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Abstract

Multi-task learning (MTL) learns multiple related taskmsiltaneously to improve
generalization performance. Alternating structure ofatation (ASO) is a popular
MTL method that learns a shared low-dimensional predictivecture on hypoth-
esis spaces from multiple related tasks. It has been apglieckssfully in many
real world applications. As an alternative MTL approachystéred multi-task
learning (CMTL) assumes that multiple tasks follow a clustlestructure, i.e.,
tasks are partitioned into a set of groups where tasks irgtime gjroup are similar
to each other, and that such a clustered structure is unkaqgwiori. The objec-
tives in ASO and CMTL differ in how multiple tasks are relateldterestingly,
we show in this paper the equivalence relationship betweg@ And CMTL, pro-
viding significant new insights into ASO and CMTL as well asittinherent rela-
tionship. The CMTL formulation is non-convex, and we adopbavex relaxation
to the CMTL formulation. We further establish the equivalemelationship be-
tween the proposed convex relaxation of CMTL and an existomyex relaxation
of ASO, and show that the proposed convex CMTL formulatiosigmificantly
more efficient especially for high-dimensional data. Iniadd, we present three
algorithms for solving the convex CMTL formulation. We repexperimental
results on benchmark datasets to demonstrate the efficidrnlog proposed algo-
rithms.

1 Introduction

Many real-world problems involve multiple related clagsifrion/regression tasks. A naive ap-
proach is to apply single task learning (STL) where each imsklved independently and thus the
task relatedness is not exploited. Recently, there is aiggpinterest in multi-task learning (MTL),
where we learn multiple related tasks simultaneously byaeking appropriate shared information
across tasks. In MTL, multiple tasks are expected to bemnefit £ach other, resulting in improved
generalization performance. The effectiveness of MTL leenldemonstrated empirically [1, 2, 3]
and theoretically [4, 5, 6]. MTL has been applied in many ajgpions including biomedical infor-
matics [7], marketing [1], natural language processingd®t computer vision [3].

Many different MTL approaches have been proposed in the plaey differ in how the related-
ness among different tasks is modeled. Evgemial. [8] proposed the regularized MTL which
constrained the models of all tasks to be close to each ofhertask relatedness can also be mod-
eled by constraining multiple tasks to share a common uyideristructure [4, 6, 9, 10]. Ando
and Zhang [5] proposed structural learningformulation, which assumed multiple predictors for
different tasks shared a common structure on the underfyiedictor space. For linear predictors,
they proposed the alternating structure optimization (A®@t simultaneously performed inference
on multiple tasks and discovered the shared low-dimenkjmealictive structure. ASO has been



shown to be effective in many practical applications [2,17], One limitation of the original ASO
formulation is that it involves a non-convex optimizatiomplem and a globally optimal solution is
not guaranteed. A convex relaxation of ASO called CASO wap@sed and analyzed in [13].

Many existing MTL formulations are based on the assumptia &ll tasks are related. In practical
applications, the tasks may exhibit a more sophisticatedpstructure where the models of tasks
from the same group are closer to each other than those fraffeeedt group. There have been
many prior work along this line of research, known as clestemulti-task learning (CMTL). In
[14], the mutual relatedness of tasks was estimated andlkdge of one task could be transferred
to other tasks in the same cluster. Bakker and Heskes [18] clastered multi-task learning in a
Bayesian setting by considering a mixture of Gaussiansaasdf single Gaussian priors. Evgeniou
et al. [8] proposed the task clustering regularization and shoh@ad cluster information could
be encoded in MTL, and however the group structure was reduo be known a priori. Xuet

al. [16] introduced the Dirichlet process prior which autoroally identified subgroups of related
tasks. In [17], a clustered MTL framework was proposed tivaukaneously identified clusters
and performed multi-task inference. Because the formardas non-convex, they also proposed a
convex relaxation to obtain a global optimum [17]. Waetgl.[18] used a similar idea to consider
clustered tasks by introducing an inter-task regulamzati

