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Abstract 

We present two additions to the hierarchical mixture of experts 
(HME) architecture. By applying a likelihood splitting criteria to 
each expert in the HME we "grow" the tree adaptively during train­
ing. Secondly, by considering only the most probable path through 
the tree we may "prune" branches away, either temporarily, or per­
manently if they become redundant . We demonstrate results for 
the growing and path pruning algorithms which show significant 
speed ups and more efficient use of parameters over the standard 
fixed structure in discriminating between two interlocking spirals 
and classifying 8-bit parity patterns. 

INTRODUCTION 

The HME (Jordan & Jacobs 1994) is a tree structured network whose terminal 
nodes are simple function approximators in the case of regression or classifiers in the 
case of classification. The outputs of the terminal nodes or experts are recursively 
combined upwards towards the root node, to form the overall output of the network, 
by "gates" which are situated at the non-terminal nodes. 

The HME has clear similarities with tree based statistical methods such as Classi­
fication and Regression Trees (CART) (Breiman, Friedman, Olshen & Stone 1984). 
We may consider the gate as replacing the set of "questions" which are asked at 
each branch of CART. From this analogy, we may consider the application of the 
splitting rules used to build CART. We start with a simple tree consisting of two 
experts and one gate. After partially training this simple tree we apply the split­
ting criterion to each terminal node. This evaluates the log-likelihood increase by 
splitting each expert into two experts and a gate. The split which yields the best 
increase in log-likelihood is then added permanently to the tree. This process of 
training followed by growing continues until the desired modelling power is reached. 
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Figure 1: A simple mixture of experts. 

This approach is reminiscent of Cascade Correlation (Fahlman & Lebiere 1990) in 
which new hidden nodes are added to a multi-layer perceptron and trained while 
the rest of the network is kept fixed. 

The HME also has similarities with model merging techniques such as stacked re­
gression (Wolpert 1993), in which explicit partitions of the training set are com­
bined. However the HME differs from model merging in that each expert considers 
the whole input space in forming its output. Whilst this allows the network more 
flexibility since each gate may implicitly partition the whole input space in a "soft" 
manner, it leads to unnecessarily long computation in the case of near optimally 
trained models. At anyone time only a few paths through a large network may 
have high probability. In order to overcome this drawback, we introduce the idea 
of "path pruning" which considers only those paths from the root node which have 
probability greater than a certain threshold. 

CLASSIFICATION USING HIERARCHICAL MIXTURES OF EXPERTS 

The mixture of experts, shown in Figure 1, consists of a set of "experts" which 
perform local function approximation. The expert outputs are combined by a gate 
to form the overall output. In the hierarchical case, the experts are themselves 
mixtures of further experts , thus extending the architecture in a tree structured 
fashion. Each terminal node or "expert" may take on a variety of forms, depending 
on the application. In the case of multi-way classification, each expert outputs a 
vector Yj in which element m is the conditional probability of class m (m = 1 ... M) 
which is computed using the soft max function: 

P(CmI x(n>, Wj) = exp(w~jx(n») It exp(w~.kX(n») 
k=1 

where Wj = [wlj W2j ... WMj] is the parameter matrix for expert j and Ci denotes 
class i. 

The outputs of the experts are combined using a "gate" which sits at the non­
terminal nodes. The gate outputs are estimates of the conditional probability of 
selecting the daughters of the non-terminal node given the input and the path taken 
to that node from the root node. This is once again computed using the softmax 
function: 

P(Zj I ~ (.), ~) = exp( ~ J ~(.» It <xp( ~f ~(.» 
where'; = [';1';2 ... ';f] is the parameter matrix for the gate, and Zj denotes expert 
j . 
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The overall output is given by a probabilistic mixture in which the gate outputs 
are the mixture weights and the expert outputs are the mixture components. The 
probability of class m is then given by: 

] 

P(cmlz(n),8) = I: P(zilz(n), ~)P(Cmlz(n), Wi). 

i=1 

A straightforward extension of this model also gives us the conditional probability 
ht) of selecting expert j given input zen) and correct class Ck, 

In order to train the HME to perform classification we maximise the log likelihood 
L = l:~=1 l:~=1 t~) log P(cm Iz(n), 8), where the variable t~) is one if m is the correct 
class at exemplar (n) and zero otherwise. This is done via the expectation maximi­
sation (EM) algorithm of Dempster, Laird & Rubin (1977), as described by Jordan 
& Jacobs (1994). 

