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Abstract

We propose an approach to multiple-instance learning giatmulates the prob-
lem as a convex optimization on the likelihood ratio betwtenpositive and the
negative class for each training instance. This is cast@@rgsstimation of both
a likelihood ratio predictor and the target (likelihoodioatariable) for instances.
Theoretically, we prove a quantitative relationship betwéhe risk estimated un-
der the 0-1 classification loss, and under a loss functionikelihood ratio. It
is shown that likelihood ratio estimation is generally a dsarrogate for the 0-1
loss, and separates positive and negative instances villikelihood ratio esti-
mates provide a ranking of instances within a bag and are asétput features
to learn a linear classifier on bags of instances. Instaex&-tlassification is
achieved from the bag-level predictions and the individikelihood ratios. Ex-
periments on synthetic and real datasets demonstrate thpetitiveness of the
approach.

1 Introduction

Multiple Instance Learning (MIL) has been proposed over é@rg ago as a methodology to learn
models under weak labeling constraints [1]. Unlike trawdtitil binary classification problems, the
positive items are represented as bags, which are setstah@es. A feature vector is used to
represent each instance in the bag. There is an OR relaifioimsla bag: if one of the feature
vectors is classified as positive, the entire bag is consilpositive. A simple intuition is: one has
a number of keys and faces a locked door. To enter the doornlyeneed one matching keys.
MIL is a natural weak labeling formulation for text categmtion [2] and computer vision problems
[3]. In document classification, one is given files made of ynsentences, and often only a few
are useful. In computer vision, an image can be decomposediifierent regions, and only some
delineate objects. Therefore, MIL can be used in sophistit@sks, such as identifying the location
of object parts from bounding box information in images [A]though efforts have been made to
provide datasets with increasingly more detailed superyigiformation [5], without automation
such a minutiae level of detail becomes prohibitive for éadigtasets, or more complicated data like
video [6, 7]. In this case, one necessarily needs to resontidtiple-instance learning.

MIL is interesting mainly because of its potential to pravidstance-level labels from weak supervi-
sory information. However the state-of-the-art in MIL igaf obtained by simply using a weighted
sum of kernel values between all instance pairs within thgsbavhile ignoring the prediction of
instance labels [8, 9, 10]. Itis intriguing why MIL algoritts that exploit instance level information
cannot achieve better performance, as constraints ahoestavel seems abundant — none of the
negative instances is positive. This should provide aalditi constraints in defining the region of
positive instances and should help classification in inpats.

A major challenge is the non-convexity of many instancesl&lL algorithms [2, 11, 12, 13, 14].
Most of these algorithms perform alternating minimizatiorthe classifier and the instance weights.



This procedure usually gives only a local optimum since thjective is non-convex. The benchmark
performance of MIL methods is overall quite similar, altigbuiechniques differ significantly: some
assign binary weights to instances [2], some assign reghig[12, 13], yet others use probabilistic
formulations [14]; some optimize using conventional al&ing minimization, others use convex-
concave procedures [11].

Gehler and Chapelle [15] have recently performed an intieieanalysis of the MIL costs, where
deterministic annealing (DA) was used to compute bettealloptima for several formulations. In
the case of a previous mi-SVM formulation [2], annealingmoels did not improve the performance
significantly. A newly proposed algorithm, ALP-SVM, wasa@latroduced, which used a preset pa-
rameter defining the fixed ratio of withesses — the true pasitistances in a positive bag. Excellent
results were obtained with thisitness rateparameter set to the correct value. However, in prac-
tice it is unclear whether this can be known beforehand anetlve it is stationary across different
bags. In principle, the witness rate should also be estilated this learning stage partially ac-
count for the non-convexity of the MIL problem. It remainsdeyer unclear whether the observed
performance variations are caused by non-convexity or bgrahodeling aspects.

