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We address integration density in future computers based on
packaging and architectural concepts of the human brain: a dense
3-D architecture for interconnects, fluid cooling, and power delivery
of energetic chemical compounds transported in the same fluid
with little power needed for pumping. Several efforts have
demonstrated that by vertical integration, memory proximity and
bandwidth are improved using efficient communication with
low-complexity 2-D arrays. However, power delivery and cooling do
not allow integration of multiple layers with dense logic elements.
Interlayer cooled 3-D chip stacks solve the cooling bottlenecks,
thereby allowing stacking of several such stacks, but are still limited
by power delivery and communication. Electrochemical power
delivery eliminates the electrical power supply network, freeing
valuable space for communication, and allows scaling of chip stacks
to larger systems beyond exascale device count and performance. We
find that historical efficiency trends are related to density and that
current transistors are small enough for zetascale systems once
communication and supply networks are simultaneously optimized.
We infer that biological efficiencies for information processing
can be reached by 2060 with ultracompact space-filled systems that
make use of brain-inspired packaging and allometric scaling laws.

Introduction
Computers have developed in an extraordinary fashion since
the demonstration of the first room-sized electromechanical
computers (Eniac and Zuse) in the 1940s; they shrank to
the size of personal computers (PCs) (30 liters) around 1980
while improving their performance and efficiency by many
orders of magnitude, respectively. Initially, the parallel
shrinking of size and cycle time kept memory proximity and
equal fractions for communication and computation power.
Since then, the efficiency improved by five orders of
magnitude, but the form factor and communication distances
over the printed circuit board did not change. The wider
data bus and faster data transfer rate did not match the
processor development, creating a communication
bottleneck. This was partially compensated by hierarchical
caches, but during a cache miss, a long delay is created, and
transport of hundreds of bytes is needed. We discuss that

current architectures are communication dominated because
the increased power densities lead to larger sizes of the
chip package plus air cooler. Low-power smartphones and
microservers continued to shrink: They are 100 times smaller
(0.3 liters) and almost an order of magnitude more efficient.
Thus, packaging initially developed parallel to performance
but slowed for high-performance computers after the
introduction of the PC geometry where the development
focused on transistor scaling, opening a communication
bandwidth and latency gap.
The dominance of communication in terms of latency and

power consumption as a consequence of device-centric
scaling has been anticipated [1–8]. With growing system
sizes, communication requires larger fractions of the overall
system resources. Even memory can be considered a form
of temporal communication, routing data from one moment
in time to another. For this reason, demand for memory
and communication needs joint optimization because
interconnect prediction evolves into system-level prediction.
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With exponential densification, heat dissipation becomes
increasingly demanding [9, 10], and water cooling becomes a
key for volume reduction by several orders of magnitude
with minimal size and thermal resistance being achieved by
embedding fluid channels directly in the silicon die [11].
While heat transfer is enhanced in microscopic channels, the
pumping power increases with the inverse fourth power of
hydraulic diameter such that optimized fluid distribution
manifolds are needed to reduce pressure drop [12, 13].
The transition from 2-D scaling to 3-D integration offers an

excellent opportunity to improve computer density and
efficiency. Interlayer cooled chip stacks have been
demonstrated as a scalable solution allowing the integration
of several logic layers each with massive amounts of main
memory [14]. These systems use 3-D communication and
ultracompact cooling similar to a human brain. We are
therefore on the verge of bionic volumetric computer scaling.
This volumetric scaling is well exploited by biological
organisms gaining a performance advantage by means of
hierarchically branched supply and drain networks [15]. We
explore how these brain-inspired packaging concepts can
be transferred to future 3-D computers to eliminate several
bottlenecks without fully deviating from current device
technology.
The main motivation of this paper is to emphasize that the

transition to 3-D stacked chips bears a huge potential to
improve computer efficiency that can be fully exploited only
with new architectural concepts. The topic is presented in
the following sequence: First, the computation and
communication energy demands of current computers are
compared with the efficiency of a biological brain. Then,
computer density trends are analyzed, and volumetric scaling
theories are introduced. In a next section, interlayer cooling
of 3-D chip stacks with combined electrochemical power
delivery is described. Finally, the potentials of the new
packaging architectures are evaluated, in particular the
globally optimized hierarchical networks that endow systems
with higher dimensional scaling.

Energy demands of information processing
To distinguish logical states in the presence of thermal
fluctuations, irreversibly operating devices store many kBT
of energy and dissipate it with every switching event.
Reversible devices may conserve most of the energy, thus
reducing the energy dissipation [16–18]. However, the
performance of such adiabatic computing (in operations
per second) is significantly less than that of present-day
complementary metal-oxide semiconductor (CMOS)
technology for a given device footprint. Assuming 105 fully
dissipative primary operations for one useful computation
(data transport, clock, and register operations), we get
1016 operations/J, or approximately ten-million-fold better
than best current computer efficiencies of 109 operations/J.
[Note that, in our comparisons, an operation is considered

