x, z)



p

(1)
0
...

p
(1)
N



+


G

(1)

[F̃3]
(0)

Γ−
3,a

(x, z)

G
(3)

[F̃3]
(0)

Γ−
3,a

(x, z)
· · ·

G
(1)

[F̃3]
(N)

Γ−
3,a

(x, z)

G
(3)

[F̃3]
(N)

Γ−
3,a

(x, z)



p

(3)
0
...

p
(3)
N

 (3.23)
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3.4.2 Algorithm for Solving Inhomogeneous Dirichlet Bound-

ary Conditions

Inhomogeneous Dirichlet boundary condition by definition means that the dis-

placement is fixed on the test-boundary, refer to the middle figure in Table 3.2,

i.e.

u = Ũ, on Γ−3,a. (3.24)

The objective here is to solve the inhomogeneous Dirichlet boundary condition

by utilizing pre-computed GFs. The task is comparatively more involved in this

case since here, the displacement on Γ−3,a is given, while the stress on the Γ−3,a is

a priori unknown. Assume that the stress distribution over the boundary can be

synthesized using N0 basis functions weighted by coefficients p
(31)
n with n ∈ N0

for T31:

T31|Γ−
3,a

=
∑
n∈N0

p(31)
n bn|Γ−

3,a
(3.25)

and similarly, for T33. Consequently, the system matrix in this case can be written

as:

[
K− ω2M

]
a

[
Ũ(31)
a Ũ(33)

a

]
=−
∫

Γ−
3,a

dxBt

[
p

(31)
0 b0 + p

(31)
1 b1 + · · ·+ p

(31)
N bN

0

0

p
(33)
0 b0 + p

(33)
1 b1 + · · ·+ p

(33)
N bN

]
(3.26)
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For the determination of p
(31)
n and p

(33)
n , n ∈ N0, the displacement boundary

conditions in Eq. (3.25) needs to be satisfied in weak form. Upon assumption,

determining p
(31)
n and p

(33)
n in Eq. (3.26) means, finding such a force distribution

that the resultant displacement function inhabits the required boundary condition

Ũ on the Γ−3,a boundary and stress-free elsewhere. The Eq. (3.26) also brings the

pre-calculated GFs into the picture, since solution to these DES are already stored

in Library utilizing physics-based MOR as explained in preceding section. More

precisely, any component of GF can be written in terms of a linear combination

of the Green’s function coefficients and a set of basis function:

G
(1)

[T31]
(m)

Γ−
3,a

(x, z) =
∑
n∈N0

∑
l∈N0

g
(1)

[T31]
(m)(n,l)

Γ−
3,a

bn(x)bl(z) (3.27)

Rewriting the expression for the Green’s function coefficients over the test bound-

ary, we have:

G
(1)

[T31]
(m)

Γ−
3,a

(x, z)|Γ−
3,a

=
∑
n∈N0

bn(x)
∑
l∈N0

g
(1)

[T31]
(m)(n,l)

Γ−
3,a

bl(z)|Γ−
3,a

(3.28)

or equivalently

G
(1)

[T31]
(m)

Γ−
3,a

(x, z)|Γ−
3,a

=
∑
n∈N0

G
(1)

[T31]
(m)(n)

Γ−
3,a

|Γ−
3,a
bn(x) (3.29)
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Extracting coefficients G
(1)

[T31]
(m)(n)

Γ−
3,a

, along with the G
(3)

[T31]
(m)(n)

Γ−
3,a

coefficients, form a

set of coefficient for T31 excitation,
G

(1)

[T31]
(m)(n)

Γ−
3,a

G
(3)

[T31]
(m)(n)

Γ−
3,a


Γ−

3,a

(3.30)

for m,n ∈ N0, with observation boundary being Γ−3,a. Similarly, we retrieve the

Green’s function coefficients corresponding to T33 excitation. We form a set of

coefficients as narrated in the Exhaustion principle to solve the imposed boundary

condition. Obviously, the determination of the spectral components (expansion

coefficients) specifying the components of Ũ = [Ũ1Ũ3]t, in terms of basis functions

is immediate

Ũ (l)
n =

∫
Γ−

3,a

dxbn(x)Ũl, l = 1, 3. (3.31)

Consequently:

G
(1)

[T31]
(0)(0)

Γ−
3,a

. . . G
(1)

[T31]
(M)(0)

Γ−
3,a

G
(1)

[T33]
(0)(0)

Γ−
3,a

. . . G
(1)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(1)

[T31]
(0)(N)

Γ−
3,a

. . . G
(1)

[T31]
(M)(N)

Γ−
3,a

G
(1)

[T33]
(0)(N)

Γ−
3,a

. . . G
(1)

[T33]
(M)(N)

Γ−
3,a

G
(3)

[T31]
(0)(0)

Γ−
3,a

. . . G
(3)

[T31]
(M)(0)

Γ−
3,a

G
(3)

[T33]
(0)(0)

Γ−
3,a

. . . G
(3)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(3)

[T31]
(0)(N)

Γ−
3,a

. . . G
(3)

[T31]
(M)(N)

Γ−
3,a

G
(3)

[T33]
(0)(N)

Γ−
3,a

. . . G
(3)

[T33]
(M)(N)

Γ−
3,a


Γ−

3,a



p
(31)
0
...

p
(31)
M

p
(33)
0
...

p
(33)
M


=



Ũ
(1)
0
...

Ũ
(1)
M

Ũ
(3)
0
...

Ũ
(3)
M


Γ−

3,a

(3.32)
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will provide the required unknowns. These unknowns p
(i)
n , are then multiplied

by there respective GFs and synthesized, to obtain the required displacement

obeying all the prescribed boundary conditions. The algorithm presented in this

section can be viewed as a preparatory step for tackling the important tearing

and interconnecting problem, which is explained in detail next.

3.5 Tearing and connecting subsystems: prob-

lem description

Consider the problem as shown in the third figure of Table 3.2. The problem

can be characterized using the BVPs of two individual quadrangles awaiting to

be interconnected. Each quadrangles “a” and “b” can be characterized by their

respective integral equations, for Ωa

−
∫

Ωa

dΩa(∂xv
t)Nt

1C∇u −
∫

Ωa

dΩa(∂zv
t)Nt

3C∇u−
∫

Γ−
3,a

dxvtτ3

+

∫
Γ+

3,a

dxvtτ3 = −ρω2

∫
Ωa

dΩav
tu, (3.33)

and consecutively, for Ωb

−
∫

Ωb

dΩb(∂xv
t)Nt

1C∇u −
∫

Ωb

dΩb(∂zv
t)Nt

3C∇u +

∫
Γ+

3,b

dxvtτ3

= −ρω2

∫
Ωb

dΩbv
tu. (3.34)
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(a) Displacement component u1(x, z)

(b) Displacement component u3(x, z)

Figure 3.6: Dirichlet boundary condition solved with the help of principle of
Exhaustion and Sufficiency principle utilizing pre-computed GFs
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Figure 3.7: Displacement component u1(x, z) showing interconnection between
multi-quadrangles modelled utilizing GFs

The two quadrangles are, here, separated by introducing the unknown traction

force τ3 at the interfaces Γ−3,a and Γ+
3,b of respective quadrangle. Consequently,

for Ωa ∪ Ωb = Ω and Ωa ∩ Ωb = φ, the resulting system of equation for Ω can be
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Figure 3.8: Displacement component u1 for the model problem solved using AN-
SYS (a FEM based Software package)

written as:

−
∫

Ω

dΩ(∂xv
t)Nt

1C∇u −
∫

Ω

dΩ(∂zv
t)Nt

3C∇u +

∫
Γ+

3

dxvtτ3

= −ρω2

∫
Ω

dΩvtu (3.35)
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In Eqs. (3.33) and (3.35), we assume that the traction force is given and applied

over the northern boundary Γ+
3,a operating at the specified frequency ω, such that

∫
Γ+

3,a

dxvtτ3 =

∫
Γ+

3

dxvtτ3 =

∫
Γ+

3

dxvtF̃. (3.36)

Thus in order to fuse the quadrangles it is necessary that both stress and dis-

placement are continuous across the interface:

[
τ−a
]
Interface

=
[
τ+
b

]
Interface

and
[
u−a
]
Interface

=
[
u+
b

]
Interface

. (3.37)

Thus the surface integral Eqs. (3.33) and (3.34) along with the inhomogeneous

Neumann boundary- and interface condition, Eqs. (3.36) and (3.37), respec-

tively define the BVP for the interconnection problem. The stress free boundary

conditions as shown in third figure of Table 3.2 are also accounted in problem

definition.

3.5.1 Solution Algorithm for Interface Problem

We utilize precalculated GF as exemplified in the Sufficiency- and Exhaustion

principles in order to solve the frequency-dependent interconnection (compos-

ite) problem. The quadrangles Ωa and Ωb can be represented by the frequency-

dependent systems of Eqs. (3.33) and (3.34), respectively. The applied boundary

conditions are specified as shown in the figure in the third row of Table 3.2. How-

ever, solving the respective systems of equations is not possible unless the traction
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force τ3 at the interfaces Γ−3,a and Γ+
3,b is known. Each component of the unknown

traction force (T31 and T33) can be represented as a linear combination of basis

functions weighted by a priori unknown coefficients for traction component T31:

T31|Γ−
3,a

= T31|Γ+
3,b

=
∑
n∈N0

p(31)
n bn|Γ−

3,a
(3.38)

Similarly, for the traction component T33:

T33|Γ−
3,a

= T33|Γ+
3,b

=
∑
n∈N0

p(33)
n bn|Γ−

3,a
. (3.39)

It should be noted that individual solutions for a given quadrangle (Ωa or Ωb)

subject to elementary basis functions are already been calculated and stored in the

Library. Furthermore, in order to satisfy interface condition, Eq. (3.37) with

the help of Green’s functional technique we need the Green’s function coefficients

over the interface. Thus we retrieve the coefficients of the GFs, with the Γ−3,a as

observation boundary

G
(1)

[T31]
(0)(0)

Γ−
3,a

. . . G
(1)

[T31]
(M)(0)

Γ−
3,a

G
(1)

[T33]
(0)(0)

Γ−
3,a

. . . G
(1)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(1)

[T31]
(0)(N)

Γ−
3,a

. . . G
(1)

[T31]
(M)(N)

Γ−
3,a

G
(1)

[T33]
(0)(N)

Γ−
3,a

. . . G
(1)

[T33]
(M)(N)

Γ−
3,a

G
(3)

[T31]
(0)(0)

Γ−
3,a

. . . G
(3)

[T31]
(M)(0)

Γ−
3,a

G
(3)

[T33]
(0)(0)

Γ−
3,a

. . . G
(3)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(3)

[T31]
(0)(N)

Γ−
3,a

. . . G
(3)

[T31]
(M)(N)

Γ−
3,a

G
(3)

[T33]
(0)(N)

Γ−
3,a

. . . G
(3)

[T33]
(M)(N)

Γ−
3,a


Γ−

3,a

(3.40)
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from the Library for Ωa and consecutively for the quadrangle, Ωb,

G
(1)

[T31]
(0)(0)

Γ+
3,b

. . . G
(1)

[T31]
(M)(0)

Γ+
3,b

G
(1)

[T33]
(0)(0)

Γ+
3,b

. . . G
(1)

[T33]
(M)(0)

Γ+
3,b

...
. . .