Although performance considerations have hindered thécapipn of MIL to practical problems,
the methodology has started to gain momentum recently [4,THe success of the Latent SVM for
person detection [4] shows that a standard MIL procedueréformulation of the alternating mini-
mization MI-SVM algorithm in [2]) can achieve good resultpioperly initialized. However, prop-
er initialization of MIL remains elusive in general, as iteri requires engineering experience with
the individual problem structure. Therefore, it is stilllmbad interest to develop an initialization-
independent formulation for MIL. Recently Li et al. [17] grosed a convex instance-level MIL
algorithm based on multiple kernel learning, where one élenras used for each possible combi-
nation of instances. This creates an exponential numbesridtaints and requires a cutting-plane
solver. Although the formulation is convex, its scalalilitrops significantly for bags with many
instances.

In this paper we make an alternative attempt towards a coiorenulation: we establish that non-
convex MIL constraints can be recast reliably into convenstraints on the likelihood ratio between
the positive and negative classes for each instance. Wefdram the multiple-instance learning
problem into a convex joint estimation of the likelihoododtinction and the likelihood ratio values
on training instances. The choice of the jointly convex fosetion is rich, remarkably at least from
a family of f-divergences. Theoretically, we prove coresisly results for likelihood ratio estimation,
thus showing that f-divergence loss functions upper bohactassification 0-1 loss tightly, unless
the likelihood is very large.

A support vector regression scheme is implemented to efstitha likelihood ratio, and it is shown
to separate positive and negative instances well. Howelatermining the correct threshold for
instance classification from the training set remain nanatt To address this problem, we propose
a post-processing step based on a bag classifier computetiresmacombination of likelihood
ratios. While this is shown to be suboptimal in syntheticeripents, it still achieves state-of-the-
art results in practical datasets, demonstrating the aential of the proposed approach.

2 Convex Reformulation of the Multiple Instance Constraint

Let us consider a learning problem withtraining instances in totah , positive and»_ negative.

In negative bags, every instance is negative, hence we deeparately define such bags — instead
we directly work with the instances. Lé = {Bj, Bs,..., Bx} be positive bags an&'™ =
{af,25,...,2} }, &~ = {a7,25,...,2, } be the training input, where eaah belongs to a
positive bagB; and eaclx; is a negative instance. The goal of multiple instance leayis, given

{X*, X, B}, tolearn adecision ruleijgn(f(z)), to predict the labef+1, —1} for the test instance
xZ.

The MIL problem can be characterized by two propertiesndgative-exclusion if none of the
instances in a bag is positive, the bag is not positive.p&itive-identifiability : if one of the
instances in the bag is positive, the bag is positive. Thespepties are equivalent to a constraint
max,,ep; f(x;) > 0on positive bags. This constraint is not convex since thatiegmax function

is concave. Reformulation into a sum constraint sucty ag(x) > 0 would be convex, when



f(x) = wlx is linear [6]. However, this hardly retainmositive-identifiability , since if there is
only onez; with f(z;) > 0, this can be superseded by other instances yi(ih) < 0. Apparently,
the distinction between theim and themax operations is significant and difficult to ignore in this
context.

However, in this paper we show that if MIL conditions are fotated as constraints on the likelihood
ratio, convexity can be achieved. For example, the comstrai

Pr(y = 1|z;)
©i€B; Yy = i

can ensurdoth of the MIL properties.Positive-identifiability is satisfied whePr(y = 1|z;) >

|E|f|11 or equivalently, when the positive examples all have vemydanargin.

When the size of the bag is large, the assumpttoty = 1|x;) > U‘Bﬁjﬁ‘-l can be too strong.
Therefore, we exploit large deviation bounds to reduce trentjty | B;|, such tha®r(y = 1|z;)
does not have to be very large to satisfy the constraint.itiviely, if the examples are not very
ambiguous, i.ePr(y = 1]z;) is not close tal /2, then likelihood ratio sums on negative examples
can become much smaller, hence we can adopt a significamibr lhreshold at some degree of
violation of thenegative-exclusiorproperty. To this end, a common assumption is the low label
noise [18, 19]:

1
Mg : 3¢ > 0,Ve, Pr(0 < |Pr(y = 1)z;) — §| <e) <ce’.

This assumes that the posteri(y = 1]x;) is usually not very close td/2, meaning that most
examples are not very ambiguous, which is usually reasen&b[18, 19, 20], a number of results
have been obtained implying that classifiers learned urderssumption converge to the Bayes
error much faster than the conventional empirical procateg¥(n~'/2) of most standard classifiers,
and can be as fast a&§n—!). These theoretical results show that low label noise astangindeed
supports learning with fewer observations.