TREE GROWING 

The standard HME differs from most tree 
based statistical models in that its architecture 
is fixed. By relaxing this constraint and allow-
ing the tree to grow, we achieve a greater de­
gree of flexibility in the network. Following the 
work on CART we start with a simple tree, for 
instance with two experts and one gate which 
we train for a small number of cycles. Given 
this semi-trained network, we then make a set 
of candidate splits {&} of terminal nodes {z;}. 
Each split involves replacin~ an expert Zi with 
a pair of new experts {Zu}j=1 and a gate, as 
shown in Figure 2. 

We wish to select eventually only the "best" 
split S out of these candidate splits. Let us 
define the best split as being that which max­
imises the increase in overall log-likelihood due 
to the split, IlL = L(P+1) - L(P) where L(P) is the 
likelihood at the pth generation of the tree. If 
we make the constraint that all the parameters 
of the tree remain fixed apart from the param-

L(P) 

\ 
\ 

L(P+I) 

Figure 2: Making a can­
didate split of a terminal 
node. 

\ 
\ 

eters of the new split whenever a candidate split is made, then the maximisation 
is simplified into a dependency on the increases in the local likelihoods {Li} of the 
nodes {Zi}. We thus constrain the tree growing process to be localised such that we 
find the node which gains the most by being split. 

max M(&) _ max M· = max(Ly*1) - L(P» 
iiI i I I 
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Figure 3: Growing the HME. This figure shows the addition of a pair of experts to 
the partially grown tree. 

where 
n m 

L~+l) = L L t~) log L P(zijlz(n), c;;,zi)P(cmlz(n), zij, wij) 
n m j 

This splitting rule is similar in form to the CART splitting criterion which uses 
maximisation of the entropy of the node split, equivalent to our local increase in 
lop;-likelihood. 
TIle final growing algorithm starts with a tree of generation p and firstly fixes the 
parameters of all non-terminal nodes. All terminal nodes are then split into two 
experts and a gate. A split is only made if the sum of posterior probabilities En h~n), 
as described (1), at the node is greater than a small threshold. This prevents splits 
being made on nodes which have very little data assigned to them. In order to break 
symmetry, the new experts of a split are initialised by adding small random noise 
to the original expert parameters. The gate parameters are set to small random 
weights. For each node i, we then evaluate M; by training the tree using the 
standard EM method. Since all non-terminal node parameters are fixed the only 
changes to the log-likelihood are due the new splits. Since the parameters of each 
split are thus independent of one another, all splits can be trained at once, removing 
the need to train multiple trees separately. 

After each split has been evaluated, the best split is chosen. This split is kept and 
all other splits are discarded. The original tree structure is then recovered except 
for the additional winning split, as shown in Figure 3. The new tree, of generation 
p + I is then trained as usual using EM. At present the decision on when to add 
a new split to the tree is fairly straightforward: a candidate split is made after 
training the fixed tree for a set number of iterations. An alternative scheme we 
have investigated is to make a split when the overall log-likelihood of the fixed tree 
has not increased for a set number of cycles. In addition, splits are rejected if they 
add too little to the local log-likelihood. 

Although we have not discussed the issue of over-fitting in this paper, a number 
of techniques to prevent over-fitting can be used in the HME. The most simple 
technique, akin to those used in CART, involves growing a large tree and successively 
removing nodes from the tree until the performance on a cross validation set reaches 
an optimum. Alternatively the Bayesian techniques of Waterhouse, MacKay & 
Robinson (1995) could be applied. 
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Tree growing simulations 

This algorithm was used to solve the 8-bit parity classification task. We compared 
the growing algorithm to a fixed HME with depth of 4 and binary branches. As can 
be seen in Figures 4(a) and (b), the factorisation enabled by the growing algorithm 
significantly speeds up computation over the standard fixed structure. The final tree 
shape obtained is shown in Figure 4(c). We showed in an earlier paper (Waterhouse 
& Robinson 1994) that the XOR problem may be solved using at least 2 experts 
and a gate. The 8 bit parity problem is therefore being solved by a series of XOR 
classifiers, each gated by its parent node, which is an intuitively appealing form 
with an efficient use of parameters. 