equivalent to a floating-point operation (FLOP).] Biology has
developed energy-aware architectures with efficiencies of
1014!15 operations/J, five to six orders of magnitude better
than those of current computers [19–21]. Most insights
into brain efficiencies are derived from comparisons with
robotic systems that perform like organisms or from
estimates extrapolated from the retina [20]. This 1-cm2

tissue of 500-!m thickness with 108 neurons performs
edge and motion detection requiring 109 operations/s.
Extrapolated to the 105 times larger brain, a performance
of 1014 operations or 0.1 peta-operations is estimated.
This coincides with a performance of one neuron
equivalent to 1,000 operations/s [22]. A computer with
this performance currently requires about 200 kW or
104 times more energy than the entire human brain
(e.g., for Jeopardy!). This efficiency comparison is for
tasks that are difficult for computers, but for simpler tasks
(e.g., chess), the difference is smaller.
Direct comparisons between computers and brains in terms

of computational efficiency are difficult due to the strong
workload dependence [20]. Literature values to attain
human-level intelligence vary widely, starting with 108

operations/s and extending to 1016 operations/s based on
experiences with cars driven by artificial intelligence: For
example, equipped with the capability of 108 operations/s,
self-driving cars could handle desert terrain but miserably
failed in city traffic. Moravec’s paradox states that high-level
reasoning requires little computation, but low-level
sensorimotor skills require enormous resources: It is easy
to make computers exhibit adult-level performance on
intelligence tests but difficult to give them the skills of a
one-year-old child when it comes to perception and mobility
[23]. For a complete and meaningful comparison of the
efficiencies of computers and brains, overall energy
consumption is important. Similar to waste heat utilization
in biology, the recovery of thermal energy in computers has
been demonstrated, thus replacing conventional fossil fuel
heating and lowering the carbon footprint of systems
comprising data centers and heat consumers [23–28].
Energy is required for device switching and for

transmitting signals along wires, and the overall energy
fractions (switching versus transmitting signals) have
changed with technology scaling. The physical basis for
the improvement of device efficiency was described by
Dennard et al. [29]. Since 2004, the rate of efficiency
improvement has stalled due to the end of voltage scaling
[30]. Computational energy efficiency is currently limited
by the power required for communication despite the
introduction of copper wiring and low-permittivity dielectrics
[31]. Meanwhile, the number of back-end-of-line (BEOL)
metal layers has increased to 12, with the total wire length
exceeding several kilometers per square centimeter [32].
The wire latency was not significantly reduced for recent
technology generations, which means that system efficiency
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did not improve. In addition, latency-induced idling creates
a communications-related energy consumption. With
technology scaling, wiring and communication latencies
grew drastically and have dominated transistor performance
for the last two decades [5, 8]. Local wires became shorter
but were slower because of increased electrical resistance in
nanoscale structures [3]. Global wires with reduced cross
sections lengthened, leading to much larger delays, requiring
power- and area-hungry repeaters to keep delays manageable.
Still, only 1% of the die area or 2 " 107 elements are
accessible within one clock cycle [33]. Logic-centric scaling
created a widening disparity, which is often referred to as the
memory wall [34, 35]. Memory latency [36] now exceeds
hundreds of clock cycles, with a painful impact on
performance since memory access to noncached locations
is frequently needed [35, 37].
The time for global on-chip communication compared

with arithmetic operations has increased from 2:1 at the
130-nm node to 9:1 at the 45-nm technology node,
respectively (see Table 1). The energy required for
off-chip communication was 260 times greater than that
for arithmetic operations at 130 nm, whereas this ratio
increased to 1,300 for the 45-nm node (see Table 1). Both
performance (latency) and energy efficiency are dominated
by communication [7]. The efficiency of an algorithm
depends on data movement in both time and space, and
optimization efforts are needed here as well [4]. With scaling
from 1 !m to 35 nm, the switching delay of transistors
was reduced from 20 to 2.5 ps, whereas the RC response time
of a 1-mm-long wire increased from 1 to 250 ps. From
an energy point of view, the transistor switching energy
reduced 3,000-fold, i.e., from 300 to 0.1 fJ, whereas the
interconnect switching energy changed only 100-fold,
i.e., from 300 to 3 fJ [6].
Communication efficiency depends on overall length and

organization, where frequently communicating elements are
arranged in proximity. The communication intensity and
structure are characterized with Rent’s parameters p and k
being the slope and y-intercept of log–log plots of the number
of input/output (I/O) pins as a function of the number of
gates, respectively [39, 40]. More generalized, Rent’s rule

relates the number of connections to the number of logic
elements in a modular circuit architecture [41–43]. Rent’s
rule may be expressed as C ¼ k " Np, where C is the number
of edge connections, and N is the number of logic elements.
Rent coefficient k gives the average number of connections
per logic element, and Rent exponent p is a measure for the
network complexity, with larger values of p indicating more
complex networks with larger terminal requirements. The
maximum value of p ¼ 1 indicates random placement and
connectivity of logic elements. The importance of a Rent
analysis grows with system size: Systems with less than one
billion functional elements tend to be device dominated,
whereas more complex systems are communication
dominated. Rent’s rule is not as well known as Moore’s Law
but is more fundamental: Neglecting its key messages had a
detrimental effect on the performance of current computers
[43]. Rent’s rule can also be applied to a human brain, where
a neuron with certain synaptic complexity is compared
with logic gates and axons are compared with wires [44].
Shortening of communication paths in computers is