AssumingMz holds, we prove the following result which allows us to reflag hard constraint (1):

Theorem1V§ > 0, for eachz; in a bag B;, assumey; is drawn i.i.d. from the distribution
Prp, (yi|z;) that satisfies\/;. If all instancesr; € B; are negative, then the probability that

Pr(y = —1|z;) z 2(54-1)(ﬂ+2)|B'7|+\/2(ﬁ+1)2(25+3)|BJ|1Og1/6+—3 (2)

IiEB]‘

is at mos®.

The proof is given in an accompanying technical report [HJpm Theorem 1, we could weaken
the constraint (1) to obtain constraint (2) and still enswegative-exclusiorwith probability1 — 4.
When g is large, the reduction is significant. For example, for= 2 andd = 0.05, the right-

hand side of (2) is approximately B;| + /<% |B;| + 1, which is an important decrease oyé;|,

whenevet B;| > 3. Note that the i.i.d. assumption in Theorem 1 applies to &ach Different bags
can have different label distributions. This is often a gigantly weaker assumption than the ones
based on global i.i.d. of labels [8].

3 Likelihood Ratio Estimation

To estimate the likelihood ratio, one possibility would leeuse kernel methods as nonparametric
estimators over a RKHS. This approach was taken in [22], evpegdictions of the ratio provided

a variational estimate of afrdivergence (or Ali-Silvey divergence) between two diafitions. The
formulation is powerful, yet notimmediately applicabledeln our case, because of the uncertainty
in the positive example®r(y = 1|z) is not observed but has to be estimated. Therefore we need
to optimize jointly asmin p,(y=1j) D(f, Pr(y = 1|z)) + || f||* with loss functionD(f, g). This
optimization would not be convex if a framework in [22] weadéen.



The requirement to estimate two sets of variables simuttasig (e.g.f andPr(y = 1|z) here), is
one of the major difficulties in turning multiple-instaneatning into a convex problem. Approaches
based on classification-style loss functions lead to harveooptimization [2, 13]. However, since
we are outside a classification setting, we can optimize divergence measurdsy( f, g) that are
convex w.r.t. bothf andg. These measures are common. For examplef ttigergence family that
includes many statistical distances, satisfies the fotigypiroperties [23]:

Ti—Yi 2
Ly : D(x,y) = ¥, o — yil; X2 D(w,y) = Y, L2
Kullback-Leibler: D(z,y) = >, x;logz; — x;logy; — @i + yi; 3)
Symmetric Kullback-Leibler D(z, y) = 3_;(y; — xi)logy; + (v — yi) log z; — x; + y;

In principle, any of the measures given above can be useditoags the likelihood ratio.

An important issue is the relationship between the likadithoatio estimation and our final goal:
binary classification. In [20], the authors give necessany sufficient conditions for Bayes con-
sistent learners by minimizing the mean of a surrogate losstion of the data. In this paper we
extend these results to loss functions for likelihood rastimation. LetR(f) = P(sign(y) #
sign(f(x) — 1)) be the 0-1 risk of a likelihood estimatqf, with classification rule given by
sign(f(x) > 1). The Bayes risk is theR* = inf ; R(f).

For a generic loss functio@'(a, n), letn = Pr(y = 1|z), we can define the C-risk &¢(f) =
E(C(f,n)) and Ry = inf; Rc(f). Our goal is to bound the excess 0-1 riBKf) — R* by the
excess-C risilR¢(f) — R¢, so that minimizing the excess-C risk can be converted intomizing
the classification loss. Let us further define the optimabitional risk asH () = inf,er C(«, 1),
andH ™ (n) = inf, (a—1)2n—1)<0 C(,1). We sayC(c,n) is classification-calibratedf for any

n # 1/2, H=(n) > H(n). Then, we define the-transform ofC(a, n) as(0) = ¢**(), where
P(0) = H-(42) — H(H?),0 € [-1,1], andg** is the Fenchel-Legendre biconjugateyefvhich
is essentially the largest convex lower bound; ¢20].

