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Abstract

We propose a robust portfolio optimization approach based on quantile statistics.
The proposed method is robust to extreme events in asset returns, and accommo-
dates large portfolios under limited historical data. Specifically, we show that the
risk of the estimated portfolio converges to the oracle optimal risk with parametric
rate under weakly dependent asset returns. The theory does not rely on higher or-
der moment assumptions, thus allowing for heavy-tailed asset returns. Moreover,
the rate of convergence quantifies that the size of the portfolio under management
is allowed to scale exponentially with the sample size of the historical data. The
empirical effectiveness of the proposed method is demonstrated under both syn-
thetic and real stock data. Our work extends existing ones by achieving robustness
in high dimensions, and by allowing serial dependence.

1 Introduction
Markowitz’s mean-variance analysis sets the basis for modern portfolio optimization theory [1].
However, the mean-variance analysis has been criticized for being sensitive to estimation errors in
the mean and covariance matrix of the asset returns [2, 3]. Compared to the covariance matrix,
the mean of the asset returns is more influential and harder to estimate [4, 5]. Therefore, many
studies focus on the global minimum variance (GMV) formulation, which only involves estimating
the covariance matrix of the asset returns.

Estimating the covariance matrix of asset returns is challenging due to the high dimensionality and
heavy-tailedness of asset return data. Specifically, the number of assets under management is usually
much larger than the sample size of exploitable historical data. On the other hand, extreme events
are typical in financial asset prices, leading to heavy-tailed asset returns.

To overcome the curse of dimensionality, structured covariance matrix estimators are proposed for
asset return data. [6] considered estimators based on factor models with observable factors. [7,
8, 9] studied covariance matrix estimators based on latent factor models. [10, 11, 12] proposed to
shrink the sample covariance matrix towards highly structured covariance matrices, including the
identity matrix, order 1 autoregressive covariance matrices, and one-factor-based covariance matrix
estimators. These estimators are commonly based on the sample covariance matrix. (sub)Gaussian
tail assumptions are required to guarantee consistency.

For heavy-tailed data, robust estimators of covariance matrices are desired. Classic robust covariance
matrix estimators include M -estimators, minimum volume ellipsoid (MVE) and minimum covari-
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ance determinant (MCD) estimators, S-estimators, and estimators based on data outlyingness and
depth [13]. These estimators are specifically designed for data with very low dimensions and large
sample sizes. For generalizing the robust estimators to high dimensions, [14] proposed the Orthogo-
nalized Gnanadesikan-Kettenring (OGK) estimator, which extends [15]’s estimator by re-estimating
the eigenvalues; [16, 17] studied shrinkage estimators based on Tyler’s M -estimator. However, al-
though OGK is computationally tractable in high dimensions, consistency is only guaranteed under
fixed dimension. The shrunken Tylor’s M -estimator involves iteratively inverting large matrices.
Moreover, its consistency is only guaranteed when the dimension is in the same order as the sam-
ple size. The aforementioned robust estimators are analyzed under independent data points. Their
performance under time series data is questionable.

In this paper, we build on a quantile-based scatter matrix1 estimator, and propose a robust portfolio
optimization approach. Our contributions are in three aspects. First, we show that the proposed
method accommodates high dimensional data by allowing the dimension to scale exponentially
with sample size. Secondly, we verify that consistency of the proposed method is achieved without
any tail conditions, thus allowing for heavy-tailed asset return data. Thirdly, we consider weakly
dependent time series, and demonstrate how the degree of dependence affects the consistency of the
proposed method.

2 Background
In this section, we introduce the notation system, and provide a review on the gross-exposure con-
strained portfolio optimization that will be exploited in this paper.

2.1 Notation

Let v = (v1, . . . , vd)
T be a d-dimensional real vector, and M = [Mjk] ∈ Rd1×d2 be a d1 × d2

matrix with Mjk as the (j, k) entry. For 0 < q < ∞, we define the `q vector norm of v as
‖v‖q := (

∑d
j=1 |vj |)1/q and the `∞ vector norm of v as ‖v‖∞ := maxdj=1 |vj |. Let the matrix

`max norm of M be ‖M‖max := maxjk |Mjk|, and the Frobenius norm be ‖M‖F :=
√∑

jkM
2
jk.