enabled by stacking of dies [3]. Stacking also allows
integration of main memory, which eliminates more than
50% of off-chip communication, thereby softening the
package-level bottleneck. Two key challenges have to be
tackled: 1) The impact of areal heat dissipation will multiply
since both thermal power and thermal resistance rise; and
2) introducing sufficient electrical power to meet the demand
of the entire stack. Approximately 75% of interconnects are
allocated to power and ground in planar integrated circuit
(IC) designs. With 3-D chip stacks, even more pins will be
needed for power delivery. Current planar IC designs fully
rely on one-sided heat removal and power delivery. As future
chips begin to scale out-of-plane, the heat dissipation and
power demand requires volumetrically scalable packaging
solutions to provide cooling and power.
With technology scaling, transistors became cheap and

abundant, but availability of chip and board-level wiring
became even scarcer. Managing the demand for wires is
overdue but has been delayed since it requires architectural
changes that are more difficult than expanding the transistor
count. Architectural changes are particularly important
when the efficiency of systems is the main metric. For this,
simpler cores are needed (e.g., accelerators or graphics
processing units) that reduce fan-out, network complexity,
and wire length. Current fan-out factors drive power
consumption and need to be reduced. Another soft spot of
exascale systems is the dynamic random access memory
(DRAM): Multitasking cores have high demand for memory,
which slows DRAM access and further increases latency and
demand due to the larger number of address decoding steps
and the serialization of the data. Core-level multithreading
is a strong driver for memory demand and triggers a faster
encounter with the memory wall. There are developments
needed to reach higher performance with fewer components

Table 1 Time and energy requirements for on- and
off-chip operations for 130- and 45-nm node sizes [38].
(ALU: arithmetic logic unit.)
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since this addresses active energy and leakage. Today, it
takes about 1015 elements for 1 peta-FLOPs (PFLOPs). With
the elimination of complexity and tenfold smaller memory
demand per CPU, more than ten times higher FLOPs per
element, and therefore exascale performance, can be more
easily reached than exascale device count.

Volume demands in information processing
Historically, the energy efficiency of computation doubled
every 18–20 months [45, 46], with a 1,000-fold performance
improvement every 11 years [45, 47], leading to a net 10-fold
energy consumption increase, which is clearly not a
sustainable trend. Improved computational efficiency was
enabled due to new device technology and scaling: Ten
orders of magnitude efficiency improvement have been
achieved, but with the anticipated end of CMOS scaling [48],
it is unclear how this will continue (see Figure 1) upward to
biological efficiencies (green region). The computational
performances of computers were compiled from [20, 46, 49]
and normalized to the power consumption and volume of
each computer without supporting infrastructure. The
computational performance of mammalian brains was
estimated from [20, 46, 49] and normalized to brain volume,
taking into account the brain metabolic rate [50], power
consumption, and volume fraction [51, 52]. It is striking that
six different technologies (i.e., electromechanical switches,
vacuum tubes, discrete transistor–transistor logic transistors,
emitter-coupled logic ICs, very large scale integrated (VLSI)

CMOS, and biological brains) all fall onto one line on the
log–log plot of operations per joule versus operations per
second per liter, and changes in device technology did not
lead to discontinuities. For microprocessor-based computers,
this historic evolution is attributable to device shrinkage,
which was motivated by a reduced cost per transistor and
resulted in improved performance and power use per
transistor. The main driver for efficiency improvement,
therefore, has been integration density. Another way of
expressing this trend is by stating that more efficient systems
can be built more compact. In all technologies, the volume
fraction occupied by the devices was less than 0.1%. This
ratio now has become extremely small with the current
transistor generation just occupying 1 ppm of computer
volume. Further CMOS device shrinkage is challenging due
to the rising passive power fraction. We suggest that device
technology needs to be efficient and small enough with low
leakage currents to support integration density. Integration
density wins over single-device performance when system
efficiency is considered as observed during the transition
from bipolar to CMOS technology and during other
technology transitions.
Since current computers are mainly limited in efficiency

and performance by their communication capability, we have
to look for examples with better communication architecture.
The human brain is such an example. It consists of 44% by
volume of white matter with axons implementing long-range
3-D connections between cortical areas. The gray matter
contains cell bodies, dendrites, and axons. The latter two
occupy approximately 60% of the gray matter (or 33%
overall), indicating a high degree of local communication.
Overall, the human brain uses 77% of its volume for
communication. As brain size increases, the volume of the
communication infrastructures increases faster than the
volume of functional devices according to a power law. In
fact, brains show similar Rent coefficients as VLSI systems
[44, 53] and are power intensive, dissipating about 20% of
the total body energy in less than 3% of the tissue [54].
The size of organisms spans 27 orders of magnitude from

the largest animals and plants to the smallest microbes and
subcellular units. Despite this large diversity, many
phenomena scale with size in a surprisingly simple fashion:
Metabolic rate scales with 3/4 power of mass, whereas
timescales and sizes (heart rate, life span, and aorta length)
scale with 1/4 power of mass, whereas other values are
constant such as the number of heartbeats during life and
the energy used by all organisms of a size class. This is
due to hierarchical branching networks that terminate in
size-invariant capillaries and show maximized metabolic
capacity by minimizing transport distances and times [55].
The distribution of energy, resources, and information plays
a central role in constraining the structure and organization
of life. Space-filled hierarchical fractal-like branching
networks distribute energy and materials between reservoirs