...
...

. . .
...

G
(1)

[T31]
(0)(N)

Γ+
3,b

. . . G
(1)

[T31]
(M)(N)

Γ+
3,b

G
(1)

[T33]
(0)(N)

Γ+
3,b

. . . G
(1)

[T33]
(M)(N)

Γ+
3,b

G
(3)

[T31]
(0)(0)

Γ+
3,b

. . . G
(3)

[T31]
(M)(0)

Γ+
3,b

G
(3)

[T33]
(0)(0)

Γ+
3,b

. . . G
(3)

[T33]
(M)(0)

Γ+
3,b

...
. . .

...
...

. . .
...

G
(3)

[T31]
(0)(N)

Γ+
3,b

. . . G
(3)

[T31]
(M)(N)

Γ+
3,b

G
(3)

[T33]
(0)(N)

Γ+
3,b

. . . G
(3)

[T33]
(M)(N)

Γ+
3,b


Γ+

3,b

. (3.41)

The Eqs. (3.40) and (3.41) are collection of all the GFs as a result of the excita-

tions in both parallel (31) and normal (33) directions. Additionally, the quadran-

gle Ωa is excited by the external traction force F̃ and the influence of this force

on the quadrangle Ωb needs to be determined. Thus a particular solution for

−
∫

Ωa

dΩa(∂xv
t)Nt

1C∇u −
∫

Ωa

dΩa(∂zv
t)Nt

3C∇u +

∫
Γ+

3,a

dxvtF̃

= −ρω2

∫
Ωa

dΩav
tu (3.42)

is also needed. The solution to this specified is also projected over the interface,

written in discretized form:

[
U

(1)

[F̃1]
(0)

Γ+
3,a

. . . U
(1)

[F̃1]
(M)

Γ+
3,a

U
(3)

[F̃1]
(0)

Γ+
3,a

. . . U
(3)

[F̃1]
(M)

Γ+
3,a

]t
Γ−

3,a

(3.43)
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Equating the difference of the GFs of each quadrangle to the specified displace-

ment coefficients, hence

G
(1)

[T31]
(0)(0)

Γ−
3,a

. . . G
(1)

[T31]
(M)(0)

Γ−
3,a

G
(1)

[T33]
(0)(0)

Γ−
3,a

. . . G
(1)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(1)

[T31]
(0)(N)

Γ−
3,a

. . . G
(1)

[T31]
(M)(N)

Γ−
3,a
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(1)

[T33]
(0)(N)

Γ−
3,a
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(M)(N)

Γ−
3,a
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(3)
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Γ−
3,a
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(3)
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Γ−
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G
(3)

[T33]
(0)(0)

Γ−
3,a

. . . G
(3)

[T33]
(M)(0)

Γ−
3,a

...
. . .

...
...

. . .
...

G
(3)

[T31]
(0)(N)

Γ−
3,a

. . . G
(3)

[T31]
(M)(N)

Γ−
3,a
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(3)

[T33]
(0)(N)

Γ−
3,a

. . . G
(3)

[T33]
(M)(N)

Γ−
3,a


Γ−

3,a



p
(31)
0
...

p
(31)
M

p
(33)
0
...

p
(33)
M



+

[
U

(1)

[F̃1]
(0)

Γ+
3,a

. . . U
(1)

[F̃1]
(M)

Γ+
3,a

U
(3)

[F̃1]
(0)

Γ+
3,a

. . . U
(3)

[F̃1]
(M)

Γ+
3,a

]t
Γ−

3,a

=



G
(1)

[T31]
(0)(0)

Γ+
3,b

. . . G
(1)

[T31]
(M)(0)

Γ+
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G
(1)
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. . . G
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. . .
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. . .
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(1)
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(M)(N)
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(1)
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3,b

G
(3)
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(3)

[T31]
(M)(0)

Γ+
3,b

G
(3)

[T33]
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3,b
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(M)(0)
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...
. . .

...
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. . .
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(3)

[T31]
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3,b

. . . G
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[T31]
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. . . G
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Γ+
3,b


Γ+

3,b



p
(31)
0
...

p
(31)
M

p
(33)
0
...

p
(33)
M


.(3.44)

The solution to the matrix Eq. (3.44) will be the required matched coefficients.

These coefficients are then multiplied with the respective GFs and added to the

known displacement in Ωa to provide the total solution for fused or interconnected

problem.
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3.6 Numerical Results and Discussion

In this section a glimpse of the numerical results are presented to illustrate the ap-

plication of the proposed Distributed Elementary Source Self-regularized Dyadic

Green’s Functions (GFs) in conjunction with the introduced Sufficiency principle

and Exhaustion principle. Thereby, a pre-computed data set representing GFs

is utilized to tackle boundary conditions which typically arise in elastodynamic

analysis of micro-acoustic devices.

Three examples have been designed to illustrate the flexibility and rigor of the

technique. 1) The solution to the BVP with the Dirichlet boundary condition

problem sketched in the figure in the second row of Table 3.2. 2) The solution

of the multi-quadrangle problem (Fig. 3.5), involving interface- and Neumann

boundary conditions. 3) The solution of a composite structure involving different

types of materials (Fig. 3.3). The latter example manifestly demonstrates the

strength of the proposed Green’s function technique in solving fully-anisotropic

elastodynamic problems. Invariably in all the examples the problem domains

have been analyzed at the operating frequency of 2.1 GHz.
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Figure 3.9: Displacement component u3(x, z) showing interconnection between
multi-quadrangles modelled utilizing GFs
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Figure 3.10: Displacement component u3 for the model problem solved using
ANSYS (a FEM based Software package)

3.6.1 Verification of Dirichlet Boundary Condition on Test

Boundary

Consider an independent quadrangle exhibiting the material properties of Alu-

minium (refer to Table 3.3), and geometrically extending from −1 to 1 microns
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in both x− and z− directions. The applied boundary conditions for the quad-

rangles are as shown in the second figure of Table 3.2. The edge z = −1 refers to

the southern edge and is subject to the fixed displacement boundary condition

Ũ(x) = x and stress-free boundary condition on the remaining edges. The nu-

merical results of the displacement components obtained by the aforementioned

Green’s Functional method are shown in Fig. 3.6. The results manifestly prove

the self-consistency of the method. The computed displacement components

shown in Fig. 3.6 invariably obey the imposed Dirichlet boundary condition

over the southern boundary. It should also be mentioned that the homogeneous

Neumann boundary conditions on the remaining boundary sections are complied

in weak sense.

3.6.2 Verification of Solution for Multi-quadrangles

Consider a multi-quadrangle problem (Fig. 3.5). Thereby, all the quadrangles,

denoted by Ωi, i = a, b, c, d are embodying the same material. The boundary

conditions for the entire unit are as shown in Fig. 3.5. External force F1(x) =

0.707 N/m2 and F3(x) = 0 operating at ω = 2.1 GHz, are applied on the northern

edge of quadrangle Ωa, with remaining sections of boundary, stress-free. Between

any two adjacent quadrangles there are fictitious interfaces, introduced due to the

partitioning. The interconnection method ensure the satisfaction of the interface

condition such that the energy is transferred from one quadrangle to another in
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a smooth form. In particular, we considered the quadrangle to be constituted

by Aluminium with material properties as shown in Table 3.3. Figs. 3.7 and

3.8 show the comparison between the displacement component u1(x, z) obtained

utilizing the proposed GFs method and the results obtained by the standard

FEM simulation package (ANSYS), respectively. The comparison confirms the

applicability of the proposed method in case of constrains on the displacement

component u3(x, z) as well. Thereby, the self-consistency analysis for the Dirichlet

boundary condition and the comparison of the solved interface condition with the

results obtained by commercially available package confirms the applicability of

the proposed method, to practice relevant problems. This comparison should

suffice the primary aim of this chapter.

3.6.3 Solution of Multi-quadrangle Composite Problems

With Varying Material Constitutions

Finally we return to the original model problem (Fig. 3.3), whereby quadran-

gles with different material properties are interconnected. To be more specific,

quadrangle Ωa is Aluminium, whereas Ωb and Ωc are Lithium Niobate. In regard

to the boundary conditions, all the boundary sections are, as shown in Fig. 3.3,

stress-free condition, except the top edge of Ωa, where the external force vector

F = (F1, F3) with F1(x) = 0.707 N/m2 and F3(x) = 0 is time harmonically (e−jωt)

operating at ω = 2.1 GHz. It is worth mentioning that the electrode occupying
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(a) Displacement component u1(x, z) (b) Displacement component u3(x, z)

Figure 3.11: Fully-anisotropic elastodynamic problem showing interconnection
between quadrangles with different types of material properties modelled utilizing
proposed GFs method

region Ωa is the same in the model problems depicted in both Figs. 3.5 and 3.3.

However, the substrate quadrangles in Fig. 3.5 are replaced by totally different

elastic media, i.e., Lithium Niobate, which has very complex material properties

expressed in terms of stiffness constants (Table 3.3). Figure 3.11 shows the corre-

sponding solution of the composite structure comprising Aluminium and Lithium

Niobate quadrangles, and utilizing the proposed Green’s functional technique.