Let X = (X1, . . . , Xd)
T and Y = (Y1, . . . , Yd)

T be two random vectors. We write X d
= Y if X

and Y are identically distributed. We use 1,2, . . . to denote vectors with 1, 2, . . . at every entry.

2.2 Gross-exposure Constrained GMV Formulation

Under the GMV formulation, [18] found that imposing a no-short-sale constraint improves portfolio
efficiency. [19] relaxed the no-short-sale constraint by a gross-exposure constraint, and showed that
portfolio efficiency can be further improved.

Let X ∈ Rd be a random vector of asset returns. A portfolio is characterized by a vector of
investment allocations, w = (w1, . . . , wd)

T, among the d assets. The gross-exposure constrained
GMV portfolio optimization can be formulated as

min
w

wTΣw s.t. 1Tw = 1, ‖w‖1 ≤ c. (2.1)

Here Σ is the covariance matrix ofX , 1Tw = 1 is the budget constraint, and ‖w‖1 ≤ c is the gross-
exposure constraint. c ≥ 1 is called the gross exposure constant, which controls the percentage
of long and short positions allowed in the portfolio [19]. The optimization problem (2.1) can be
converted into a quadratic programming problem, and solved by standard software [19].

3 Method
In this section, we introduce the quantile-based portfolio optimization approach. Let Z ∈ R be a
random variable with distribution function F , and {zt}Tt=1 be a sequence of observations from Z.
For a constant q ∈ [0, 1], we define the q-quantiles of Z and {zt}Tt=1 to be

Q(Z; q) = Q(F ; q) := inf{z : P(Z ≤ z) ≥ q},

Q̂({zt}Tt=1; q) := z(k) where k = min
{
t :

t

T
≥ q
}
.

1A scatter matrix is defined to be any matrix proportional to the covariance matrix by a constant.
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Here z(1) ≤ . . . ≤ z(T ) are the order statistics of {zt}Tt=1. We say Q(Z; q) is unique if there
exists a unique z such that P(Z ≤ z) = q. We say Q̂({zt}Tt=1; q) is unique if there exists a unique
z ∈ {z1, . . . , zT } such that z = z(k). Following the estimator Qn [20], we define the population
and sample quantile-based scales to be

σQ(Z) := Q(|Z − Z̃|; 1/4) and σ̂Q({zt}Tt=1) := Q̂({|zs − zt|}1≤s<t≤T ; 1/4). (3.1)

Here Z̃ is an independent copy of Z. Based on σQ and σ̂Q, we can further define robust scat-
ter matrices for asset returns. In detail, let X = (X1, . . . , Xd)

T ∈ Rd be a random vector
representing the returns of d assets, and {Xt}Tt=1 be a sequence of observations from X , where
Xt = (Xt1, . . . , Xtd)

T. We define the population and sample quantile-based scatter matrices (QNE)
to be

RQ := [RQ
jk] and R̂Q := [R̂Q

jk],

where the entries of RQ and R̂Q are given by
RQ
jj := σQ(Xj)

2, R̂Q
jj := σ̂Q({Xtj}Tt=1)

2,

RQ
jk :=

1

4

[
σQ(Xj +Xk)

2 − σQ(Xj −Xk)
2
]
,

R̂Q
jk :=

1

4

[
σ̂Q({Xtj +Xtk}Tt=1)

2 − σQ({Xtj −Xtk}Tt=1)
2
]
.

Since σ̂Q can be computed using O(T log T ) time [20], the computational complexity of R̂Q is
O(d2T log T ). Since T � d in practice, R̂Q can be computed almost as efficiently as the sample
covariance matrix, which has O(d2T ) complexity.

Let w = (w1, . . . , wd)
T be the vector of investment allocations among the d assets. For a matrix

M, we define a risk function R : Rd × Rd×d → R by
R(w;M) := wTMw.