Figure 1

Computational efficiency and computational density of computers
compared with mammalian brains.
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and microscopic sites in animal circulatory, respiratory,
renal, and neural systems, as well as plant vascular systems.
In addition, these networks are seen in the systems that
supply food, water, power, and information to human
societies in cities.
Quarter-power scaling laws are as universal as metabolic

pathways, the structure and function of the genetic code,
and the process of natural selection. Fractal-like networks
effectively endowed life with an additional fourth spatial
dimension and a strong selective advantage [15, 55]. Neural
cells, as opposed to other cells, resemble snowflakes, so
that they can receive more information and maximize their
mass and heat transfer. For this reason, the metabolic rate
of the brain scales with a 4/5 power law as opposed to the 3/4
power law for other cells. This means that nature endows
brains uniquely with a fifth dimension originating from
the fractal structures of brain cells and the associated
communication networks [56–58]. Functional elements in
biology occupy a spatial fraction exceeding 80%. In current
computers, this fraction is much lower: $96% is used for
thermal transport (air and copper), 1% for electrical and
information transport, 1% for structural stability, and 1 ppm
for transistors and devices, whereas in the brain, 70% of the
structure is used for communication, 20% for computation,
and $10% for energy and thermal supply and drain, and
structural stability. With 2-D communication, fewer
communication lines are available, and much more energy is
needed for communication. The increased functional density
in brains is a major driver for the improved efficiency, as
shown in Figure 1. Therefore, adopting packaging and other
architectural features of the brain for future computers is a
promising approach to building much more efficient and
compact computers in the future.

Toward volumetric scalability in 3-D packages
VLSI architectures exhibit similar Rent exponents and
network complexities as the human brain [44], but their
computational efficiencies and functional densities lag by
orders of magnitude (see Figure 1) due to the lack of
scalability of current VLSI architecture in the third
dimension. The stacking of multiple active silicon dies leads
to enhanced interconnect densities of 106=cm2, as compared
with 103=cm2 for the chip-to-board pins [59]. The critical
components are the through-silicon vias (TSVs), which
have been demonstrated with pitches of 3 !m [32, 60].
A significant increase in performance is achieved by
incorporating memory and logic interconnected by TSVs
[61]. Scalable cooling between active layers can handle heat
fluxes of 180 W/cm2 per layer [14, 62]. Such forced
convection schemes maximize hot-spot cooling compatible
with vertical interconnects at practical pressure drops [14].
While the stack height is dilated through microchannel
incorporation by a factor of 1.3–2, this dilation can be
reduced to less than 1.2 by offering cooling only in between

stacks comprising one logic layer with ten memory layers.
The second major constraint is the need for power delivery
pins. In planar designs, about 75% of all microprocessor
off-chip I/Os are allocated to power delivery. In stacked-chip
configurations with multiple processor dies, the demand
will multiply and quickly use up all available pins.
Higher voltages for chip-to-board power interconnects in
combination with on-chip voltage transformers may aid in
delaying this cutoff point but only at the cost of silicon real
estate and efficiency.
A big step toward volumetric scalability may be taken by

unification of thermal and power I/O requirements, which
is achieved via a fluidic network. The technological
implementation of such a multifunctional network is an
electrochemical power delivery scheme in which soluble
redox couples are added to the coolant medium, representing
an on-chip realization of microfluidic redox flow cells. First
conceived as a form of secondary battery for long-lived
large-scale energy storage [63], the miniaturization of redox
flow cells [64] favors their integration into chip stacks with
power demand at voltage levels on the order of 1 V. A
unification of thermal and power fluidic I/O is attractive from
the perspective of overlapping intensity distributions for
power consumption and heat dissipation and the avoidance
of ohmic losses when large currents are distributed at low
voltage levels since charge carriers are transported by
forced convection instead. This provides an alternative to
area-hungry power TSVs, which hamper signaling I/O
between layers in a 3-D stack. In addition, the inherent
capacitance of the electrochemical double layer (about
10 !F/cm2 with respect to the electrode area) can take
over the role of decoupling capacitors to minimize supply
voltage variations. To ensure voltage stability, voltage
transformation and domains with switched supply islands
for standby leakage power minimization and combination
with on-chip voltage regulators is possible.
For the laminar flow conditions encountered in