Remark: We shall disclose the superiority of the proposed Greens’s function
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technique manifests itself in just important feature: The pre-calculated GFs, as-

sociated with a given material, size and shape, remains unaltered regardless of

the relative position of the considered quadrangles. Essentially meaning, all the

quadrangles in a given device geometry of same size, shape and material constants

needs to calculated only once, rest are treated as copy of original quadrangle. This

property has significant implication in numerical calculations. Hence computing

all possible GFs for only one electrode subsection, suffices to characterize all

electrode subsections appearing in both model problems Figs. 3.3 and 3.5. The

realization of this property enables us to save computational resources (both time

and storage space) by orders of magnitudes. In view of the fact that practical

micro-acoustic devices can be assembled of only a dozen of “macro-quadrangles,”

the implication of the above-mentioned saving of resources can fundamentally

change the way how simulations are carried out. In particular , and somehow

paradoxical, the savings are more prominent, the larger the devices are. The rea-

son for this most favorable property is again due to the fact the larger devices can

typically assembled from a comparatively small number of macro-quadrangles, we

only need the relative data from the Library into the “Working Memory”

more often. This feature of the proposed algorithm, once fully exploited, can

thus not only accelerate computations but also allow the computational scien-

tists create the required Libraries independent of the concrete geometries at

hand.
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3.7 Concluding Remarks

The concept of Distributed Elementary Source Self-regularized Dyadic Green’s

Functions (GF) was introduced for the elastodynamic analysis of the massloading

effect in 2D micro-acoustic devices with fully-anisotropic elastic substrate mate-

rials. The proposed Green’s functions were derived utilizing Galerkin procedure

for the discretization of the involved surface integrals. A physics-based Model-

Order-Reduction method was also introduced for compactly storing the Green’s

functions in a Library for future usage. This strategy enabled an unprecedented

data compression without compromising the accuracy of the solutions. For the

construction of Green’s functions, the Exhaustion principle was presented. Intro-

ducing yet another concept, the Sufficiency principle, it was shown that the data

stored in the Library fully suffice to address typical (Dirichlet and Neumann )

boundary- and interface conditions. Each type of the boundary condition could

be addressed by merely loading an insignificant amount of data into Working

Memory and carrying out elementary postprocessing to build the system matrix

for determination of unknowns (only existing at interfaces) in the problem. It

was demonstrated how composite structures can be analyzed by concatenating

the individual matrices and building the assembly matrix for the interconnection

problem.

The Distributed Elementary Source Self-regularized Dyadic Green’s Functional

method possesses distinct advantages over the traditional methods such as FEM
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and BEM. The geometry of the device is partitioned into a number of quadran-

gles, such that, the given Boundary Value Problem is schematically divided into

a system of individual surface integral equations, each defining quadrangles. In

contrast to the traditional BEM the proposed GFs technique leads to a simplified

form of integral equations with no singularities involved. Thus, a main limitation

of the conventional BEM when applied to fully-anisotropic elastodynamic prob-

lems has been removed. In solving the interconnection problem for assemblage

of two or more quadrangles, the method also manages to bypass the exhaustive

iterative computations or expansive convolution calculations or back-and-forth

Fourier or Laplace transformations, as it is the case traditionally. The intercon-

nection problem was solved rather non-trivially with the help of GFs which were

pre-computed and stored in the Library.

The demonstrated numerical examples attest simplified applicability of the pro-

posed Green’s functional method even in the case of fully-anisotropic problems.

The method presented in this chapter is applicable mutatis mutandis to vari-

ous other fields in engineering such as applied mechanics, geophysics and general

acoustics. Full potential of the proposed Green’s function method can be real-

ized once it is applied to fully three dimensional problems [47]. Future research

work will be dedicated to solve fully-anisotropic micro-acoustic elastodynamic

problems in 3D.
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No. Configuration Boundary and interface conditions

1

Inhomogeneous Neumann condition
on a given edge of the quadrangle:
We synthesis τi in terms of appro-
priately chosen basis functions, by
introducing an adequate number of
expansion coefficients.

2

Inhomogeneous Dirichlet condition
(fixed non-zero displacements on the
given edge of the boundary): We
shall process this type of boundary
conditions by taking rather an un-
conventional route. One of the im-
portant results in this chapter is that
the inhomogeneous Dirichlet bound-
ary condition can be satisfied with
the help of pre-computed Green’s
Functions.

3

Interface condition: The solution
strategy for this type of interface
conditions will be illustrated in this
chapter. The Sufficiency- and Ex-
haustion principle applied utilizing
the precalculated GFs available in
the Library to solve this type of
boundary condition.

Table 3.2: On the boundary conditions: interpretation and solution strategy
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Material type Material property Units

Aluminium
ρ = 2.77 ×103kg/m3

C11 = C22 = C33 = 10.80,
C44 = C55 = C66 = 2.85,

C12 = C21 = C31 = C13 = C32 = C23 = 5.10 ×1010N/m2

Lithium Niobate
ρ = 4.7 ×103kg/m3

C11 = C22 = 20.3, C33 = 24.5, C44 = C55 = 6.0,
C12 = C21 = 5.3, C23 = C32 = C13 = C31 = 7.5,

C14 = C41 = C56 = C65 = 0.9, C24 = C42 = −0.9,
C66 = 0.5(C11 − C12) ×1010N/m2

Table 3.3: Materials and its properties utilized in numerical examples
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Chapter 4

3D Elastodynamic Simulation of

Anisotropic/Isotropic Interface

Problems in Elastic Media

4.1 Introduction

Considerable research effort has been dedicated to the simulation of harmonically

time varying 3D isotropic elastodynamic problems in the last two decades. How-

ever, when it comes to anisotropic elastic problems publications are rare, due to

the involvement of a large number of independent material constants for specifi-

cally various materials. Furthermore, the computation of fundamental solutions

for a 3D anisotropic, inhomogeneous media has generated interest in various en-

gineering fields including acoustics, solid mechanics, electromagnetics, geophysics

and seismology [66, 67, 68]. The fundamental solutions, generally referred to as
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‘Green’s functions,’ depending on conditions under which they are constructed,

contain considerable information about the associated Boundary Value Problems

(BVPs). Thus a question arises whether and how efficiently the Green’s functions

can be constructed and stored. The latter property is advantageous since once

the data have been calculated , they can be recycled for frequent future usage.

However, the Green’s functions associated with anisotropic media for static, tran-

sient or time-harmonic problems, cannot be generally expressed in closed-form.

The traditional methods for constructing Green’s functions, which are mostly

based on integral transforms, are in such cases not only complicated (to imple-

ment) but are also computationally cumbersome. In this chapter we focus on the

derivation and application of fundamental solutions for fully-anisotropic media,

while avoiding the mentioned shortcomings and obstacles.

A variety of alternative methods are also proposed to solve BVPs associated with

3D anisotropic media in recent times. In applied mechanics a class of problems

related to time-domain is effectively analyzed with the time-domain Boundary

Element Method (BEM). The 3D time-domain BEM establishes an integral rep-

resentation for the solution of wave equations to be in integral form. The integral

presentation expresses the displacement vector field in terms of boundary val-

ues of displacement and traction by means of certain problem-specific dyadic

Green’s functions. The convolution of the Green’s functions with specified force

vectors gives the solution to the required problem (Yakhno and Cerdik Yaslan
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[69] and references therein). The derivation of Green’s functions becomes impor-

tant not only for time-domain but also for static and frequency-domain analysis.

A brief study of different methods in case of eigenvalue analysis using BEM

was show by Ali et. al. [70]. Tewary [71] derived the 3D Green’s functions

for anisotropic solids by efficiently solving Christoffel equation in response to

Dirac delta functions excitations. The method was applied to calculate the time-

domain and static displacement field due to point source excitation in infinite

and semi-infinite anisotropic cubic solids. Applications of BEM to elastostatic

problems with anisotropic media was attempted by Pan and Tonon, Wang and

Denda, Sharma, Niu and Dravinski [68, 72, 73, 74] and the authors referred to in

their works. Pan and Tonon [68] applied Radon transformation to obtain inte-

gral expressions for the (displacement) Green’s functions, additionally providing

an efficient procedure of calculating their derivatives. Aspects of the numerical

calculation of the involved line integrals over the unit semi-circle were detailed

by Wang and Denda [72]. The correlation-type reciprocity theorem was utilized

by Wapenaar [67] to retrieve the Green’s functions from the cross-correlation of

observed wave fields. A similar approach of utilizing dual reciprocity method

was utilized by Kogl and Gaul [75] in order to circumvent the problems related

to the anisotropic dynamic fundamental solutions. Implementing Finite Element

Method (FEM) and Finite Difference Method (FDM) for solving 3D anisotropic

elastodynamic problems, occurring in acoustics, is generally perceived to be a

difficult task. A detailed survey of articles was compiled by Thompson, Harari
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[76, 77] for various classes of acoustical problems, where different FEM approaches

with key features such as absorbing boundary conditions, infinite elements and

absorbing layers are solved. Numerical model for the coupled analysis of arbi-

trary shaped cross-sections made of heterogeneous anisotropic materials under

3D combined loading was formulated by Garcia and Bernat [78]. A 3D fracture

analysis of anisotropic elastic media was carried out by Rungamornrat and Mear

[79], where a coupling of weakly singular symmetric Galerkin BEM and standard

FEM was achieved. Lovane and Nasedkin [80], utilized FEM along with extend

Rayleigh models to solve 3D dynamic problems with anisotropic porous materials.

Simulation of the mass-loading effect in Surface Acoustic Wave (SAW) and Bulk

Acoustic Wave (BAW) devices has been of paramount interest and significance

in the micro-acoustic device community [51, 53, 66, 81]. Where, the authors have

shown application of FEM, BEM and their hybridization mixture of both to study

mass-loading related effects.

Solving any given BVPs subject to stringent time- and other resources constraints,

without compromising accuracy of the numerical results, has always been the

prime consideration in developing or selecting a method. In the past two decades

the reduction of the computational time through parallel computing has gained

popularity amongst the engineers. In order to take advantage of the multipro-

cessing CUPs the methods such as FEM, BEM and Spectral techniques utilized

various substructuring techniques. The methods such as Domain Decomposition,
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Discontinuous Galerkin, Penalty-based interface technique, Multidomain spectral

method have been implemented to solve various static ([33, 37, 82]) and dynamic

([83, 84]) problems.