When X has covariance matrix Σ, R(w;Σ) = Var(wTX) is the variance of the portfolio return,
wTX , and is employed as the objected function in the GMV formulation. However, estimating Σ
is difficult due to the heavy tails of asset returns. In this paper, we adopt R(w;RQ) as a robust
alternative to the moment-based risk metric, R(w;Σ), and consider the following oracle portfolio
optimization problem:

wopt = argmin
w

R(w;RQ) s.t. 1Tw = 1, ‖w‖1 ≤ c. (3.2)

Here ‖w‖1 ≤ c is the gross-exposure constraint introduced in Section 2.2. In practice, RQ is
unknown and has to be estimated. For convexity of the risk function, we project R̂Q onto the cone
of positive definite matrices:

R̃Q = argminR
∥∥R̂Q −R

∥∥
max

s.t. R ∈ Sλ := {M ∈ Rd×d : MT = M, λminId �M � λmaxId}.
(3.3)

Here λmin and λmax set the lower and upper bounds for the eigenvalues of R̃Q. The optimization
problem (3.3) can be solved by a projection and contraction algorithm [21]. We summarize the
algorithm in the supplementary material. Using R̃Q, we formulate the empirical robust portfolio
optimization by

w̃opt = argmin
w

R(w; R̃Q) s.t. 1Tw = 1, ‖w‖1 ≤ c. (3.4)

Remark 3.1. The robust portfolio optimization approach involves three parameters: λmin, λmax,
and c. Empirically, setting λmin = 0.005 and λmax =∞ proves to work well. c is typically provided
by investors for controlling the percentages of short positions. When a data-driven choice is desired,
we refer to [19] for a cross-validation-based approach.
Remark 3.2. The rationale behind the positive definite projection (3.3) lies in two aspects. First, in
order that the portfolio optimization is convex and well conditioned, a positive definite matrix with
lower bounded eigenvalues is needed. This is guaranteed by setting λmin > 0. Secondly, the pro-
jection (3.3) is more robust compared to the OGK estimate [14]. OGK induces positive definiteness
by re-estimating the eigenvalues using the variances of the principal components. Robustness is lost
when the data, possibly containing outliers, are projected onto the principal directions for estimating
the principal components.
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Remark 3.3. We adopt the 1/4 quantile in the definitions of σQ and σ̂Q to achieve 50% breakdown
point. However, we note that our methodology and theory carries through if 1/4 is replaced by any
absolute constant q ∈ (0, 1).

4 Theoretical Properties
In this section, we provide theoretical analysis of the proposed portfolio optimization approach. For
an optimized portfolio, ŵopt, based on an estimate, R, of RQ, the next lemma shows that the error
between the risksR(ŵopt;RQ) andR(wopt;RQ) is essentially related to the estimation error in R.
Lemma 4.1. Let ŵopt be the solution to

min
w

R(w;R) s.t. 1Tw = 1, ‖w‖1 ≤ c (4.1)

for an arbitrary matrix R. Then, we have
|R(ŵopt;RQ)−R(wopt;RQ)| ≤ 2c2‖R−RQ‖max,

where wopt is the solution to the oracle portfolio optimization problem (3.2), and c is the gross-
exposure constant.

Next, we derive the rate of convergence for R(w̃opt;RQ), which relates to the rate of convergence
in ‖R̃Q−RQ‖max. To this end, we first introduce a dependence condition on the asset return series.
Definition 4.2. Let {Xt}t∈Z be a stationary process. Denote by F0

−∞ := σ(Xt : t ≤ 0) and
F∞n := σ(Xt : t ≥ n) the σ-fileds generated by {Xt}t≤0 and {Xt}t≥n, respectively. The φ-mixing
coefficient is defined by

φ(n) := sup
B∈F0

−∞,A∈F∞n ,P(B)>0

|P(A | B)− P(A)|.

The process {Xt}t∈Z is φ-mixing if and only if limn→∞ φ(n) = 0.
Condition 1. {Xt ∈ Rd}t∈Z is a stationary process such that for any j 6= k ∈ {1, . . . , d},
{Xtj}t∈Z, {Xtj+Xtk}t∈Z, and {Xtj−Xtk}t∈Z are φ-mixing processes satisfying φ(n) ≤ 1/n1+ε

for any n > 0 and some constant ε > 0.

