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Songbirds learn to imitate a tutor song through auditory and motor learn­
ing. We have developed a theoretical framework for song learning that 
accounts for response properties of neurons that have been observed in 
many of the nuclei that are involved in song learning. Specifically, we 
suggest that the anteriorforebrain pathway, which is not needed for song 
production in the adult but is essential for song acquisition, provides 
synaptic perturbations and adaptive evaluations for syllable vocalization 
learning. A computer model based on reinforcement learning was con­
structed that could replicate a real zebra finch song with 90% accuracy 
based on a spectrographic measure. The second generation of the bird­
song model replicated the tutor song with 96% accuracy. 

1 INTRODUCTION 

Studies of motor pattern generation have generally focussed on innate motor behaviors that 
are genetically preprogrammed and fine-tuned by adaptive mechanisms (Harris-Warrick 
et al., 1992). Birdsong learning provides a favorable opportunity for investigating the 
neuronal mechanisms for the acquisition of complex motor patterns. Much is known about 
the neuroethology of bird song and its neuroanatomical substrate (see Nottebohm, 1991 and 
Doupe, 1993 for reviews), but relatively little is known about the overall system from a 
computational viewpoint. We propose a set of hypotheses for the functions of the brain 
nuclei in the song system and explore their computational strength in a model based on 
biological constraints. The model could reproduce real and artificial birdsongs in a few 
hundred learning trials. 
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Figure 1: Major songbird brain nuclei involved in song control. The dark arrows show 
the direct motor control pathway and the gray arrows show the anterior forebrain pathway. 
Abbreviations: Uva, nucleus uvaeforrnis of the thalamus; NIf, nucleus interface of the 
neostriatum; L, field L (primary auditory are of the forebrain); HV c, higher vocal center; RA, 
robust nucleus of the archistriatum; DM, dorso-medial part of the nucleus intercollicularis; 
nXllts, tracheosyringeal part of the hypoglossal nucleus; AVT, ventral area of Tsai of the 
midbrain; X, area X of lobus parolfactorius; DLM, medial part of the dorsolateral nucleus 
of the thalamus; LMAN, lateral magnocellular nucleus of the anterior neostriatum. 

2 NEUROETHOLOGY OF BIRDSONG 

Although songs from individual birds of the same species may sound quite similar, a young 
male songbird learns to sing by imitating the song of a tutor, which is usually the father or 
another adult male in the colony. If a young bird does not hear a tutor song during a critical 
period, it will sing short, poorly structured songs, and if a bird is deafened in the period 
when it practices vocalization, it develops highly abnormal songs. These observations 
indicate that there are two phases in song learning: the sensory learning phase when a 
young bird memorizes song templates and the motor learning phase in which the bird 
establishes the motor programs using auditory feedback (Konishi, 1965). These two phases 
can be separated by several months in some species, implying that birds have remarkable 
capability for memorizing complex temporal sequences. Once a song is crystallized, its 
pattern is very stable. Even deafening the bird has little immediate effect. 

The brain nuclei involved in song learning are shown in Figure 1. The primary motor 
control pathway is composed ofUva, NIf, HVc, RA, DM, and nXllts. If any of these nuclei 
is lesioned, a bird cannot sing normally. Experimental studies suggest that HVc is involved 
in generating syllable sequences and that RA produces motor commands for each syllable 
(Vu et aI., 1994). Interestingly, neurons in HVc, RA and nXllts show vigorous auditory 
responses, suggesting that the motor control system is closely coupled with the auditory 
system (Nottebohm, 1991). 

There is also a "bypass" from HV c to RA which consists of area X, DLM, and LMAN 
called the anterior forebrain pathway (Doupe, 1993). This pathway is not directly involved 
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Figure 2: Schematic of primary song control nuclei and their proposed functions in the 
present model of bird song learning. 

in vocalization because lesions in these nuclei in adult birds do not impair their crystallized 
songs. However, lesions in area X and LMAN during the motor learning phase result in 
contrasting deficits. The songs of LMAN-Iesioned birds crystallize prematurely, whereas 
the songs of area X-Iesioned birds remain variable (Scharff and Nottebohm, 1991). It has 
been suggested that this pathway is responsible for the storage of song templates (Doupe 
and Konishi, 1991) or guidance of the synaptic connection from HVc to RA (Mooney, 
1992). 