Figure 4.1: A L-shaped joint with interface between anisotropic and isotropic
medium

The problems related to large deformation, low frequency analysis, interpolation

errors, inaccuracy of secondary variables, e.g. stress and strain derived from

the primary variables such as displacements. Traditional calculations based on

the FEM, BEM or a combination of both lack the desired flexibility in pro-

ducing pre-calculated data and storing them in libraries for frequent future use

in device design cycles. Ordinarily, this is regarded as a challenging task be-

cause stress distributions for elastodynamic simulation are in general strongly
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Figure 4.2: Example showing the partitioning of the L-shaped joint

frequency-dependent. The above-mentioned issues call for a numerical method

with the distinct properties including: (a) The method should be conservative in

the sense that continuum property of the involved differential operators remain

unuttered after partitioning the problem. (b) The method should be computa-

tionally efficient. (c) The method should be comparatively easily implementable,

(d) The accuracy should not be compromised. In the proposed method several

ideas are chosen and adapted from various realms of computational engineer-

ing, e.g. spectral analysis, the weak formulation of Galerkin procedure, and

Green’s functional theory. Furthermore, the method utilizes orthonormal basis

functions adapted from spectral element method. The integrals and derivatives

required to solve the system of Partial Differential Equations (PDEs) are cal-
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culated for the entire domain rather than over the nodes, as it is the case for

FEM, BEM or FDM, allowing the method to fall in the category of mesh-free or

element-free methods exhibiting certain advantages over FEM. Aspects of these

tools are refined and combined in a sophisticated manner to achieve our objec-

tive of mass-loading analysis by generating and pre-calculating a Library of

problem-related Self-regularized Dyadic Green’s functions. Thereby, the pro-

posed Self-regularized Dyadic Green’s functions are not calculated as it is usually

the case (with energy functional technique); rather they are computed by min-

imizing a functional in weak form (Galerkin method). Additionally, in order to

emphasize the distinct way of constructing inherently regularized dyadic Green’s

function we graphically and computationally illustrate the necessary steps in-

volved. We shall underline this utmost important feature in our problem by

referring to the constructed Green’s functions, Distributed-Elementary-Source

Self-regularized Dyadic Green’s functions and refer to them collectively as GF.

With the help of the precalculated GFs we also propose that each major device

section can be isolated from the rest of the problem (detached) and replaced by

equivalent forces and displacements at the surfaces where the device section has

been detached. Distant analogy to this prescription could be found in well known

methods such as domain decomposition, tearing and interconnecting methods,

penalty-based finite element interface technology, etc. However, the scope of this

analogy is rather limited; The construction and processing of the dyadic Green’s

functional technique utilized for solving the interface problem is unique and novel
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as applied to time-harmonic analysis of massive cuboids.

The proposed method for solving the mass-loading effect in three spatial dimen-

sions comprises the following steps:

i) Subdivide 3D geometry into an adequate number of massive cuboids. Thereby,

a given cuboid can be represented by one mesh-less hexahedron with no fur-

ther meshing necessary.

ii) Define the BVP for the construction of the associated GFs for each individ-

ual cuboid.

iii) Following the recipe proposed in this chapter, construct a complete set of 3D

orthonormal expansion functions. These functions possess richly detailed

and refined features and are equipped with distinct properties to describe

the displacement- and traction spatial distributions in the target cuboids’

interior, surface areas, their edges and corners, with prescribed precision.

iv) Use a weak formulation, to account for the effect of the massive cuboids, in

terms of the induced traction forces defined in their support-regions on the

substrate surface.

v) Compute the Self-regularized Dyadic Green’s functions derived as a result

of applied DES for each independent cuboids.

vi) Encode compactly and store the information characterizing GFs and their

spatial derivatives, in a Library.

vii) Retrieve the Dyadic Green’s functions to solve the required boundary or
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interface condition to form the device assembly, hence solving the problem.

4.2 Theory and Principles Utilized for Tearing

and Interconnecting Isotropic and Anisotropic

Cuboids

Before delving into the mathematical details it is imperative to clearly point

out what is new in this chapter. This seems necessary not only to position the

paper relative to preceding publications but also to help the reader to have a

better understanding of the ideas put forward here. We restrict ourselves to

the 3D elastodynamic analysis of fully-anisotropic test problems. Since the trust

of the chapter is the utilization of the pre-computed 3D Green’s functions, the

geometrical complexity will not add anything other then the need for higher level

Figure 4.3: An arbitrarily located cuboid
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of assembly procedure. For simplicity purpose, consider the structure sketched

in Fig. 4.1 as the test problem. The figure shows a bonded, anisotropic (Lithium

Niobate) and isotropic (Aluminium), 3D “L-shaped” elastic media.

4.2.1 Distributed-Elementary-Source Self-regularized Dyadic

Green’s functions (GF) versus Dirac delta-function

excitation of the media

Given a boundary value problem Green’s functions are traditionally defined as

responses of the media to elementary excitations. Ordinarily Dirac delta-function

are considered as the elementary excitations- a fact which has rendered Green’s

function the name tag ‘impulse response’ or ‘fundamental solutions.’ Isolated

excitation forces generally result in Green’s functions which are singular. The

Green’s function singularities can be strong or hyper-strong and require special

treatment for their regularization. In contrast to conventional schemes here we

employ Distributed-Elementary-Sources (DES) which result in Self-regularized

Dyadic Green’s functions (GFs). As elementary sources, we choose normalized

Legendre polynomials which alludes to the Distributed-Elementary-Sources. The

responses to the elastic medium due to the DES are regularized (nonsingular) dis-

placement components; hence Self-regularized. Furthermore, since the involved

forces and associated displacement responses are vector functions, we speak of

dyadic Green’s functions.
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The idea of domain decomposition and equivalent forces in FEM and other nu-

merical techniques is common place. To convey the essence of the idea, it fully

suffices to consider scalar-valued sources and responses and thus talk about scalar

Green’s functions only for this section. In the text the ideas will be extended to

vector-valued quantities and thus notion of dyadic Green’s functions will enter

our discussion. The idea introduced here utilizes the ability which is innate to the

concepts of Green’s functions, and previously introduced Sufficiency principle and

principle of Exhaustion. In the discussion which will follow we consider excita-

tions of fully-anisotropic 3D media by forces positioned on the bounding surfaces

of the media. Furthermore, we talk about a medium occupying the volume Ω

with its bounding surface S. Forces applied to the surfaces will be operating at

the frequency ω.

In this chapter we demonstrate effective implementation of above tools. Next sec-

tion describes the partitioning of the devise geometry into a number of cuboids

and the problem description. Considerable effort has been undertaken to clarify

the way partitioning is carried out and subsequently prepared to take advantage

of the available data in the Library. The following section describes the details

of the weak formulation of Galerkin type applied to each independent cuboids.

Each cuboid is excited with DES, resulting into Self-regularized Dyadic Green’s

functions. These Green’s functions are then utilized to solve the interface con-

ditions over the interface area with the help of the Sufficiency- and Exhaustion

3D Elastodynamic Simulation of Anisotropic/Isotropic Interface Problems in
Elastic Media



142

principles, leading to the results and the conclusion section.

4.3 Statement of the Problem

Interfacing and interconnecting fully-anisotropic and isotropic 3D elastic media

by utilizing pre-computed Self-regularized Dyadic Green’s Functions.

4.3.1 Partitioning a Given Structure into an Adequate

Number of Hexahedrons and Problem Description

Consider the L-shape structure shown in Fig. 4.1. The structure is subject to

the constant (spatially uniform) force vector F̃, applied at the ‘southern’ surface

S−3 , time-harmonically (e−jωt) operating at the frequency ω. More precisely, we

have the governing equation:

∇tT = −ρω2u, in Ω, (4.1)

and the boundary conditions

τ3|S−
3

= F̃, on S−3 (4.2)

with other surfaces being stress-free. In order to solve the BVP, we propose the

method of Distributed-Elementary-Source Dyadic Green’s functions. Thereby,

the given BVP is partitioned into independent BVPs, separated in terms of
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equivalent DES at the interfaces. Thus the task will be reduced to imposition of

interface condition for each adjacent cuboids.

4.3.2 Partitioning into Hexahedrons

We partition the volume Ω into Ωa, Ωb and Ωc as shown in Fig. 4.2. The

subsystems a, b and c touch each other at the common fictitious interfaces S−2,a(=

S+
2,b) and S−1,b(= S+

1,c). We note the stress-free boundary conditions on all the

remaining surfaces. In view of Eqs. (4.1) and (4.2), we obtain the following

equations for the subsystems a, b and c , respectively:

∇tTi = −ρω2ui, in Ωi, (4.3)

and

τ3,i|S−
3,i

= F̃i, on S−3,i, (4.4)

with i = a, b, c and assuming that F̃a ∪ F̃b ∪ F̃c = F̃. Additionally, the conditions

τ2,a|S−
2,a

= τ2,b|S+
2,b

and u|S−
2,a

= u|S+
2,b
, (4.5)

need to be satisfied at the interface S−2,a = S+
2,b and

τ1,b|S−
1,b

= τ1,c|S+
1,c

and u|S+
1,b

= u|S−
1,c
, (4.6)
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at the interface, S+
1,b = S−1,c, ensuring the continuity of both stress- and displace-

ment functions. With Eqs. (4.3)-(4.6) we employ the concept of divide and rule.

A priori unknown dynamic equivalent forces are introduced on the interfaces.

Each cuboid is considered to be an individual problem and is treated in isola-

tion. The proposed Dyadic Green’s functions are derived for each cuboid with

the help of Galerkin method. However, these Dyadic Green’s functions are due

to distributed elementary sources rather then traditional point like sources. The

procedure for the derivation of these Green’s functions is described next. These

sets up the stage to introduce to the type of dyadic Green’s functions we utilize.

4.4 Distributed-Elementary-Source Self-regularized

Dyadic Green’s Functions

4.4.1 Description of Weak-Galerkin Formulation

Consider a fully-anisotropic homogeneous elastic cuboid as shown in Fig. 4.3.

The given elastic medium characterized by the 6 × 6 stiffness matrix C and the

constant mass density ρ, occupies the volume Ωo with the boundary surface So.