The difference between likelihood ratio estimation anddlassification setting is in the asymmetric
scaling of the loss function for positive and negative exisip Lety_ = ¢(—z), R_(f) =
Pr(y = -1, f(z) > 1), R* =infy R_(f), R+(f) =Pr(y =1, f(x) < 1) andR} = infy R, (f)

be the risk and Bayes risks on negative and positive examgsgectively. It is easy to prove that
R(f)— R*=R_(f) — R* + R{(f) — R*.. We derived the following theorem:

Theorem 2 a) For any nonnegative loss functi@i(«, ), any measurablg' : X — R, and any
probability distribution ont x {+1},¢_(R_(f) — R* )+ (R4 (f)—R%) < Re(f)—RE. b) The
following conditions are equivalent: (1) is classification-calibrated; (2) For any sequen@g) in

[0,1],¢(6;) — 0 if and only ifd; — 0; (3) For every sequence of measurable functifinst — R

and every probability distribution o&” x {£1}, Rc(fi) — R impliesR(f;) — R*.

The proofis given in an accompanying technical report [ZThjs suggests that if is well-behaved,
minimizing R (f) still gives a reasonable surrogate for the classificatisk. lCompared against
Theorem 3 in [20] which has the form(R(f) — R*) < Rc(f) — R§, the difference here stems
from the different loss transforms used for the positive grednegative examples.

We consider ary-divergence of the likelihood as the loss function, i@(x,n) = D(a, 1ﬁ—n),
whereﬁ is the likelihood ratio when thBr(y = 1|z) = n. From convexity arguments, it can be

easily seen thatl (1)) = C(Z-,n) = 0 andH~(n) = D(1, 1%;), therefore) () = D(1, 1£5).

The1 for all the loss functions listed in (4) can be computed admly. In fig. 3 (a) we show the
1 (0) of L, and the KL-divergence from (4) and compare it against thgélass (where(6) = |6
[20]) used for SVM classification. It could be seen that oipragimation of the classification loss is
accurate wher(y; = 1|xz;) is small. However, likelihood estimation would severelynalze the
misclassified positive examples with larBe(y; = 1|z;). This suggests that for the joint estimation
of f andPr(y; = 1|z;), the optimizer would tend to maker(y; = 1|x;) smaller, in order to avoid
high penalties, as shown in fig. 1(b).

In fig. 1(a) we ploty functions for different losses. We prefer &a measure as it is closer to the
classification hinge loss, at least for the negative exasaptethe end we solve the nonparametric
function estimation in RKHS using an epsilon-insensitiveloss, which can be reformulated as
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Figure 1: Loss functions and their influence on the estimabias. (a) The functiom) appearing

in the losses used for likelihood estimatiaby, ( KL-divergence) is similar to the hinge loss when
6 > 0; however it goes to infinity a8 approaches. This deviation essentially means the surrogate
loss is going to be extremely large if an example with vergédtr(y; = 1|z;) is misclassified(b)
Example estimated likelihood for a synthetic example. Tétereated likelihood is biased towards
smaller values. However, with a fully labeled training gbg threshold can still be obtaine(t)

If we only know the label of the negative examples (blue) dredrhaximal positive example (red),
determining the optimal threshold becomes non-trivial.

support vector regression on the conditional likelihooithwhe additional MIL constraints in (2):

min 3, max(f(af) = 7| - .0) + S, max(((o7)] — .0) + M|

st Yaten i = Dinf 20 (4)

where|| f||? is the RKHS normD; is a constant for each bag and can be determined from Theorem
i i Cot i Pr(y=1|z})

1, \-Nl-th appropnat_ely chosen values for constahtndd; 77i_ is a_n estimate oim for the

training set. In this paper we uge= 2 andj = 0.05, which gives the estimate of the bound for

each bag a®; = 1|B;| + \/+|Bi| + 1, whenB; > 3 andD; = |B;| when|B;| < 3.