microchannels, the average current density j provided by the
forced convection of spontaneously discharging electrolyte
solutions depends on fluid velocity v, hydraulic diameter Dh,
and channel length x in the same way as the heat and mass
transfer coefficients, i.e., j $ hHT $ hMT $ ðv=ðDh " xÞÞ1=3.
High current densities are favored by microchannel
geometries with high fluid velocities and small hydraulic
diameters. Hierarchical fluid manifolds allow for rapid
energy delivery in channels with short lengths x while
distributing the bulk electrolyte solutions via larger channels.
By pumping the electrochemically active species between

logic plus memory stacks, the electrochemical energy
conversion occurs near the highest BEOL metallization level
and thereby bypasses chip-to-board pins and TSVs.
Furthermore, the convective fluid transport may extend to
the data-center infrastructure where an electrochemical
recharging unit can regenerate the discharged electrolyte
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solutions. The complete electrochemical charge–discharge
cycle has energy efficiencies of more than 80% per pass.
Notably, the convective charge transport scheme corresponds
to the power distribution at voltages on the order of 1 V:
Duplicating this with conventional wiring would require
prohibitively large amounts of copper. The parasitic pumping
power favorably compares with the ohmic losses in electrical
conductors for large cross sections. Therefore, in addition to
the benefit of scaling with the number of stack interlayer
gaps, convective electrochemical power delivery may
improve system efficiency by reducing power conversion and
distribution losses.
For a beneficial implementation of combined cooling and

power delivery, the power per unit electrode area of
microfluidic electrochemical systems must be increased
by almost two orders of magnitude with respect to reported
values [64]. The ability to deliver power independent
of hard-wired connectivity enables the same degree of
volumetric scalability as for the coolant distribution.
As microfluidic redox flow cell performance is typically
diffusion limited, the path toward power density
improvement relies in part on enhanced mass transport and
short diffusion lengths through electrode microstructuring
and elevated temperature operation.
We can contemplate the impacts of high-performance

fluidic power distribution networks on the volumetric
scalability of 3-D ICs, as shown in Figure 2. Planar designs
are limited in terminal and logic element counts due to the
limited off-chip access to memory I/O (see A in Figure 2).

This memory-related limitation can be alleviated by stacking
of logic and memory dies as it is developed in the IT
industry today (see B in Figure 2). Stacking of several of
these entities is not possible due to limits of heat dissipation
through the stack to a backside heat sink. Volumetric cooling
such as the interlayer forced convection described above
copes with the increased heat dissipation footprint of 3-D
chip stacks (see C in Figure 2) and allows stacking of several
such entities each having a logic layer and many layers of
memory until the system is limited by the ability to deliver
sufficient power to all tiers in a stack through the TSVs.
Unified volumetric cooling and power delivery has the
potential to surpass this power wall and push the scalability
of stacked-chip architectures to the interlayer I/O limit
(see D in Figure 2). The replacement of power TSVs
by signal TSVs enables higher interlayer bandwidth for
improved I/O access within the stack of stacks and to the
outside through all faces of the cube.
True volumetric scalability implies direct proportionality

between cooling or power delivery capacity and system
volume. However, such systems are not readily realized in
practice. For example, surface access to a cube scales as
V 2=3, where V is the volume of the cube. Generally, the
hypersurface of a D-dimensional hypervolume scales with
the ðD! 1Þ=D-dimensional power of the hypervolume [65].
Space-filling networks in biology are observed to
follow allometric scaling, in which supply networks
subproportionally grow with system volume. Rent’s rule
relates the number of devices in a block with the need for
communication. Allometric scaling is inverse since it defines
the amount of elements with a given metabolic rate in a
volume element by the availability of supply that comes
through the surface of this volume element, which means
that, for a 2-D system, the perimeter scales with a power of
1/2, and for a 3-D element, the surface scales with a power
of 2/3. Hierarchical branched networks allow biology to
scale in a 4-D space, which results in a scaling exponent of
3/4. If we combine this with nonspherical shapes of brain
cells and optimized Rentian scaling of networks, the
performance of a brain scales with the power of 4/5 of its
volume as if it would use the surface in a 5-D hyperspace.
We now derive performance guidelines for space filling

computers by combining allometric scaling with Rent’s rule
assuming that communication and supply compete for the
same surface in a single element. For simplicity, we start the
scaling based on the I/O supply infrastructure with different
slopes given in Figure 3. For 2-D chips, we allow the
number of available connections to be multiplied by the
number of metal layers. This connection space is then
compared with the need for connections of an individual
cell. Information processing devices are all subject to a
fundamental access optimization problem. A given unit cell
of a computer optimally performs when it has low-loss access
to the resources listed in Table 2.