The equation of motion for this medium reads:

∇tT = −ρω2u, in Ωo, (4.7)
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or, equivalently,

[
Nt

1∂x + Nt
2∂y + Nt

3∂z
]
T = −ρω2u, in Ωo. (4.8)

The superscript t signifies transposition. A harmonic time-dependence according

to e−jωt has been assumed. Here, u is the mechanical displacement vector and

T stands for the stress tensor, which appears in our calculations as a column

vector with six components Ti (i = 1, · · · , 6). ∇ is Auld’s 6× 3 divergence-type

differential operator [1]. Introduce stresses τi, (i = 1, 2, 3)

τi = Nt
iT = Nt

iC∇u (4.9)

where,

N1 =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


, N2 =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


, N3 =



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


. (4.10)

For a detailed discussion of the properties of the operator ∇ and the constituent

6 × 3 matrices Ni (i = 1, 2, 3) we refer to the discussion in [11]. With these

definitions Eq. (4.8) can be transformed into the following convenient form:

∂xτ1 + ∂yτ2 + ∂zτ3 = −ρω2u (4.11)
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Here, τi comprises the stress components T1i, T2i, T3i which act on the surface

with the outward unit normal vector ni. Multiplying both sides of Eq. (4.11) by

the transpose of a 3×1 test-vector v (elementary weighting function representing

any of the vectors (v1 0 0)t, (0 v2 0)t, or (0 0 v3)t) we obtain:

vt∂xτ1 + vt∂yτ2 + vt∂zτ3 = −ρω2vtu (4.12)

Obviously, by rolling over the derivatives onto the test-vector v, Eq. (4.12) is

equivalent with:

∂x(v
tτ1)− (∂xv

t)τ1 + ∂y(v
tτ2)− (∂yv

t)τ2

+ ∂z(v
tτ3)− (∂zv

t)τ3 = −ρω2vtu (4.13)

Integrate the terms on both sides of this equation over the volume Ωo, and apply

the Gauss’ divergence theorem to obtain boundary integrals, which involve terms

with reduced order of derivatives by one:

−
∫

Ωo

dΩo(∂xv
t)τ1−

∫
Ωo

dΩo(∂yv
t)τ2−

∫
Ωo

dΩo(∂zv
t)τ3

+

∫∫
S+

1,o

dydzvtτ1+

∫∫
S+

2,o

dxdzvtτ2 +

∫∫
S+

3,o

dxdyvtτ3

−
∫∫

S−
1,o

dydzvtτ1 −
∫∫

S−
2,o

dxdzvtτ2 −
∫∫

S−
3,o

dxdyvtτ3

= −ρω2

∫
Ωo

dΩov
tu (4.14)

The interest is in deriving Green’s functions characterizing the cuboid Ωo having

the surfaces S+
1,o, S

−
1,o, S

+
2,o, S

−
2,o, S

+
3,o and S−3,o. Assume all surfaces of the volume
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Ωo are stress-free (τi = 0), except S+
1,o. Thus Eq. (4.14) and Eq. (4.9) followed

by a routine manipulation leads to:

−
∫

Ωo

dΩo(∂xv
t)Nt

1C∇u−
∫

Ωo

dΩo(∂yv
t)Nt

2C∇u

−
∫

Ωo

dΩo(∂zv
t)Nt

3C∇u +

∫∫
S+

1,o

dydzvtτ1

= −ρω2

∫
Ωo

dΩov
tu (4.15)

Considering, ∇ = N1∂x + N2∂y + N3∂z the Eq. (4.15) becomes:

−
∫

Ωo

dΩo(∂xv
t)Nt

1C [N1∂x + N2∂y + N3∂z] u

−
∫

Ωo

dΩo(∂yv
t)Nt

2C [N1∂x + N2∂y + N3∂z] u

−
∫

Ωo

dΩo(∂zv
t)Nt

3C [N1∂x + N2∂y + N3∂z] u

+

∫∫
S+

1,o

dydzvtτ1 = −ρω2

∫
Ωo

dΩov
tu (4.16)

With the explicit definitions of N1,N2 and N3, and considering a general 6 × 6

positive definitive stiffness matrix C, Eq. (4.16) reads:

−
∫

Ωo

dΩo[∂xv
tP11∂x + ∂xv

tP12∂y + ∂xv
tP13∂z] u

−
∫

Ωo

dΩo[∂yv
tP21∂x + ∂yv

tP22∂y + ∂yv
tP23∂z] u

−
∫

Ωo

dΩo[∂zv
tP31∂x + ∂zv

tP32∂y + ∂zv
tP33∂z] u

+

∫∫
S+

1,o

dydzvtτ1 = −ρω2

∫
Ωo

dΩov
tu (4.17)
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Here, Pij = Nt
iCNj with i, j = 1, 2, 3. As an example, we have

P11 =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0



t


C11 · · · C16

...
. . .

...

C61 · · · C66





1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


=

 C11 C16 C15

C61 C66 C65

C51 C56 C55

 . (4.18)

Similarly, the remaining Pi,j can be obtained.

4.4.2 Discretization of Eq. (4.17)

In Eq. (4.17) u stands for the displacement vector with the components u1, u2 and u3.

More explicitly we can write:

u =

 u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

 (4.19)

Thus far the scalar function ui(x, y, z) are considered as entire domain functions

without any discritization. The displacement functions can be approximated in

terms of the complete set of basis functions Bl,m,n(x, y, z).

u1(x, y, z) ≈
L∑
l=0

M∑
m=0

N∑
n=0

u
(1)
l,m,nBl,m,n(x, y, z). (4.20)
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This set of 3D basis functions are entire domain basis functions since each ba-

sis function is just product of three 1D basis functions in each direction, i.e.

Bi(x, y, z) = Bl�m�n(x, y, z) = bl(x) · bm(y) · bn(z) with l = 0, · · · , L, m =

0, · · · ,M, n = 0, · · · , N and i = 0, · · · , L×M ×N. Due to this index-dependent

feature, yet factorized form of basis functions, calculating the derivatives of the

3D polynomials can be reduced to 1D calculations. A similar conclusion can be

drawn for the calculation of the involved integrals that are necessary in order to

solve the system of coupled equations characterizing our BVP. A further comment

concerns the derivatives and integrals of the basis functions. The basis functions

considered in this chapter are normalized Legendre polynomials, over the domain

[−1, 1]. Finding derivatives and integrals of these polynomials over domain [−1, 1]

is an easy task and they can be pre-calculated and tabulated for frequent use.

The pre-calculated derivatives and integrals can then be transformed to any de-

sired domain (by multiplying them with respective transformation coefficients, as

it is done in various other methods). For brevity of the notation in the following,

we suppress the variable x, y and z in Bl,m,n. Obviously, series expansions similar

to Eq. (4.20) can be obtained for the functions u2(x, y, z) and u3(x, y, z) by in-

troducing expansion coefficients u
(2)
l,m,n and u

(3)
l,m,n. Employing matrix notation the

approximate displacement components u1(x, y, z), u2(x, y, z) and u3(x, y, z) can
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be cast in the following convenient form:

u≈

[· · · Bl�m�n · · · ][· · · 0l�m�n · · · ][· · · 0l�m�n · · · ]
[· · · 0l�m�n · · · ][· · · Bl�m�n · · · ][· · · 0l�m�n · · · ]
[· · · 0l�m�n · · · ][· · · 0l�m�n · · · ][· · · Bl�m�n · · · ]





...

u
(1)
l�m�n

...

...

u
(2)
l�m�n

...

...

u
(3)
l�m�n

...



(4.21a)

= BU (4.21b)

In transition from Eq. (4.21a) to (4.21b), the structure of B and U should be

immediate. In Eq. (4.17) the vector vt plays a pivotal role. As pointed out

earlier the components v1, v2 and v3 of v can assume the basis functions Bl�m�n.

Therefore, the discretization of Eq. (4.17), leading to a matrix equation can be

simplified significantly by introducing repressing v by the matrix B:

v⇔ B =

[· · · Bl�m�n · · · ][· · · 0l�m�n · · · ][· · · 0l�m�n · · · ]
[· · · 0l�m�n · · · ][· · · Bl�m�n · · · ][· · · 0l�m�n · · · ]
[· · · 0l�m�n · · · ][· · · 0l�m�n · · · ][· · · Bl�m�n · · · ]

 (4.22)

Thus replacing u = BU and representing (⇔) vt by Bt and integrating terms,

Eq. (4.17) results in the following system of equations for the determination of
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Figure 4.4: A comparison between eigenfrequencies obtained by the proposed
method and the numerical results obtained by FEM package ANSYS

U. Where, U contains the expansion coefficients of ui(x, y, z), i = 1, 2, 3:

[
K− ω2M

]
Ωo

U = [F]S+
3,o
. (4.23)

On elaborating the terms in Eq. (4.17), the volume integral terms at the LHS

result in the ‘stiffness’ matrix K, whereas, the term at the RHS leads to the

‘mass’ matrix M. In particular, with the help of Eqs. (4.21) and (4.22) the mass

matrix can be written as,

− ρω2

∫∫∫
Ωo

dxdydzvtu = −ρω2

∫∫∫
Ωo

dxdydzBtBU = −ω2MU. (4.24)
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Figure 4.5: Displacement component u1(x, y, z) for a 3D elastodynamic problem
after solving the interface conditions between anisotropic and isotropic cuboids

Here,
∫∫∫

Ωo
dxdydzBtB turns out to be an identity matrix I.