It can be proved that optimization problem (4) is jointly @erin both arguments. A standard repre-
senter theorem [24] would convert it to an optimization octees, which we omit here. The problem
can be solved by different methods. The one easiest to ingieim the alternating minimization
between solving for the SVM and projecting on the constrsdt$ given bEzngi y;r > D, and

yj > 0. As this can turn out to be slow for large datasets, appraasteh as the dual SMO or
primal subgradient projection algorithms (in the case mddir SVM) can be used. In this paper we
implement the alternating minimization approach, whicprisvably convergent since the optimiza-
tion problem (4) is convex. In the accompanying technicpbre[21] we derive an SMO algorithm
based on the dual of (4) and characterize the basic propeitibe optimization problem.

4 Bag and Instance Classification

If the likelihood ratio is obtained using an unbiased estoma decision rule based eign(f(z) >

1) should give the optimal classifier. However as previousjuad, the joint estimation ofi and

nt introduces a bias which is not always easy to identify. Initp@sbags, it is unclear whether an
instance should be labeled positive or negative, as longdies not contribute significantly to the
classification error of its bag (fig. 3(b),(c)). In the syritbexperiments, we noticed that knowledge
of the correct threshold would make the algorithm outpenfeaompetitors by a large margin (fig.
2). This means that based on the learned likelihood rat® pthsitive examples are usually well
separated from the negative ones. Developing a theory tbaldwadvance these aspects remains
a promising avenue for future work. The main difficulty stefrtsn the compound source of bias
which arises from both the estimationgf and the loss minimization over™ andf.

Here we propose a partial solution. Instead of directlynesting the threshold, we learn a linear
combination of instance likelihood ratios to classify tregb First, we sort the instance likelihood
ratios for each bag into a vector of lengthix; | B;|. We append to bags that do not have enough
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instances. Under this representation, bag classificatims into a standard binary decision problem
where a vector and a binary label is given for each bag, angealiSVM is learned to solve the
problem. If we were to classify only the likelihood ratio dretfirst instance, this procedure would
reduce to simple thresholding. We instead leverage infdomén the entire bag, aiming to constrain
the classifier to learn the correct threshold. In this lif®dM setting, regularization never helps in
practice and we always fi& to very large values. Effectively no parameter tuning isdeeg

To classify instances, a threshold is still necessary. énciirrent system, we follow a simple ap-
proach and take the mean between two instances: the onéhwittighest likelihood among training
bags that are predicted negative by the bag classifier, @&ldwest scored one among instances in
positive bags with a score higher than the previous one. dppsoach is derived from the basic
MIL assumption that all instances in a negative bag are negat

Based on instance classification we could also estimate ttmess rate of the dataset. This is
computed as the ratio of positively classified instancesthrdotal number of instances in the
positive bags of the training set. Since our algorithm awatidically adjusts to different witness rates,
this estimate offers quantitative insight as to whether MHould be used. For instance, if the
witness rate i400%, it may be more effective to use a conventional learning @ggr.

5 Experiments

5.1 Synthetic Data

We start with an experiment on the synthetic dataset of [biere the controlled setting helps
understanding the behavior of the proposed algorithm. iStd2-D dataset with the actual decision
boundary shown in fig. 2 (a). The positive bags have a fracifgoints sampled uniformly from

the white region and the rest sampled uniformly from the blagion. An example of the sample
at 40% witness rate is shown in fig. 2 (b). In this figure, the plottestance labels are the ones
of their bags — indeed, one could notice many positive (blugiances in the negative (red) region.

We have also experimented with a uniform threshold basedrobapilistic estimates, as well as with
predicting an instance-level threshold. While the forneerds to underfit, the latter overfitts. Our bag-level
classifier targets an intermediate level of granularity mmds out to be the most robust in our experiments.