The parameter ε determines the rate of decay in φ(n), and characterizes the degree of dependence
in {Xt}t∈Z. Next, we introduce an identifiability condition on the distribution function of the asset
returns.
Condition 2. Let X̃ = (X̃1, . . . , X̃d)

T be an independent copy ofX1. For any j 6= k ∈ {1, . . . , d},
let F1;j , F2;j,k, and F3;j,k be the distribution functions of |X1j − X̃j |, |X1j +X1k− X̃j − X̃k|, and
|X1j −X1k − X̃j + X̃k|. We assume there exist constants κ > 0 and η > 0 such that

inf
|y−Q(F ;1/4)|≤κ

d

dy
F (y) ≥ η

for any F ∈ {F1;j , F2;j,k, F3;j,k : j 6= k = 1, . . . , d}.

Condition 2 guarantees the identifiability of the 1/4 quantiles, and is standard in the literature on
quantile statistics [22, 23]. Based on Conditions 1 and 2, we can present the rates of convergence
for R̂Q and R̃Q.
Theorem 4.3. Let {Xt}t∈Z be an absolutely continuous stationary process satisfying Conditions
1 and 2. Suppose log d/T → 0 as T → ∞. Then, for any α ∈ (0, 1) and T large enough, with
probability no smaller than 1− 8α2, we have

‖R̂Q −RQ‖max ≤ rT . (4.2)
Here the rate of convergence rT is defined by

rT = max
{ 2

η2

[√4(1 + 2Cε)(log d− logα)

T
+

4Cε
T

]2
,

4σQ
max

η

[√4(1 + 2Cε)(log d− logα)

T
+

4Cε
T

]}
, (4.3)

where σQ
max := max{σQ(Xj), σ

Q(Xj + Xk), σ
Q(Xj − Xk) : j 6= k ∈ {1, . . . , d}} and Cε :=∑∞

k=1 1/k
1+ε. Moreover, if RQ ∈ Sλ for Sλ defined in (3.3), we further have

‖R̃Q −RQ‖max ≤ 2rT . (4.4)
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The implications of Theorem 4.3 are as follows.

1. When the parameters η, ε, and σQ
max do not scale with T , the rate of convergence reduces

to OP (
√

log d/T ). Thus, the number of assets under management is allowed to scale
exponentially with sample size T . Compared to similar rates of convergence obtained
for sample-covariance-based estimators [24, 25, 9], we do not require any moment or tail
conditions, thus accommodating heavy-tailed asset return data.

2. The effect of serial dependence on the rate of convergence is characterized by Cε. Specif-
ically, as ε approaches 0, Cε =

∑∞
k=1 1/k

1+ε increases towards infinity, inflating rT . ε is
allowed to scale with T such that Cε = o(T/ log d).

3. The rate of convergence rT is inversely related to the lower bound, η, on the marginal
density functions around the 1/4 quantiles. This is because when η is small, the distribu-
tion functions are flat around the 1/4 quantiles, making the population quantiles harder to
estimate.

Combining Lemma 4.1 and Theorem 4.3, we obtain the rate of convergence for R(w̃opt;RQ).

Theorem 4.4. Let {Xt}t∈Z be an absolutely continuous stationary process satisfying Conditions 1
and 2. Suppose that log d/T → 0 as T → ∞ and RQ ∈ Sλ. Then, for any α ∈ (0, 1) and T large
enough, we have

|R(w̃opt;RQ)−R(wopt;RQ)| ≤ 2c2rT , (4.5)
where rT is defined in (4.3) and c is the gross-exposure constant.

Theorem 4.4 shows that the risk of the estimated portfolio converges to the oracle optimal risk with
parametric rate rT . The number of assets, d, is allowed to scale exponentially with sample size T .
Moreover, the rate of convergence does not rely on any tail conditions on the distribution of the asset
returns.