4.4.3 Distributed Elementary Sources and Associated Green’s

Functions

The last term on the LHS of Eq. (4.17) generates the ‘source’ vector F, which is

due to the traction force τ1 applied on the surface S+
1,o. The traction force τ1, by
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Figure 4.6: Displacement component u2(x, y, z) for a 3D elastodynamic problem
after solving the interface conditions between anisotropic and isotropic cuboids

definition, consist of three components T11, T12 and T13:

τ1(y, z)|S+
1,o

=

 T11(y, z)

T12(y, z)

T13(y, z)


S+

1,o

(4.25)

Next, in order to generate a series of elementary sources we need to reduce the

source vector, such that

τ1(y, z)|S+
1,o

=

 T11(y, z)

0

0


S+

1,o

. (4.26)
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Figure 4.7: Displacement component u3(x, y, z) derived for three cuboids and
placed side by side after determining the equivalent forces at the interfaces

This simplified source function can be interprated in following way: the applied

traction force Eq. 4.26, has a component normal to the surface S+
1,o while the re-

maining two transversal traction forces are suppressed (T12, T13 = 0). Obviously

each traction force component is a scalar function. Moreover, upon assumption

and necessity (for determination of Green’s functions) the traction force compo-

nent must be a known elementary source function. For this class of problems we

choose a set of 2D basis functions as the independent source functions, with their

support being the entire surface (distributed sources). Each 2D basis function is

derived from the product of two 1D orthonormal basis functions. For example
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we select B̃i(y, z) = B̃m�n(y, z) = bm(y) · bn(z), where indices are arranged as

follows: Fix a value for m in the the interval [0,M ], say m0, and run over all the

possible n0 ∈ [0, N ]; obtaining, [m0, 0], · · · , [m0, n0], · · · , [m0, N ]. Subsequently

vary the value of m0 from 0 to M to obtain an (M + 1)× (N + 1) index matrix.

Concatenating the rows of the above matrix results in a string of (M+1)×(N+1)

index pairs (m,n). More explicitly, we obtain:

[(0, 0), · · · , (0, n0), · · · , (0, N), · · · , (m0, 0), · · · , (m0, N), · · · , (M,N)] . In terms of

the symbol m� n we include all the (M + 1)× (N + 1) index terms.

Thus we have excess to (M + 1)× (N + 1) independent source functions, or more

precisely, Distributed Elementary Sources. Making use of this convention, the

surface term in Eq. (4.17) reads:

∫∫
S+

1,o

dydzvtτ1 ⇔
∫∫

S+
1,o

dydzBt

T
(i)
11 (y, z)

0

0

 =

∫∫
S+

1,o

dydzBt

B̃i(y, z)

0

0

 (4.27)

The last term in Eq. (4.27) leads to the discrete version of the force vector F
(i)
11

(i being any of the index terms m � n) appearing as F in Eq. (4.23). Thus we

conduct (M + 1)× (N + 1) numerical experiments. The displacement functions

as a response to each of these DESs is a “fundamental solution,” alternatively

termed as “Green’s functions.” A mentioned several times in the course of our

discussion, since the sources are distributed the resultant Green’s functions are

automatically regularized (GFs). Consider one such dyadic Green’s function de-
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rived as a response due to first DES:

G
[T11]

(0)

S+
1,o

(x, y, z) =


G1

[T11]
(0)

S+
1,o

(x, y, z)

G2

[T11]
(0)

S+
1,o

(x, y, z)

G3

[T11]
(0)

S+
1,o

(x, y, z)

 (4.28)

For example, G1

[T11]
(0)

S+
1,o

(x, y, z) stands for a GF, which is the ‘1st’ component

of the displacement vector, i.e. u1(x, y, z), in response to the applied stress

component ‘T11’ acting on the boundary section ‘S+
1,o.’ Furthermore, the su-

perscript ‘(0)’ to source T11 indicates that the selected basis function has been

B̃0(y, z). Subsequently, the sources are replaced by all the available traction force

functions, not just for T11, but similarly by τ1(y, z)|S+
1,o

=
[
0 T12(y, z) 0

]t
S+

1,o

and

τ1(y, z)|S+
1,o

=
[
0 0 T13(y, z)

]t
S+

1,o

. Alternatively the solution to

[
K− ω2M

]
Ωo

[g11
m�ng

12
m�ng

13
m�n] = [F

(m�n)
11 F

(m�n)
12 F

(m�n)
13 ]S+

1,o
, (4.29)

leads to a derivation of a set of all the plausible GFs associated with excitation

sources on the surface S+
1,o. The set of GFs evaluated at the surface S+

1,o are

sufficient to describe, any boundary condition; Dirichlet, Neumann, or interface

conditions, over the surface S+
1,o. The latter statement is alter ego to previously

explained Sufficiency principle. Next, repeat the numerical experiments similarly

for the remaining surfaces S−1,o, S
+
2,o, S

−
2,o, S

+
3,o and S−3,o. The generated set of GFs

in response to their respective DESs (their respective traction components on all

the surfaces) ‘exhaust’ all the relevant boundary- or interface conditions applied
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on the volume Ωo.

4.4.4 Algorithm for Solving Inhomogeneous Neumann Bound-

ary Conditions: Implementation of Sufficiency- and

Exhaustion Principles

Before delving into the problem of interconnection, consider a BVP with inho-

mogeneous Neumann boundary condition. The solution procedure is meant to

shed light on how the Green’s functions are applied, to tackle more realistic prob-

lems. Consider the test hexahedron “o” shown in Fig. 4.3. The imposition of

the inhomogeneous Neumann boundary condition on the test boundary S+
1,o, of

the cuboid, implies that the prescribed traction force is non-zero over the surface

(Eq. 4.17), while the remaining boundary sections are stress-free. It should be

reminded that the source functions considered in the previous case were DES,

whereas here, the applied source is an arbitrary force function. For easy reference

Eq. (4.17) has been reproduced here:

−
∫

Ωo

dΩo[∂xv
tP11∂x + ∂xv

tP12∂y + ∂xv
tP13∂z] u

−
∫

Ωo

dΩo[∂yv
tP21∂x + ∂yv

tP22∂y + ∂yv
tP23∂z] u

−
∫

Ωo

dΩo[∂zv
tP31∂x + ∂zv

tP32∂y + ∂zv
tP33∂z] u

+

∫∫
S+

1,o

dydzvtF̃= −ρω2

∫
Ωo

dΩov
tu (4.30)
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Consider an arbitrary force vector function F̃ defined on the (y, z) co-ordinate

plane. The components F̃1, F̃2 and F̃3 of F̃, operate time-harmonically at the

frequency ω, and is applied on the surface S+
1,o. The surface term at the RHS of

Eq. (4.30) is then:

F̃ =

 F̃1

F̃2

F̃3

 (4.31)

The force components F1, F2 and F3, can each be written as a linear combination

of an adequate number of basis functions, with their support being the surface

S+
1,o. Thus, we can write F̃1(x, y) ≈

∑
i∈N0×N0

p
(1)
i Bi(x, y)|S+

1,o
, and in a similar

manner, the same can be written for F̃2 and F̃3. The expansion coefficients

p
(j)
i , j = 1, 2, 3 are readily calculable. At this point, it should be reminded that

the displacement responses to the basis functions appearing in the expansions for

F̃1, F̃2 and F̃3 are already calculated, and is available in terms of GFs. Therefore,

considering the given inhomogeneous Neumann boundary condition on S+
1,o, with

the remaining boundary sections being described by the homogeneous Neumann

3D Elastodynamic Simulation of Anisotropic/Isotropic Interface Problems in
Elastic Media



159

condition. The expression for the resulting displacement vector is given by:

uo(x, y, z) =


G

(1)

[F̃1]
(0)

S−
3,o

(x, y, z)

G
(2)

[F̃1]
(0)

S+
1,o

(x, y, z)

G
(3)

[F̃1]
(0)

S+
1,o

(x, y, z)

· · ·

G
(1)

[F̃1]
(I)

S+
1,o

(x, y, z)

G
(2)

[F̃1]
(I)

S+
1,o

(x, y, z)

G
(3)

[F̃1]
(I)

S+
1,o

(x, y, z)



p

(1)
0
...

p
(1)
I



+


G

(1)

[F̃2]
(0)

S+
1,o

(x, y, z)

G
(2)

[F̃2]
(0)

S+
1,o

(x, y, z)

G
(3)

[F̃2]
(0)

S+
1,o

(x, y, z)

· · ·

G
(1)

[F̃2]
(I)

S+
1,o

(x, y, z)

G
(2)

[F̃2]
(I)

S+
1,o

(x, y, z)

G
(3)

[F̃2]
(I)

S+
1,o

(x, y, z)



p

(2)
0
...

p
(2)
I



+


G

(1)

[F̃3]
(0)

S+
1,o

(x, y, z)

G
(2)

[F̃3]
(0)

S+
1,o

(x, y, z)

G
(3)

[F̃3]
(0)

S+
1,o

(x, y, z)

· · ·

G
(1)

[F̃3]
(I)

S+
1,o

(x, y, z)

G
(2)

[F̃3]
(I)

S+
1,o

(x, y, z)

G
(3)

[F̃3]
(I)

S+
1,o

(x, y, z)



p

(3)
0
...

p
(3)
I

 (4.32a)

= Go(x, y, z)p (4.32b)

In the transition from Eq. (4.32a) to (4.32b), the vector p is introduced as a ver-

tical concatenation of the vectors [p
(j)
0 · · · p(j)

I ]t, j = 1, 2, 3. Similarly, the matrix

Go(x, y, z) is a horizontal concatenation of the matrices [· · · G
[Fj ]

(i)

S−
3,o

(x, y, z) · · · ]

for i = 0, · · · ,N0 ×N0 and F̃j, j = 1, 2, 3.

4.4.5 Construction and Optimization of Library

A proposal is made here that computation and generation of the GFs for the

cuboids of a given device structure is done only once. Having generated the

required GFs, they are stored in a Library. The Library is enriched by GFs
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for different types of typical materials and relevant range of frequencies. This

scheme allows the real-time analysis of an entire section of a device, whenever it

is necessary in future. The computational overhead in retrieving the required GFs

is greatly reduced, since the GFs are already computed and stored in Library.

Whenever the relevant GFs are needed for post-processing, it is only a matter of

copying these functions into the Working Memory.

Material type Material property

Aluminium
ρ = 2.77

C11 = C22 = C33 = 10.80,
C44 = C55 = C66 = 2.85,

C12 = C21 = C31 = C13 = C32 = C23 = 5.10

Lithium Niobate
ρ = 4.7

C11 = C22 = 20.3, C33 = 24.5, C44 = C55 = 6.0,
C12 = C21 = 5.3, C23 = C32 = C13 = C31 = 7.5,

C14 = C41 = C56 = C65 = 0.9, C24 = C42 = −0.9,
C66 = 0.5(C11 − C12)

Table 4.1: Materials and its properties utilized in numerical examples. The units
of ρ and C are 103kg/m3 and 1010N/m2 respectively

Here, an example is used to illustrate the optimization procedure. Consider

L,M,N = 10 basis functions in each direction, this leads to L×M ×N = 1000

three dimensional basis functions. However, since we are dealing with vector fields

which consist of 3 components, we have a total number of 3× 1000 = 3000 basis

functions. As per the definitions in Eqs. (4.19) and (4.20), each displacement

vector or GF consists of 3000 of these basis functions and associated expansion

coefficients. However, each GF is the response to 6×3×(M+1)×(N+1) indepen-

dent DES in three directions (one normal and two parallel), on six surfaces. As a
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result, there are 1800 GFs, sufficient to characterize the acoustodynamical behav-

ior of the given volume with prescribed material properties at a given frequency.