Figure 2

Scalability in a log–log plot of connection count ½logðCÞ( against logic
element count ½logðNÞ(. A: Conventional planar design (2-D); B: stacked
processor and memory dies with one-sided power delivery and heat
removal (3-D); C: stack of stacks with volumetric heat removal and one-
sided power delivery; D: stack of stacks with combined volumetric heat
removal and power delivery (3-D bionic packaging).
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The I/O requirements, including fan-out, define a starting
point on the vertical axis in Figure 3(b) that affects the onset
of the memory and power walls. From this, it becomes
clear that low fan-out architectures can be extended to
larger block sizes. In the past, architectures with very high
primary fan-out were advantageous because switches were
slow and wires were fast. This is different now: The
communication demand has to be limited from the very
beginning by creating a low fan-out microarchitecture. The
onset of the cooling, power, memory, and communication
wall occurs as the I/O need of a given block exceeds the
available surface. Stanley-Marbell and Cabezas showed that
with current power density trends in processors, there will be
eventually no pins left for communication [37]. Obviously,
such a system does not perform, and a compromise on power
density has to be made. Communication links in a brain
[see Figure 3(a), yellow] are counted with respect to neurons.
For a fair comparison with computers, neurons are set equal

to 1,000 transistors. Under this normalization, the specific
communication needs (fan-out) in a brain are lower than
those in current logic technology, and the yellow curve
is close to gate arrays (green) and memory (red).
The wiring complexity indicated by the value of p varies

from 0.1 for memory with serial data readout to 0.8 for
high-performance microprocessors [see Figure 3(a)].
Packaging constraints lead to a breakdown of Rent’s rule
for off-chip communication when the package pin count
available for communication sets an upper bound for the
wire count [see Figure 3(b)]. Such discontinuities are also
observed in the corpus callosum of the human brain [65],
but breaking Rent’s rule between computational nodes and
main memory has a much more severe impact on system
performance. On-chip cache reduces the negative impact of
this bottleneck at the expense of more than half of the chip
area being allocated to memory [7, 66]. Serialization of the
information stream enlarges overhead and latency. Optical
and wireless interconnects [67] cannot reduce latency:
The only approach that can reduce latency through reduction
of overall distances and more parallel interconnects is 3-D
chip integration. Improving the scalability of the number of
I/O pins available for communication can extend Rentian
scaling to larger system sizes with higher gate counts and
improved computational performance without the drawbacks
of data serialization [see Figure 3(b)]. Increasing connectivity
without changing scalability, for example, by increasing
the number of BEOL metallization layers, can only
marginally improve system scaling.

Table 2 Resource demand for space-filling computers.

Figure 3

(a) Comparison of the Rentian scaling of different circuit types [40] with the human brain [44]. (b) Influence of the scalability of the I/O supply to meet
the connectivity demand for growing system sizes. The black curve shows the total demand, whereas the gray curve shows the demand without power
supply pins; the gray curve does not intersect with the maximal available I/O curve (red) and is therefore scalable to very large systems.
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So far, access optimization has been only performed on
individual power and signaling networks. Full optimization
requires a parallel optimization on a universal connectome
or supranet that has to satisfy all the needs of all devices
within one block since all these resources compete for the
same surface. There are different types of needs that scale
with different exponents, leading to different volume
requirements for each of the I/O networks. The combination
of hierarchical fluid supply and Rentian information transport
allows scaling of information processing systems in a
higher-dimensional space, collapsing their volume demand to
the same efficiency and functional density as biological
systems.
A compact system is crucial: The shorter the

communication paths, the lower both the latency and energy
consumption. Since in the future overall efficiency will be a
key metric, any tricks to hide a slow communication (such as
caching and multithreading) cannot hide the flaws of the
underlying system. With volumetrically cooled chip stacks,
the overall volume is compressed by a factor of 105!106 so
that the following volume fractions result: transistors and
devices 5%, interconnects 25%, power supply 30%, thermal
transport 30%, and structural stability 10%.
The functional density in current computers is

10,000 transistors/mm3 compared with 100,000 neurons/mm3

in a brain. Since a neuron has a performance equivalent of
1,000 transistors, the density of the brain is 10,000 times
higher. On an interconnect level, it is more than 1,000-fold
denser albeit at a much smaller communication speed.
Volumetrically cooled chip stacks are space-filled like
biological brains with ten times higher density in Bneuron
equivalents.[ After 3/4-power allometric scaling from chip
scale (1 cm3) to brain scale (1,500 cm3), the component
density is similar. Interconnect density assuming 4/5-power
allometric scaling is ten times higher, and with the much
higher communication speed, the overall communication

capacity is 100 times better. Since in a 3-D chip stack the
communication network is not equivalent in all dimensions
of space but lower in the vertical dimension, we estimate
a small communication capacity advantage over the
human brain.
Today, most of the communication performance in a

computer is gained via the higher speed at the expense of a
more than quadratically higher energy demand [68]. For
improved efficiency, frequent communication should be
constrained to proximal locations within the 0.1-cm3 chip
stacks, whereas long-distance communication crossing this
boundary should be limited to a minimum. This can be
realized with our brain-inspired packaging approach, which
combines cooling and power supply networks, leading to
similar functional and communication densities as in a
biological brain. The exact approach to scale the chip stack
to a more than 1,000 cm3 system following an allometric
scaling factor still remains to be established. If we partially
compromise on density, we still may be able to build an
electronic brain with similar overall performance and
efficiency as the human brain but slightly lower density, as
depicted in Figure 4.
The integration process in Figure 4 starts from a CPU die

with ten added layers of memory that extend the memory
wall and allow ten times higher performance than a current
CPU (100 cores, 1 tera-FLOPs (TFLOPs), 10 GB memory,
and 1011 logic elements). Next, ten of these systems are
vertically stacked to a volume of 300 mm3 (100 GB,
1,000 cores, 10 TFLOPs, and 1012 elements). Then,
100 of these elements are combined to a multichip module
(MCM) (100,000 cores, 1014 elements, and 1 PFLOPs).
Finally, ten of these MCMs are stacked to a cube of
ten times the volume of a human brain and a performance of
100 times the performance of a human (one million cores,
10 PFLOPs, and 100 terabytes). Maximum communication
distances in the system are shorter than 50 cm.