8 
,E 

-200oL----1~0----2~0~--~~~--~4~0--~W 
Time 

(a) Evolution of log-likelihood vs. 
time in CPU seconds. 
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(b) Evolution of log-likelihood for (i) 
vs generations of tree. 
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(c) Final tree structure obtained from 
(i), showing utilisation U; of each node 
where U; = L: P(z;, R;I:c(n») I N, and Ri 
is the path t~en from the root node 
to node i . 

Figure 4: HME GROWING ON THE 8 BIT PARITY PROBLEM;(i) growing HME with 6 
generations; (ii) 4 deep binary branching HME (no growing). 

PATH PRUNING 

If we consider the HME to be a good model for the data generation process, the 
case for path pruning becomes clear. In a tree with sufficient depth to model the 
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underlying sub-processes producing each data point, we would expect the activation 
of each expert to tend to binary values such that only one expert is selected at each 
time exemplar. 

The path pruning scheme is depicted in Figure 5. The pruning scheme utilises 
the "activation" of each node at each exemplar. The activation is defined as 
the product of node probabilities along a path from the root node to the cur­
rent node, lin) = Li log P(zi/Ri, :.:(n»), where Ri is the path taken to node i from 
the root node . If .l}n) for node l at exemplar n falls below a threshold value, 
ft, then we ignore the subtree Sl and we backtrack up to the parent node of l. 
During training this involves not ac-
cumulating the statistics of the sub­
tree Sl; during evaluation it involves 
setting the output of subtree Sl to 
zero. In addition to this path prun­
ing scheme we can use the activa­
tion of the nodes to do more perma­
nent pruning. If the overall utilisa­
tion Vi = Ln P(Zi, Rd:.:(n»)IN of a node 
falls below a small threshold, then a 
node is pruned completely from the 
tree. The sister subtrees of the re­
moved node then subsume their par­
ent nodes. This process is used solely 
to improve computational efficiency 
in this paper, although conceivably 
it could be used as a regularisation 
method, akin to the brain surgery 
techniques of Cun, Denker & Solla 
(1990). In such a scheme, however, 
a more useful measure of node utili­
sation would be the effective number 
of parameters (Moody 1992). 

Path pruning simulations 

..... _---_ .. - .. 

Figure 5: Path pruning in the HME. 

Figure 6 shows the application of the pruning algorithm to the task of discriminating 
between two interlocking spirals. With no pruning the solution to the two-spirals 
takes over 4,000 CPU seconds, whereas with pruning the solution is achieved in 155 
CPU seconds. 

One problem which we encountered when implementing this algorithm was in com­
puting updates for the parameters of the tree in the case of high pruning thresholds. 
If a node is visited too few times during a training pass, it will sometimes have too 
little data to form reliable statistics and thus the new parameter values may be 
unreliable and lead to instability. This is particularly likely when the gates are 
saturated. To avoid this saturation we use a simplified version of the regularisation 
scheme described in Waterhouse et al. (1995). 

CONCLUSIONS 

We have presented two extensions to the standard HME architecture. By pruning 
branches either during training or evaluation we may significantly reduce the com­
putational requirements of the HME. By applying tree growing we allow greater 
flexibility in the HME which results in faster training and more efficient use of 
parameters. 
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Figure 6: The effect of pruning on the two spirals classification problem by a 8 
deep binary branching hme:(a) Log-likelihood vs. Time (CPU seconds), with log pruning 
thresholds for experts and gates f: (i) f = -5. 6,(ii) f = -lO,(iii) f = -15,(iv) no pruning, 
(b) training set for two-spirals task; the two classes are indicated by crosses and circles, 
(c) Solution to two spirals problem. 
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