3 FUNCTIONAL NEUROANATOMY OF BIRDSONG 

The song learning process can be decomposed into three stages. In the first stage, suitable 
internal acoustic representations of syllables and syllable combinations are constructed. 
This "auditory template" can be assembled by unsupervised learning schemes like cluster­
ing and principal components analysis. The second stage involves the encoding of phonetic 
sequences using the internal representation. If the representation is sparse or nearly orthog­
onal, sequential transition can be easily encoded by Hebbian learning. The third stage is 
an inverse mapping from the internal auditory representation into spatio-temporal patterns 
of motor commands. This can be accomplished by exploration in the space of motor com­
mands using reinforcement learning. The responses of the units that encode the acoustic 
primitives can be used to the evaluate the resulting auditory signal and direct the exploration. 

How are these three computational stages organized within the brain areas and pathways 
of the songbird? Figure 2 gives an overview of our current working hypothesis. Auditory 
inputs are pre-processed in field L. Some higher-order representations, such as syllables and 
syllable combinations, are established in HVc depending on the bird's auditory experience. 
Moreover, transitions between syllables are encoded in the HVc network. The sequential 
activation of syllable coding units in HVc are transformed into the time course of motor 
commands in RA. DM and nXIIts control breathing and the muscles in syrinx, bird's vocal 
organ. 
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Figure 3: (a) The syrinx of songbirds. (b) The model syrinx. 

The consequences of selective lesions of areas in the anterior forebrain pathway (Scharff 
and Nottebohm, 1991) are consistent with the failures expected for a reinforcement learning 
system. In particular, we suggest that this pathway serves the function of an adaptive critic 
with stochastic search elements (Barto et al., 1983). We propose that LMAN perturbs the 
synaptic connections from HV c to RA and area X regulates LMAN by the song evaluation. 
Modulation of HVc to RA connection by LMAN is biologically plausible since LMAN 
input to RA is mediated mainly by NMDA type synapses, which can modulate the amplitude 
of mainly non-NMDA type synaptic input from HVc (Mooney, 1992). 

The assumption that area X provides evaluation is supported by the fact that it receives 
catecholaminergic projection (dopamine of norepinephrine) from a midbrain nucleus AVT 
(Lewis et al ., 1981). These neurotransmitters are used in many species for reinforcement 
or attention signals. It is known that auditory learning is enhanced when associated with 
visual or social interaction with the tutor. Area X is a candidate region where auditory 
inputs from HVc are associated with reinforcing input from AVT during auditory learning. 

4 CONSTRUCTION OF SONG LEARNING MODEL 

In order to test the above hypothesis, we constructed a computer model of the bird song 
learning system. The specific aim was to simulate the process of explorative motor learning, 
in which the time course of motor command for each syllable is determined by auditory 
template matching. We assumed that orthogonal representations for syllables and their se­
quential activation were already established in HVc and that an auditory template matching 
mechanism exists in area X. 

4.1 The syrinx 

The bird's syrinx is located near the junction of the trachea and the bronchi (Vicario, 1991). 
Its sound source is the tympani form membrane which faces to the bronchus on one side 
and the air sac on the other (Figure 3a). When some of the syringeal muscles contract, the 
lumen of the bronchus is throttled and produces vibration in the membrane. When stretched 
along one dimension, the membrane produces harmonic sounds, but when stretched along 
two dimensions, the sound contains non-harmonic components (Casey and Gaunt, 1985). 

Accordingly, we provided two sound sources for the model syrinx (Figure 3b). The 
fundamental frequency of the harmonic component was controlled by the membrane tension 
in one direction (Tl). The amplitu6e of the noisy component was proportional to the 
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Figure 4: RA units with different spatio-temporal output profiles are driven by locally­
coded RVc units. LMAN perturbs the weights W between RVc and RA. The output units 
in DM and nXIIts drive the model syrinx. 

membrane tension in an orthogonal direction (T2). Mixture of these sounds went through a 
bandpass filter whose resonance frequency was controlled by the throttling of the bronchus 
(Th). The overall sound amplitude was determined by the strength of expiration (Ex). By 
controlling the time course of these four variables (Ex,Th,Tl,T2), the model could produce 
wide variety of "bird-like" chirps and warbles. 

4.2 Motor pattern generation in RA 

RA is topographically organized, each part projecting to different motoneuron pools in 
nXIIts (Vicario, 1991). Also, RA neurons have complex temporal responses to the inputs 
from RVc (Mooney, 1992). Therefore, we assumed that RA consists of groups of neurons 
with specific spatial and temporal output properties, as shown in Figure 4. For each of the 
four motor command variables, we provided several units with different temporal response 
kernels. The sequential activation of syllable coding units in RVc drove the RA units 
through the weights W. Their responses were linearly combined and squashed between 0 
and 1 to make the final motor commands. 