Figure 4

Volumetrically scalable stack of stacks. Note that the communication links between logic elements as well as the fluidic thermal and power I/O enable
high-density space-filling supply and drain networks.
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Discussion
A key characteristic of a biological brain is the close
proximity of memory and computation, which allows
recognizing images stored many years ago in a fraction of a
second. Computers will continue to be poor at this unless
architectures become more memory centric. Caches,
pipelining, and multithreading improve performance but
reduce efficiency. Multitasking violates the temporal Rent
rule because it puts processes in spatial or temporal proximity
that do not communicate. If the underlying hardware follows
Rent’s rule, a system optimization segregates the tasks.
However, the breakdown of Rent’s rule at the chip boundary
leads to a serialization of the data stream and, accordingly, to
penalties in performance and efficiency. The reason for this
situation is readily appreciated: Assuming typical Rent
coefficients of k ¼ 10 and p ¼ 0:8, the terminal count
required for 109 logic elements is 108, exceeding current
package pin counts by five orders of magnitude. The current
industry-wide effort to introduce 3-D integration allows a
considerable improvement of bandwidth and latency between
the logic and memory units. With parallel introduction of
new architectural concepts, the transition to 3-D stacked
chips can unfold a much larger potential, in particular to
increase the specific performance from 1 to more than
10 FLOPs per element.
A coarse assessment of the power and volume

requirements for stacked systems in combination with our
proposed bioinspired packaging scheme can be performed
based on current device and wire characteristics, with wiring
needs derived from Rent’s rule (with k ¼ 10) according
to Donath [68] and its extension to 3-D systems [69].
Power consumption is estimated from the device count,
including switching and leakage power, as well as from
the switching power associated with wiring. The volume
demand is derived from the I/O requirements for power,

cooling, and communication (based on the terminal count
according to Rent’s rule). For simplicity, these I/O
requirements are consolidated to a computer unit cell with
the shape of a cube.
We now consider different reference cases based on

varying I/O demands and supply scaling with increasing
element count (see Table 3). Present-day scaling behavior
(2-D scenario) based on a complex communication
architecture with p ¼ 0:8 is dominated by the overwhelming
demand for wiring, which results in both an overproportional
power scaling coefficient of 1.1 with a growing number of
elements and excessive area requirements for the terminal
count. The volume grows even more aggressively with the
element count, following a 1.5-fold higher scaling exponent
due to the surface-to-volume ratio of the unit cell cube.
The extrapolation of power and volume demands for
increasing element count is illustrated in Figure 5: Scaling
to 1018 elements results in excessive power and volume
demands of 30 GW and 1 km3, even with data serialization,
which considerably reduces the demand for package pin
count and therefore volume.
Three-dimensional integration enables close proximity

between logic and main memory, where ideally the
communication supply scales volumetrically (see Table 3:
scenario 3-D, air-cooled). This proximity eliminates the
cache hierarchy with its power consumption overhead,
eliminates the need for core-level multitasking, reduces
memory demand per core, and allows higher FLOPs per
device count numbers than today. Due to reduced wiring,
the power demand is diminished [see Figure 5(a), red line]
and scales roughly proportionally with the number of
elements in the system with the volume demand following
a scaling exponent of 1.5. Therefore, the system volume
[see Figure 5(b), red line] becomes dominated by cooling for
large element sizes. Overall, a petascale machine can be built

Table 3 Scaling exponents and functional density for increasing logic element count of a hypothetical computer unit
cell with power, signal, and thermal I/O demands.
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within 50 m3 and a power budget of 400 kW (see Table 3).
For an exascale system 2 million m3 or about twice the
largest known data-center volume is needed with a steep
power bill for the 0.2 GW consumed. Improved device
technology cannot alleviate this: Shrinking the gate length to
10 nm, lowering the operating voltage to 0.3 V, and reducing
leakage currents by a factor of 10 improves the absolute
values of power and volume demands but does not
fundamentally change the system scalability [see Figures 5(a)
and 5(b), dashed red lines] [30, 70]. The scalability can
only be improved by allowing for a change in the way in
which power and cooling are supplied.
The biologically inspired packaging approach allows