For the rest of this section, we build the connection between the proposed robust portfolio opti-
mization and its moment-based counterpart. Specifically, we show that they are consistent under the
elliptical model.

Definition 4.5. [26] A random vector X ∈ Rd follows an elliptical distribution with location µ ∈
Rd and scatter S ∈ Rd×d if and only if there exist a nonnegative random variable ξ ∈ R, a matrix
A ∈ Rd×r with rank(A) = r, a random vector U ∈ Rr independent from ξ and uniformly
distributed on the r-dimensional sphere, Sr−1, such that

X
d
= µ+ ξAU .

Here S = AAT has rank r. We denoteX ∼ ECd(µ,S, ξ). ξ is called the generating variate.

Commonly used elliptical distributions include Gaussian distribution and t-distribution. Elliptical
distributions have been widely used for modeling financial return data, since they naturally capture
many stylized properties including heavy tails and tail dependence [27, 28, 29, 30, 31, 32]. The next
theorem relates RQ and R(w;RQ) to their moment-based counterparts, Σ and R(w;Σ), under the
elliptical model.

Theorem 4.6. Let X = (X1, . . . , Xd)
T ∼ ECd(µ,S, ξ) be an absolutely continuous elliptical

random vector and X̃ = (X̃1, . . . , X̃d)
T be an independent copy ofX . Then, we have

RQ = mQS (4.6)
for some constant mQ only depending on the distribution of X . Moreover, if 0 < Eξ2 < ∞, we
have

RQ = cQΣ and R(w;RQ) = cQR(w;Σ), (4.7)
where Σ = Cov(X) is the covariance matrix ofX , and cQ is a constant given by

cQ =Q
{ (Xj − X̃j)

2

Var(Xj)
;
1

4

}
= Q

{ (Xj +Xk − X̃j − X̃k)
2

Var(Xj +Xk)
;
1

4

}
=Q
{ (Xj −Xk − X̃j + X̃k)

2

Var(Xj −Xk)
;
1

4

}
. (4.8)

Here the last two inequalities hold when Var(Xj +Xk) > 0 and Var(Xj −Xk) > 0.
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By Theorem 4.6, under the elliptical model, minimizing the robust risk metric, R(w;RQ), is equiv-
alent with minimizing the standard moment-based risk metric, R(w;Σ). Thus, the robust portfolio
optimization (3.2) is equivalent to its moment-based counterpart (2.1) in the population level. Plug-
ging (4.7) into (4.5) leads to the following theorem.

Theorem 4.7. Let {Xt}t∈Z be an absolutely continuous stationary process satisfying Conditions 1
and 2. Suppose that X1 ∼ ECd(µ,S, ξ) follows an elliptical distribution with covariance matrix
Σ, and log d/T → 0 as T →∞. Then, we have

|R(w̃opt;Σ)−R(wopt;Σ)| ≤ 2c2

cQ
rT ,

where c is the gross-exposure constant, cQ is defined in (4.8), and rT is defined in (4.3).

Thus, under the elliptical model, the optimal portfolio, w̃opt, obtained from the robust portfolio
optimization also leads to parametric rate of convergence for the standard moment-based risk.

5 Experiments
In this section, we investigate the empirical performance of the proposed portfolio optimization
approach. In Section 5.1, we demonstrate the robustness of the proposed approach using synthetic
heavy-tailed data. In Section 5.2, we simulate portfolio management using the Standard & Poor’s
500 (S&P 500) stock index data.

The proposed portfolio optimization approach (QNE) is compared with three competitors. These
competitors are constructed by replacing the covariance matrix Σ in (2.1) by commonly used co-
variance/scatter matrix estimators:

1. OGK: The orthogonalized Gnanadesikan-Kettenring estimator constructs a pilot scatter
matrix estimate using a robust τ -estimator of scale, then re-estimates the eigenvalues using
the variances of the principal components [14].

2. Factor: The principal factor estimator iteratively solves for the specific variances and the
factor loadings [33].

3. Shrink: The shrinkage estimator shrinkages the sample covariance matrix towards a one-
factor covariance estimator[10].