Table 1: Performance of various MIL algorithms on weak latgebenchmarks. The best result on
each dataset is shown in bold. The second group of algorithther not provide instance labels
(MI-Kernel and miGraph) or require a parameter that can ffecdit to tune (ALP-SVM). SVR-
SVM appears to give consistent results among algorithmspttevide instance labels. The row
denoted “Est. WR” gives the estimated witness rates of ouhatk

Algorithm Musk-1 Musk-2 Elephant Tiger Fox
CH-FD 88.8 85.7 82.4 82.2 60.4
EMDD 84.9 84.8 78.3 72.1 56.1
mi-SVM 87.4 83.6 82.2 78.4 58.2
MI-SVM 77.9 84.3 814 84.0 57.8
MICA 84.4 90.5 82.5 82.0 62.0
AW-SVM 85.7 83.8 82.0 83.0 63.5
Ins-KI-SVM 84.0 84.4 83.5 82.9 63.4

MI-Kernel 88.0£3.1 89.3t15 843t1l6 842£19 60.3£1.0
miGraph 88.9+3.3 90.3+26 86.8+0.7 86.0+£2.8 61.6+1.6

ALP-SVM 86.3 86.2 83.5 86.0 66.0
SVR-SVM 879+ 17 854+18 853+28 79.8+3.4 63.0+3.5
Est. WR 100 % 89.5 % 37.8% 42.7 % 100 %

In order to test the effect of witness rates, 10 differeneypf datasets are created by varying the
rates over the range1,0.2, ..., 1. In this experiment we fix the hyperparamet€rs- 5 and use a
Gaussian kernel withk = 1.We show a trained likelihood ratio function in fig. 2 (c),iesited on
the dataset shown in fig. 2 (b). Under the likelihood ratie, plositive examples are well separated
from negatives. This illustrates how our proposed appreoacherts multiple-instance learning into
the problem of deciding a one-dimensional threshold.

Complete results on datasets with different witness rateslaown in fig. 2 (d) and (e). We give
both bag classification and instance classification resuiar approach is referred to as SVR-
SVM. BEST THRESHOLD refers to a method where the best thildsivas chosen based on the
full knowledge of training/test instance labels, i.e., timal performance our likelihood ratio
estimator can achieve. Comparison is done with two othercagmbes, the mi-SVM in [2] and
the AW-SVM from [15]. SVR-SVM generally works well when thdtness rate is not very low.
From instance classification, one can see that the origin&\iM is only competitive when the
witness rate is near 1 — this situation is close to a supah838V. With a deterministic annealing
approachin [15], AW-SVM and mi-SVM perform quite the opgest competitive when the witness
rate is small but degrade when this is large. Presumablygtiscause deterministic annealing is
initialized with the apriori assumption that datasets aodtiple-instance i.e. has a small witness rate
[15]. When the witness rate is large, annealing does notamgperformance. On the contrary, the
proposed SVR-SVM does not appear to be affected by the vgitrags. With the same parameters
used across all the experiments, the method self-adjudiffeéoent witness rates. One could see the
effect especially in fig. 2 (e): regardless of the witness,rtite instance error rate remains roughly
the same. However, this is still inferior to our model basedfe best threshold, which indicates
that important room for improvement exists.

5.2 MIL Datasets

The algorithm is evaluated on a number of popular MIL benatksia We use the common ex-
perimental setting, based on 10-fold cross-validatiorpmameter selection and we report the test
results averaged over 10 trials. The results are shown ite Tgitogether with other competitive
methods in from the literature [12, 15, 10] (for some of themthods standard deviation estimates
are not available).

In our tests, the proposed SVR-SVM gives consistently gesdlts among algorithms that provide
instance-level labels. The only atypical caseTiger, where the algorithm underperforms other
methods. Overall, the performance of SVR-SVM is slightlyrsethan miGraph and ALP-SVM.

But we note that results in ALP-SVM are obtained by tuningwlimess rate to the optimal value,
which may be difficult in practical settings. The slightlyler performance compared to miGraph
suggests that we may be inferior in the bag classificatiqn gthich we already know is suboptimal.