4.3 Weight space search by LMAN and area X 

With the above model of the motor output, the task is to find a connection matrix W that 
maximizes a template matching measure. One way for doing this is to perturb the output of 
the units and correlate it with the input and the evaluation (Barto et aI., 1983). An alternative 
way, adopted here, is to perturb the weights and correlate them with the evaluation. 

We used the following stochastic gradient ascent algorithm. The weight matrix W is 
modulated by ~ W, given by the sum of the evaluation gradient estimate G and a random 
component. The modulated weight persists if the resulting vocalization is better than the 
recent average evaluation E[r]. The evaluation gradient estimate G is updated by the sum 
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of the perturbations ~ W weighted with the normalized evaluation. 

~ W := G + random perturbation 

r := evaluation of the song generated with W + ~ W 

W:= W+~W if r > E[r] 

r - E[r] 
G := 0: JVR" ~W + (1- o:)G, 

V[r] 

where 0 < 0: < 1 provides a form of "momentum" in weight space similar to that used in 
supervised learning. The average and the variance of evaluation are also estimated on-line 
as follows. 

E[r] := o:r + (1 - 0: )E[r] 

V[r] := o:(r - E[r]? + (1 - o:)V[r] . 

4.4 Spectrographic template matching 

We assumed that evaluation for vocalization is given separately for each of the syllables 
in a song. The sound signal was analyzed by an 80 channel spectrogram. Each output 
channel was sent to an analog delay line similar to the gamma filter (de Vries and Principe, 
1992). The snapshot image of this (80 channels) x (12 steps) delay line at the end of each 
syllable was stored as the template. The same delay line image of the syllable generated by 
the model was compared with the template. This allowed some compensation for variable 
syllable duration. The direction cosine between the two delay line images was used for the 
reinforcement signal, r. 

5 SIMULATION RESULTS 

One phrase of a recorded zebra finch song (Figure 5a) was the target. Templates were 
stored for the five syllables in the phrase. Five HVc units coded the five different syllables 
and 16 RA units represented the four output variables and four different temporal kernels. 
Learning was started with small random weights. After 200 to 300 trials, the syllable 
evaluation by direction cosine reached 0.9 (Figure 5d, solid line). The syllables of the 
learned song resembled the overall frequency profiles of the original syllables. The complex 
spectrographic structure of the original syllables were, however, not accurate (Figure 5b). 

One reason for this imperfect replication could be the difference between the vocal organs 
of the real zebra finch syrinx and our model syrinx. In order to check the significance of 
this difference, we took syllable templates from the model song (Figure 5b) and trained 
another model with random initial weights. In this case, the direction cosine went up to 
0.96 (Figure 5d, dotted line) and they sounded quite similar to human ears (Figure 5c). 

We also checked the importance of the gradient estimate G in our algorithm. The dashed 
line in Figure 5d shows the performance of the model with G = 0: a simple random walk 
learning. The learning was hopelessly slow and resembles the deficit seen after lesion of 
area X (Figure 2). 
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Figure 5: Spectrograms of (a) the original zebra finch song, (b) the learned song based on 
the tutor in (a), and (c) the second generation learned song based on the tutor in (b). (d) 
Learning curves for two tutors: a zebra finch song (solid line) and a model song (dotted line) 
compared with an undirected search in weight space (dashed line). Weight perturbation 
was given by a Gaussian distribution with (J = 0.1. The averaging parameter was a = 0.2. 
Simulating 500 trials took 30 minutes on Sparc Station 10. 

6 Discussion 

We have assumed that each vocalized syllable was separately evaluated. If the evaluation 
is given only at the end of one song or a phrase, learning can be much more difficult 
because of the temporal credit assignment problem. If we assume that birds take the easiest 
strategy available, there should be syllable specific evaluation and separate perturbation 
mechanisms. In some songbirds, individual syllables are practiced out of order at an early 
stage, and only later is the sequence matched to the auditory template. 

Selectivity of auditory responses in both HVc and area X develop during motor learning 
(Volman, 1993; Doupe, 1993). We can expect such change in response tuning in area X 
if the evaluations of syllables or syllable sequences are normalized with respect to recent 
average performance, as we assumed in our model. 

Many simplifying assumptions were made in the present model: syllables were unary 
coded in HVc; simple spectrographic template matching was used; the number of motor 
output variables and temporal kernels were fairly small; and the sound synthesizer was 
much simpler than a real syrinx. However, it is not difficult to replace these idealizations 
with more biologically accurate models. Since the number of learning trials needed in the 
present model was much less than in the real birdsong learning (tens of thousands of trials), 
there is margin for further elaboration. 
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