However, this form of storing the GFs would be crude and bulky. The storing

technique of GFs can be optimized with their exhaustive knowledge. Consider

one component of such a GF:

G
(1)

[T31]
(4)

S−
3,o

(x, y, z) =
∑
l∈N0

∑
m∈N0

∑
n∈N0

g
(1)

[T31]
(4)(l,m,n)

S−
3,o

bl(x)bm(y)bn(z) (4.33)

In Eq. (4.33), under the assumption that N0 = [0, · · · , 9], the super-index ‘4’

denotes the ‘fourth’ DES. This expression can also be written in algebraic form,

with a row vector of coefficients and a column vector of 1000 basis functions.

Note that the considered component of the GF is defined in the entire volume.

However, for application, only the GFs over the surfaces are needed, since there

are no body forces considered in the simulation. Therefore, upon evaluating the

expression for the Green’s function over one of the ‘observation’ surfaces, for

example S+
2,o, we have:

G
(1)

[T31]
(4)

S−
3,o

(x, y, z)|S+
2,o

=
∑
l∈N0

∑
n∈N0

bl(x)bn(z)
∑
m∈N0

g
(1)

[T31]
(4)(l,m,n)

S−
3,o

bm(y)|S+
2,o

(4.34)

or equivalently,

G
(1)

[T31]
(4)

S−
3,o

(x, y, z)|S+
2,o

=
∑
l∈N0

∑
n∈N0

G
(1)

[T31]
(4)(l,n)

S−
3,o

bl(x)bn(z)|S+
2,o

(4.35)

Extracting the coefficients G
(1)

[T31]
(4)(l,n)

S−
3,o

, along with G
(2)

[T31]
(4)(l,n)

S−
3,o

and G
(3)

[T31]
(4)(l,n)

S−
3,o

co-

efficients, a new compact set of coefficient is formed for the T31-excitation, as
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observed on S+
2,o, resulting in a total of 300 coefficients. In the same manner,

a set of coefficients for the remaining five surfaces can be extracted. Thus, a

compact set of coefficients (6 × 300) are drawn out of original 3000 coefficients.

Thus the scheme reduces the storage space required, by 40 percent. This example

illuminates the notion of a physics-based Model-Order-Reduction: a scheme for

reducing and compressing data inspired by the considerations which have their

origin in the physical model of the problem at hand. Let us introduce a new

nomenclature for this set of Green’s function coefficients G(S−3,o, S
−
3,o), where the

first term inside the bracket indicates the observing surface and second term

refers to the source surface. More explicitly, G(S−1,o, S
−
3,o) for example, symbolizes

the following: consider a cuboid “o,” subject to all the possible DESs acting on

surface S−3,o. The evaluated displacement responses to these excitations are only

observed on the surface S−1,o. Thus, in compressing the data, as explained above,

the set G(S−1,o, S
−
3,o) comprises of all the required GFs on that boundary.

4.5 Result and Discussion

4.5.1 Numerical Comparison with ANSYS: Eigenvalue Prob-

lem

An massive cuboid with x, y, z ∈ [−1, 1] consisting of an isotropic material (Alu-

minium) was considered as simulation domain in order to compute the eigenfre-
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Figure 4.8: A complex wall-shaped enclosure structure

quencies summarized in Fig. 4.4 (Refer to Table 4.1 for the material properties of

Aluminium used in the simulation). The comparison is a testimony for the accu-

racy and efficiency of the proposed method in terms of computational resources

required. The results shown in Fig. 4.4 are encouraging. The ‘system’ matrix

is highly sparse, due to the orthoganality property of the basis functions lead-

ing to moderate storage space requirements. The given cuboid is characterized

with the help of 3D basis functions with their support being the entire simula-

tion domain, with no meshing necessary. However, the eigenfrequencies achieved

matches the solution obtained utilizing FEM. The commercially available FEM

package ANSYS utilized linear elements with highly dense meshing, as a result

3D Elastodynamic Simulation of Anisotropic/Isotropic Interface Problems in
Elastic Media



164

the computational time and resources required for solving the problem increased

dramatically. Moreover, using the GFs technique proposed here we can achieve

an acceleration of computation by nearly one order of magnitude. Despite the

advantages concerning the reduced storage space, and faster computation times,

the main feature of our method is the utility of the tabulated GFs. The results

in the next sections shed light on this important property.

Figure 4.9: Displacement component u1(x, y, z) for the wall-shaped enclosure
computed with the help of proposed GFs method
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Figure 4.10: Displacement component u2(x, y, z) for the wall-shaped enclosure
computed with the help of proposed GFs method

4.5.2 Application of Superposition and Exhaustion Prin-

ciple by Utilizing GFs: Enforced Problems

At this stage we are prepared to communicate the ‘punch’ of our technique and

explain clearly how it allows to carrying out computations with enhanced accu-

racy while simultaneously reducing the order of the complexity (physics-based

MOR). Referring, to the composite structure in Fig. 4.1, the external force func-

tion F̃ excites the structure at the southern surface S−3 operating at the given

frequency ω = 2.01 GHz. The goal here is to determine the displacement func-
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Figure 4.11: Displacement component u3(x, y, z) for the wall-shaped enclosure
computed with the help of proposed GFs method

tions u1(x, y, z), u2(x, y, z) and u3(x, z) for the entire structure, comprising of the

cuboids “a,” “b” and “c,” subject to the Neumann boundary condition. Figure

4.2 shows the composite structure being segmented into three hexahedrons by in-

troducing stress distributions over the interfaces. Note that while F̃ = [0.7, 0, 0]t

(units in N/m2) is known, the traction at the interfaces are a priori unknown. The

problem “a” is recognized as a two-port problem, since it only exchanges acous-

tic energy with environment over the S−3,a (southern) and S−2,a (front) ports. This

consideration is also true for the problem “c,” where S−1,c (left) and S−3,c (south-

ern) ports exchange energy. Whereas, problem “b” is referred to as a three-port
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problem due to obvious reasons.

Focus on the cuboid “a.” The results are summarized as follows: F̃a being a

given function can be expressed in terms of the basis functions Bi(x, y) i =

0, · · · , (L+1)×(M+1), resulting in (L+1)×(M+1) known expansion coefficients

α
(i)
a,k1, associated with the resulting total of 3×(L+1)×(M+1) GFs, including each

components (α
(i)
a,k2, α

(i)
a,k3 = 0). The forces at the interfaces, i.e., T a21(x, z), T a22(x, z)

and T a23(x, z) are not given. Nonetheless, T a21(x, z), T a22(x, z) and T a23(x, z) can each

be expressed in terms of (L+1)×(N+1) basis functions, resulting in the unknown

expansion coefficients α
(i)
a,u1, α

(i)
a,u2 and α

(i)
a,u3, i = 0, · · · , (L + 1) × (N + 1). The

responses to the DES (i.e. GFs) at the southern and front ports of “a” are already

available and expressed in terms of the aforementioned 3×18× (M+1)× (N+1)

numbers, which includes all the components, G
(1)
a (S−2,a, S

−
2,a), are retrieved from

the Library and copied to Working Memory. We can describe the vibrational

behavior of cuboid “a” ua1(x, y, z), ua2(x, y, z) and ua3(x, y, z) evaluated at the front

port (S−2,a) by means of (L+ 1)× (M + 1) known expansion coefficients α
(i)
a,k and

3× (L+1)× (N +1) unknown expansion coefficients α
(i)
a,u1, α

(i)
a,u2 and α

(i)
a,u3. Which

can be written as:

ua|S−
2,a

= G(1)
a (S−2,a, S

−
2,a)q1 + G(2)

a (S−2,a, S
−
3,a)pa (4.36)

Here, pa = [α
(i)
a,k1, 0, 0]t is the known coefficient vector as observed on the

interface S−2,a, and q1 = [α
(i)
a,u1, α

(i)
a,u2, α

(i)
a,u3]t is the unknown expansion coefficient

3D Elastodynamic Simulation of Anisotropic/Isotropic Interface Problems in
Elastic Media



168

vector at the interface. For the determination of the 3×(L+1)×(N+1) unknown

expansion coefficients α
(i)
a,u1, α

(i)
a,u2 and α

(i)
a,u3, the acoustic energy exchange between

the hexahedrons “a,” “b” and “c” needs to be accounted for, by imposing the

interface conditions (in the weak sense). This brings cuboids “b” and “c” into

the picture. Next, the GFs characterizing “c” are transferred into the Working

Memory. The cuboid “c,” as per the earlier understanding, is also a two-port

problem and follows a procedure similar to “a” hence:

uc|S−
1,c

= G(1)
c (S−1,c, S

−
1,c)q2 + G(2)

c (S−1,c, S
−
3,c)pc (4.37)

Thus, the vibrational behavior uc1(x, y, z), uc2(x, y, z) and uc3(x, y, z) evaluated at

the left port can be described by the 3 × (L + 1) × (M + 1) known expansion

coefficients α
(i)
c,k1 and α

(i)
c,k2, α

(i)
c,k3 = 0, and 3×(M+1)×(N+1) unknown expansion

coefficients α
(i)
c,u1, α

(i)
c,u2 and α

(i)
c,u3.