Table 2: Results fror20 NewsgroupsThe best result on each dataset is shown in bold, pairwise
t-tests are performed to determine if the differences atisstally significantly. miGraph is domi-
nating in10 datasets, whereas SVR-SVM is dominating in

Dataset MI-Kernel miGraph[10] miGraph (web) SVR-SVM EStRW
alt.atheism 60.223.9 65.5-4.0 82.0+ 0.8 835+ 1.7 1.83%
comp.graphics 47633 77.8+1.6 84.3+ 0.4 85.2+ 1.5 5.19%

comp.windows.misc 51452 63.1+15 70.1+ 0.3 66.9+ 2.6 2.23%
comp.ibm.pc.hardware  46093.6  59.5+ 2.7 79.44+ 0.8 70.3+ 2.8 2.42 %

comp.sys.mac.hardware 44i53.2 61.7+4.8 81.0+0 78.0+ 1.7 4.58 %
comp.window.x 50.8: 4.3 69.8+2.1 79.4+ 0.5 83.7+ 2.0 5.36 %
misc.forsale 51.8&25 552+27 71.0+0 72.3+1.2 4.29 %
rec.autos 52.933 72.0£ 3.7 83.2+ 0.6 78.1+£ 1.9 2.75%
rec.motorcycles 50.6 3.5 64.0+ 2.8 70.9+ 2.7 75.6+ 0.9 2.86 %
rec.sport.baseball 514#2.8 64.7+3.1 75.0+ 0.6 76.7+1.4 4.31%
rec.sport.hockey 51834 85.0+25 92.0+0 89.3+ 1.6 6.52 %
sci.crypt 56.3- 3.6  69.6+ 2.1 70.1+ 0.8 69.7+ 2.5 3.22%
sci.electronics 50.6: 2.0 87.1+1.7 94.0+0 91.5+1.0 4.29 %
sci.med 50.6-1.9 62.14+3.9 72.1+1.3 749+ 1.9 5.23%
sci.space 54#25 75.7+3.4 79.4+ 0.8 83.2+ 2.0 3.64%
soc.religion.christian 49234 59.0+4.7 75.4+ 1.2 83.2+ 2.7 3.30%
talk.politics.guns 474 3.8 58.5+ 6.0 72.3+1.0 73.7+ 2.6 3.23%
talk.politics.mideast 55.2.8 73.6+:2.6 75.5+ 1.0 80.5+ 3.2 3.88%
talk.politics.misc 51.5-3.7 70.4+3.6 729+ 2.4 72.6+ 1.4 2.82%
talk.religion.misc 55.4-4.3 63.3+35 67.5+ 1.0 719+ 1.9 2.87%

5.3 Text Categorization

The text datasets are taken from [10]. These data have tleditafibeing designated to have a small
witness rate. Thus they serve as a better MIL benchmark caedpa the previous ones. These are
derived from the20 Newsgroupsorpus, with 50 positive and 50 negative bags for each of the 2
news categories. Each positive bag has ar@¥dvitness rate. We run 10-fold cross validation 10
times on each dataset and compute the average accuracyaddrst deviations,' is fixed t0100,

e t0 0.2. Authors of [10] reported recent results for this datasethair website, which are vastly
superior than the ones reported in the paper. ThereforeabteT2 we included both results in the
comparison, identified as miGraph (paper) and miGraph (t@bsespectively.

Our SVR-SVM performs significantly better than MI-KernebamiGraph (paper). It is comparable
with miGraph (web), and offers a marginal improvement. Ihigresting that even though we use a
suboptimal second step, SVR-SVM fares well with the stditthre-art. This shows the potential of
methods based on likelihood ratio estimators for multipktance learning.

6 Conclusion

We have proposed an approach to multiple-instance leabaiggd on estimating the likelihood ratio
between the positive and the negative classes on instaficeddIL constraintis reformulated into a
convex constraint on the likelihood ratio where a jointrastiion ofboththe functionandthe target
ratios on the training set is performed. Theoretically watify that learning the likelihood ratio is
Bayes-consistent and has desirable excess loss transfoperpes. Although we are not able to find
the optimal classification threshold on the estimated fatiction, our proposed bag classifier based
on such ratios obtains state-of-the-art results in a nurabdifficult datasets. In future work, we
plan to explore transductive learning techniques in ordéeverage the information in the learned
ratio function and identify better threshold estimationgedures.
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