5.1 Synthetic Data

Following [19], we construct the covariance matrix of the asset returns using a three-factor model:
Xj = bj1f1 + bj2f2 + bj3f3 + εj , j = 1, . . . , d, (5.1)

where Xj is the return of the j-th stock, bjk is the loadings of the j-th stock on factor fk, and εj is
the idiosyncratic noise independent of the three factors. Under this model, the covariance matrix of
the stock returns is given by

Σ = BΣfB
T + diag(σ2

1 , . . . , σ
2
d), (5.2)

where B = [bjk] is a d × 3 matrix consisting of the factor loadings, Σf is the covariance matrix
of the three factors, and σ2

j is the variance of the noise εi. We adopt the covariance in (5.2) in our
simulations. Following [19], we generate the factor loadings B from a trivariate normal distribution,
Nd(µb,Σb), where the mean, µb, and covariance, Σb, are specified in Table 1. After the factor
loadings are generated, they are fixed as parameters throughout the simulations. The covariance
matrix, Σf , of the three factors is also given in Table 1. The standard deviations, σ1, . . . , σd, of the
idiosyncratic noises are generated independently from a truncated gamma distribution with shape
3.3586 and scale 0.1876, restricting the support to [0.195,∞). Again these standard deviations are
fixed as parameters once they are generated. According to [19], these parameters are obtained by
fitting the three-factor model, (5.1), using three-year daily return data of 30 Industry Portfolios from
May 1, 2002 to Aug. 29, 2005. The covariance matrix, Σ, is fixed throughout the simulations. Since
we are only interested in risk optimization, we set the mean of the asset returns to be µ = 0. The
dimension of the stocks under consideration is fixed at d = 100.

Given the covariance matrix Σ, we generate the asset return data from the following three distribu-
tions.

D1: multivariate Gaussian distribution, Nd(0,Σ);
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Table 1: Parameters for generating the covariance matrix in Equation (5.2).

Parameters for factor loadings Parameters for factor returns

µb Σb Σf

0.7828 0.02915 0.02387 0.01018 1.2507 -0.035 -0.2042
0.5180 0.02387 0.05395 -0.00697 -0.0350 0.3156 -0.0023
0.4100 0.01018 -0.00697 0.08686 -0.2042 -0.0023 0.1930
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Figure 1: Portfolio risks, selected number of stocks, and matching rates to the oracle optimal port-
folios.

D2: multivariate t distribution with degree of freedom 3 and covariance matrix Σ;
D2: elliptical distribution with log-normal generating variate, logN(0, 2), and covariance ma-

trix Σ.

Under each distribution, we generate asset return series of half a year (T = 126). We estimate
the covariance/scatter matrices using QNE and the three competitors, and plug them into (2.1) to
optimize the portfolio allocations. We also solve (2.1) with the true covariance matrix, Σ, to obtain
the oracle optimal portfolios as benchmarks. We range the gross-exposure constraint, c, from 1 to 2.
The results are based on 1,000 simulations.

Figure 1 shows the portfolio risks R(ŵ;Σ) and the matching rates between the optimized portfolios
and the oracle optimal portfolios2. Here the matching rate is defined as follows. For two portfolios
P1 and P2, let S1 and S2 be the corresponding sets of selected assets, i.e., the assets for which
the weights, wi, are non-zero. The matching rate between P1 and P2 is defined as r(P1, P2) =
|S1

⋂
S2|/|S1

⋃
S2|, where |S| denotes the cardinality of set S.

We note two observations from Figure 1. (i) The four estimators leads to comparable portfolio
risks under the Gaussian model D1. However, under heavy-tailed distributions D2 and D3, QNE
achieves lower portfolio risk. (ii) The matching rates of QNE are stable across the three models,
and are higher than the competing methods under heavy-tailed distributions D2 and D3. Thus, we
conclude that QNE is robust to heavy tails in both risk minimization and asset selection.