Finally, the crucial link between the cuboids “a” and “c,” a three-port (“b”)

problem, is dealt with. The cuboid “b” possesses two interfaces. Considering

one, at the time, the description of the vibrational behavior is determined by

ub1(x, y, z), ub2(x, y, z) and ub3(x, y, z) evaluated at the right- and back port by

means of 3 × (L + 1) × (M + 1) known expansion coefficients. Additionally, by

the 2× 3× (M + 1)× (N + 1)× (L+ 1)× (N + 1) unknown expansion coefficients

α
(i)
c,u1, α

(i)
c,u2 and α

(i)
c,u3 with α

(i)
a,u1, α

(i)
a,u2 and α

(i)
a,u3, can be written in terms of the
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cross talk terms, as:

ub|S+
2,b

= G
(1)
b (S+

2,b, S
+
2,b)q1 + G

(2)
b (S+

2,b, S
+
1,b)q2 + G

(3)
b (S+

2,b, S
−
3,b)pb (4.38a)

and

ub|S+
1,b

= G
(1)
b (S+

1,b, S
+
2,b)q1 + G

(2)
b (S+

1,b, S
+
1,b)q2 + G

(3)
b (S+

1,b, S
−
3,b)pb. (4.38b)

Matching ub1(x, y, z), ub2(x, y, z) and ub3(x, y, z) with ua1(x, y, z), ua2(x, y, z), and

ua3(x, y, z) along with uc1(x, y, z), uc2(x, y, z) and uc3(x, y, z) all simultaneously at

there respective interfaces with cross talk components determines the required

unknown expansion coefficients. However, prior to that consider:

G(2)
a (S−2,a, S

−
3,a)pa = Ha(S

−
2,a, S

−
3,a), (4.39a)

G(2)
c (S−1,c, S

−
3,c)pc = Hc(S

−
1,c, S

−
3,c), (4.39b)

G
(3)
b (S+

2,b, S
−
3,b)pb = Hb(S

+
2,b, S

−
3,b) (4.39c)

and

G
(3)
b (S+

1,b, S
−
3,b)pb = Hb(S

+
1,b, S

−
3,b) (4.39d)

Substituting the value of Eq. (4.39) and equating Eq. (4.36) to (4.38a), and Eq.

(4.38b) to (4.37):

G(1)
a (S−2,a, S

−
2,a)q1 −G

(1)
b (S+

2,b, S
+
2,b)q1 −G

(2)
b (S+

2,b, S
+
1,b)q2

= Hb(S
+
2,b, S

−
3,b)−Ha(S

−
2,a, S

−
3,a) (4.40a)
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and

G
(1)
b (S+

1,b, S
+
2,b)q1 + G

(2)
b (S+

1,b, S
+
1,b)q2 −G(1)

c (S−1,c, S
−
1,c)q2

= Hc(S
−
1,c, S

−
3,c)−Hb(S

+
1,b, S

−
3,b) (4.40b)

Equivalently in matrix form:[
G

(1)
a (S−2,a, S

−
2,a)−G

(1)
b (S+

2,b, S
+
2,b) −G

(2)
b (S+

2,b, S
+
1,b)

G
(1)
b (S+

1,b, S
+
2,b) G

(2)
b (S+

1,b, S
+
1,b)−G

(1)
c (S−1,c, S

−
1,c)

][
q1

q2

]

=

[
Hb(S

+
2,b, S

−
3,b)−Ha(S

−
2,a, S

−
3,a)

Hc(S
−
1,c, S

−
3,c)−Hb(S

+
1,b, S

−
3,b)

]
(4.41)

This completes the discussion of determining the dynamics of composite struc-

tures in terms of their reduced (collapsed on the boundary) GFs.

Remark : As it can be concluded from the above procedure, in solving the in-

terface problem, only the displacement functions at the interface were explicitly

matched. However, it should be clear that continuity of the traction forces were

also implicitly required. The traction continuity conditions were satisfied by as-

suming equal and opposite equivalent forces at the interfaces.

The implementation of Sufficiency- and Exhaustion principles in the above men-

tioned fashion does not depend on the material properties of the cuboid. The

numerical results for the given composite structure (Fig. 4.1), where cuboids

with different material constituents, need to be interconnected utilizing proposed

method. More specifically, the darker region of the composite structure to be
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Lithium Niobate and lighter region to be Aluminium is considered. The material

properties as given in Table 4.1. The displacement solutions u1(x, y, z), u2(x, y, z)

and u3(x, y, z) are shown in Figs. (4.5), (4.6) and (4.7), respectively.

Furthermore, the interconnection scheme described above was thoroughly tested

for more complex structures (an example is shown in Fig. 4.8). To account for

cases which are relevant in practical cases a wall shaped enclosure structure was

considered The structure was assumed to be made of Aluminium (Table 4.1) and

subject to force vector F = [0.7, 0, 0]t N/m2. The force was applied over the

entire ‘southern’ surface of the structure, at operating frequency ω = 2.1 GHz.

The remaining surfaces were stress-free. The wall-shaped structure was parti-

tioned into eight cuboids. Between any two adjacent cuboids, fictitious interfaces

were introduced, due to the partitioning. The application of the interconnec-

tion method ensures the conservation of the energy throughout the wall-shaped

structure is maintained in weak form.

4.6 Conclusion

Elastodynamic simulation of a composite structure utilizing a novel Green’s func-

tion method was demonstrated. The involved 3D dyadic Green’s functions where

derived in response to Distributed-Elementary-Sources rather than traditionally-

utilized point-like sources, giving rise to a new class of Green’s functions, termed
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here as Distributed-Elementary-Source Self-regularized Dyadic Green’s Functions

(GFs). The GFs were computed and stored in a Library which was further facil-

itated by introducing the concept of physics-based MOR. The method employed

for the construction of the GFs can easily accommodate isotropic as well as fully-

anisotropic elastic media. The stored GFs where retrieved to solve the Neumann

and Dirichlet boundary- and interface conditions, with given test problems, uti-

lizing the Sufficiency- and Exhaustion principles. The results shown, exemplify

the applicability of the proposed method to various classes of elastic media. The

solution obtained for elastodynamic problem showed continuity of the mechanical

displacement solution regardless of the material transition in a more complex 3D

cases as well.

4.7 Summary

Focusing on the elastic properties associated with the massloading effect in SAW-

and BAW devices, the ideas underlying the proposed method were outlined in

this thesis. The basic features underlining the method are: (1) Reducing the di-

mensionality of the problem by one, and thus, considerably reducing the number

of unknowns involved. (2) Pre-calculating relevant data with desired accuracy,

compressing the data effectively, and storing the data compactly. (3) Maintaining

the advantages offered by competing computational methods. Furthermore, the

limitations of FEM and BEM were addressed, enabling the reader to compare the
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proposed method with existing standard techniques. Simultaneously, appreciate

the capabilities and limitations of the proposed technique. While BEM “nat-

urally” applies to open boundary problems, and provides comparatively more

accurate numerical results than alternative techniques, BEM is not easily appli-

cable to problems with strongly varying inhomogeneities. This limitation is due

to the need for calculating dyadic Green’s functions and their spatial derivatives,

which are as conventionally constructed, singular or hyper-singular. Therefore,

it is numerically a challenge for the algorithm designers to compute the involved

Green’s Functions. The GFs technique presented in this thesis, addressed this

particular shortcoming of BEM more elegantly and constructively.

By appropriately selecting distributed force functions (from a complete sequence

of orthonormal functions), and applying these elementary force functions to the

bounding surface of the simulation domain, the notion of Distributed-Elementary-

Source (DES) Self-regularized (SR) Dyadic Green’s Functions (DGFs) is intro-

duced. Distributed sources, as opposed to localized sources, do not give rise

to singularities in Green’s functions - the singularities of GFs are automatically

dealt with (self-regularized). This choice of distributed forces results in well-

conditioned system matrices, in contrast to conventional “impedance” matrices,

which are often ill-conditioned and thus pose considerable challenges to the com-

putational scientists. The information necessary for the construction of GFs, and

their spatial derivatives, evaluated at the boundary surface of an elastic cuboid
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(electrodes), can be efficiently and compactly stored, and conveniently imported

for frequent future applications.

The pre-calculated GFs, associated for a given material with a given size and

shape remains unaltered, regardless of the relative position of the cuboid con-

sidered. Essentially, all the cuboids in a given device geometry with the same

size, shape and material constants only needs to be calculated once, the rest are

treated as copy of original cuboid. This property has significant implications

in numerical calculations. Hence, computing all possible GFs for only one elec-

trode or cuboid, suffices to characterize all identical cuboidal electrodes. The

realization of this property enables to save computational resources (both time

and storage space) by orders of magnitudes. In view of the fact that practical

micro-acoustic devices can be assembled with only a dozen “macro-cuboids”, the

implication of the above-mentioned saving of resources can fundamentally change

the way how simulations are carried out. In particular, and somehow paradoxical,

the savings are more prominent for the larger devices. The reason for this most

favorable property is again due to the fact that the larger devices can typically

be assembled from a comparatively small number of macro-cuboids. Therefore,

the computational efforts which are utilized for frequent data transfer from the

Library to the “Working Memory” is all the computational needs that are

required to calculate the given BVPs. This feature of the proposed algorithm,

once fully exploited, can accelerate computational times, and additionally allows
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the computational scientists to create the required Libraries, independent of

the concrete geometries at hand.

Thereby, a comprehensive series of numerical tests were carried out for composite

structures involving isotropic/anisotropic- and anisotropic/anisotropic interfaces.

Both 2D and 3D test problems were considered. Invariably, in all experiments

encouraging results were found. Here, it should be mentioned that the created

Library is powerful enough to allow 2D and 3D massloading analysis in conven-

tional, as well as more exotic SAW and BAW structures, by employing Sufficiency-

and Exhaustion principles.

At this point, it needs to be mentioned that, along with all these intrinsic prop-

erties, the method also contains its drawbacks. For example, a problem has been

identified while subjecting the macro-cuboid with a discontinuous source. Since

the basis functions employed here are distributed over the entire macro-cuboid,

the response to such a discontinuous source is prone to errors. Obviously, the

shortcoming can be partially remedied by partitioning the macro-cuboid into an

adequate number of cuboids. The partitioning is carried out such that each cuboid

is subject to uniform and continuous sources. This proposal certainly comes at

an expense of higher computational resources. Another proposed solution to the

problem is to adopt the entire concept of generating GFs and employing the

Sufficiency- and Exhaustion principles, utilizing some other technique such as

FEM. FEM can provide greater flexibilities and broader scope to the overall con-
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cept, thus the future work will be dedicated to interface the current work with

FEM, making the concept more versatile to other well established techniques.
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