improved scaling: An ideal I/O supply would scale
proportionally with system volume in order to meet the
power demand. However, a practical implementation of the
proposed combined fluidic cooling and power delivery is
likely to scale underproportionally with system volume.
Biological supply and drain networks imply that a scaling
exponent of 3/4 is feasible, so that both cooling and power
delivery scale $V 3=4 instead of $V . A simplification of
wiring is assumed since power is delivered electrochemically,
leading to a lower Rent exponent of 0.65 (see Table 3,
scenario 3-D, bionic packaging). The improved volumetric
scalability results in the most compact system size
[Figure 5(b), blue line]. The system volume corresponds to
the minimum volume to implement the wiring required by
Rent’s rule up to 1018 elements, until the faster growing
volume demand for power and cooling dictates system sizes
above this value. While performance and size differences
between 2- and 3-D bionic systems are minute for small

system sizes (current CPUs), they explosively grow with
system size: While a petascale system built with 2-D
technology fits in a few 1,000 m3 using 10 MW, a zetascale
system requires a volume larger than Mount Everest and
consumes more than the current human power usage
(20 TW). A 3-D bionic system scales to 10 L, 1 m3, and
10,000 m3 for peta-, exa-, and zetascale systems, respectively.
Importantly, today’s transistors (100) 100 ) 100 nm3 cube)
are already dense enough to sustain such high density
systems, i.e., they occupy 1 cm3, 1 dm3, and 1 m3 for peta-,
exa-, and zetascale systems, respectively. The key toward
volume reduction therefore lies in the volumetric packaging
approach.
Figure 5 shows that the transition from the current 2-D

scenario (black dashed) to a 3-D scenario can shrink the
volume of a petascale computer by a factor of 300 and
by a factor of 1,000 if a continued device development is
assumed. The introduction of 3-D bionic packaging allows
further shrinkage by a factor of 1,000. In terms of energy,
3-D integration can reduce energy consumption by a factor
of 30 and, with improved devices, by a factor of 100.
Three-dimensional bionic packaging allows extending this
by another factor of close to 100, thereby reaching
biological efficiencies. The implementation of such systems
may be realized within a 50-year timeframe and will allow
with moderate added investments to harvest the benefits
of 3-D stacking and TSV technology much better and
much longer. Then, the performance of the human brain
will be matched with 1014 elements that consume about
100 W and occupy a volume of 2,500 cm3 (excluding storage
and external communication). Key is that the system core is

Figure 5

(a) Power and (b) volume of computers as functions of element count for different scaling scenarios.
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compressed one-million-fold volumetrically and 100-fold
linearly: This is the same scaling factor that was reached
between 1945 and 1985 but projected to happen in half
the time to compensate for slower device technology
developments.

Outlook
We have shown that integration density is crucial for
biological information processing efficiency and that
computers canVfrom a volume and power consumption
point of viewVdevelop along the same route up to zetascale
systems. We conjecture that the information industry could
reach the same efficiency as biological brains by 2060,
100 years after the introduction of electronic computers.
We may recall that the first steam engine had less than
0.1% efficiency and it took 200 years (1780 to 1980) to
develop steam engines that reached biological efficiency.
The evolution described above would be twice as fast a
development in the information industry as for the process
that laid the foundation for the Industrial Age. Economically,
it is important that the cost per transistor continues to shrink.
The slower scaling speed at continued manufacturing
efficiency improvements (e.g., 450-mm wafers) will allow
longer depreciation times in chip factories and reduce the
manufacturing cost per silicon area. What needs to shrink
faster is the cost per interconnect, in particular the cost per
long-distance interconnect. Three-dimensional stacking
processes need to be well industrialized to make sure that
interconnect and memory cost that dominate in future
systems over (logic) transistor cost will show a similar
Moore’s trend in the next 50 years to make technological
predictions of this paper also economically feasible.
Whether it makes sense to strive for a zeta-FLOPs

capability system or whether a large number of smaller
systems are able to meet information processing demands for
IBM’s 150-year anniversary remains to be seen. What we
want to state here is that, while the key message for the last
50 years was that Bthere is a lot of room at the bottom[; the
message for the next 50 years is Bthere is a lot of room
between devices[ or Bthere is a lot of slack in wires.[
Integration density will improve in the next 50 years to
similar values as biological systems and similar efficiencies
even for the most challenging comparisons. It remains to be
seen whether a novel device technology could be mass
produced by then that provides better base efficiency while
not jeopardizing integration density. Availability of an
improved device technology might help accelerate the rate
of progress and allow reaching information processing
efficiencies beyond biological brains. Predicting
developments in the information industry after 2060 remain
difficult, but there is a chance that, by IBM’s 200-year
anniversary, packaging and device technology may enable
integrated electronic super brains with 100-fold human
intelligenceVwhatever this means.
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(ruc@zurich.ibm.com). Dr. Ruch joined the Advanced Thermal
Packaging Group at the IBM Zurich Research Laboratory in 2009 as a
postdoctoral researcher. He had studied materials science at the
Swiss Federal Institute of Technology (ETH) Zurich and received his
Ph.D. degree from ETH in 2009 for his work performed at the Paul
Scherrer Institut (PSI) on electrochemical capacitors. His main research
interests are in energy conversion and storage with applications to
efficient data centers. He is currently a Research Staff Member working
on exploratory research regarding microfluidic electrochemical energy
conversion and the development of adsorbent materials for solid
sorption refrigeration.

Thomas Brunschwiler IBM Research Division, Zurich
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