5.2 Real Data

In this section, we simulate portfolio management using the S&P 500 stocks. We collect 1,258
adjusted daily closing prices3 for 435 stocks that stayed in the S&P 500 index from January 1, 2003

2Due to the `1 regularization in the gross-exposure constraint, the solution is generally sparse.
3The adjusted closing prices accounts for all corporate actions including stock splits, dividends, and rights

offerings.

7



Table 2: Annualized Sharpe ratios, returns, and risks under 4 competing approaches, using S&P 500
index data.

QNE OGK Factor Shrink

Sharpe ratio

c=1.0 2.04 1.64 1.29 0.92
c=1.2 1.89 1.39 1.22 0.74
c=1.4 1.61 1.24 1.34 0.72
c=1.6 1.56 1.31 1.38 0.75
c=1.8 1.55 1.48 1.41 0.78
c=2.0 1.53 1.51 1.43 0.83

return (in %)

c=1.0 20.46 16.59 13.18 9.84
c=1.2 18.41 13.15 10.79 7.20
c=1.4 15.58 11.30 10.88 6.55
c=1.6 15.02 11.48 10.68 6.49
c=1.8 14.77 12.39 10.57 6.58
c=2.0 14.51 12.27 10.60 6.76

risk (in %)

c=1.0 10.02 10.09 10.19 10.70
c=1.2 9.74 9.46 8.83 9.76
c=1.4 9.70 9.10 8.12 9.14
c=1.6 9.63 8.75 7.71 8.68
c=1.8 9.54 8.39 7.51 8.38
c=2.0 9.48 8.13 7.43 8.18

to December 31, 2007. Using the closing prices, we obtain 1,257 daily returns as the daily growth
rates of the prices.

We manage a portfolio consisting of the 435 stocks from January 1, 2003 to December 31, 20074.
On days i = 42, 43, . . . , 1, 256, we optimize the portfolio allocations using the past 2 months stock
return data (42 sample points). We hold the portfolio for one day, and evaluate the portfolio return
on day i + 1. In this way, we obtain 1,215 portfolio returns. We repeat the process for each of the
four methods under comparison, and range the gross-exposure constant c from 1 to 25.

Since the true covariance matrix of the stock returns is unknown, we adopt the Sharpe ratio for
evaluating the performances of the portfolios. Table 2 summarizes the annualized Sharpe ratios,
mean returns, and empirical risks (i.e., standard deviations of the portfolio returns). We observe that
QNE achieves the largest Sharpe ratios under all values of the gross-exposure constant, indicating
the lowest risks under the same returns (or equivalently, the highest returns under the same risk).

6 Discussion
In this paper, we propose a robust portfolio optimization framework, building on a quantile-based
scatter matrix. We obtain non-asymptotic rates of convergence for the scatter matrix estimators and
the risk of the estimated portfolio. The relations of the proposed framework with its moment-based
counterpart are well understood.

The main contribution of the robust portfolio optimization approach lies in its robustness to heavy
tails in high dimensions. Heavy tails present unique challenges in high dimensions compared to
low dimensions. For example, asymptotic theory ofM -estimators guarantees consistency in the rate
OP (

√
d/n) even for non-Gaussian data [34, 35]. If d� n, statistical error diminishes rapidly with

increasing n. However, when d � n, statistical error may scale rapidly with dimension. Thus,
stringent tail conditions, such as subGaussian conditions, are required to guarantee consistency for
moment-based estimators in high dimensions [36]. In this paper, based on quantile statistics, we
achieve consistency for portfolio risk without assuming any tail conditions, while allowing d to
scale nearly exponentially with n.

Another contribution of his work lies in the theoretical analysis of how serial dependence may affect
consistency of the estimation. We measure the degree of serial dependence using the φ-mixing
coefficient, φ(n). We show that the effect of the serial dependence on the rate of convergence is
summarized by the parameter Cε, which characterizes the size of

∑∞
n=1 φ(n).

4We drop the data after 2007 to avoid the financial crisis, when the stock prices are likely to violate the
stationary assumption.

5c = 2 imposes a 50% upper bound on the percentage of short positions. In practice, the percentage of
short positions is usually strictly controlled to be much lower.
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