The objective in CMTL differs from many MTL formulations e, ASO which aims to identify a
shared low-dimensional predictive structure for all taskkich are based on the standard assump-
tion that each task can learn equally well from any other.t&skhis paper, we study the inherent
relationship between these two seemingly different MTLnfalations. Specifically, we establish
the equivalence relationship between ASO and a specificuiation of CMTL, which performs
simultaneous multi-task learning and task clusteringstFive show that CMTL performs cluster-
ing on the tasks, while ASO performs projection on the fesgttio find a shared low-rank structure.
Next, we show that the spectral relaxation of the clusteformgtasks) in CMTL and the projection
(on the features) in ASO lead to an identical regularizatietated to the negative Ky Fanrnorm

of the weight matrix involving all task models, thus estabing their equivalence relationship. The
presented analysis provides significant new insights irB@4nd CMTL as well as their inherent
relationship. To our best knowledge, the clustering viewh80O has not been explored before.

One major limitation of the ASO/CMTL formulation is that iiolves a non-convex optimization,
as the negative Ky Fak+norm is concave. We propose a convex relaxation of CMTL,estdblish
the equivalence relationship between the proposed coerl@xation of CMTL and the convex ASO
formulation proposed in [13]. We show that the proposed eri@®@MTL formulation is significantly
more efficient especially for high-dimensional data. Weifer develop three algorithms for solving
the convex CMTL formulation based on the block coordinatecdat, accelerated projected gra-
dient, and gradient descent, respectively. We have coadwetperiments on benchmark datasets
including School and Sarcos; our results demonstrate flogegicy of the proposed algorithms.

Notation: Throughout this papeiR? denotes thel-dimensional Euclidean spacé.denotes the
identity matrix of a proper sizeN denotes the set of natural numberSy" denotes the set of
symmetric positive semi-definite matrices of sizeby m. A < B means thaf3 — A is positie
semi-definitetr (X) is the trace ofX.

2 Multi-Task Learning: ASO and CMTL

Assume we are given a multi-task learning problem withasks; each taske N,, is associated
with a set of training daté(zi,v}), ..., (¢, v, )} C R? x R, and a linear predictive functiofy:

filz J) =w! z%, wherew; is the weight vector of thé-th task,d is the data dimensionality, and

is the number of samples of theh task. We denot&/ = [wy,...,w,,] € R¥™ as the weight
matrix to be estimated. Given a loss functign -), the empirical risk is given by:

LW Z wa a:7,yj

i=1

We study the following multi-task learning formulatlommw L(W) + Q(W), where() encodes
our prior knowledge about the tasks. Next, we review ASO and CMTL and explore their inheren
relationship.



2.1 Alternating structure optimization

In ASO [5], all tasks are assumed to share a common featuree ¢pac R"*¢, whereh <
min(m, d) is the dimensionality of the shared feature space@rths orthonormal columns, i.e.,
00" = I,. The predictive function of ASO isf; () = w] 2 = u] 2, +v] Oz}, where the weight
w; = u; + ©Tv; consists of two components including the weightfor the high-dimensional
feature space and the weight for the low-dimensional space based ®n ASO minimizes the
following objective function:£(W) + a Y7, ||u;||3, subject to:007 = I, wherea is the reg-
ularization parameter for task relatedness. We can fuithprove the formulation by including
a penalty,3 """ | ||lw;||3, to improve the generalization performance as in traditiGupervised

learning. Since:; = w; — ©Tv;, we obtain the following ASO formulation:

1 T 2 2
Wty BBy, EOV) + ; (allwi — OTwil|3 + Bllwi3) - 1)

2.2 Clustered multi-task learning

In CMTL, we assume that the tasks are clustered inta. m clusters, and the index set of the
j-th cluster is defined a%; = {v|v € clusterj}. We denote the mean of thjh cluster to be
W = % Zvezj w,. For a givenW = [wy,- - ,wy], the sum-of-square error (SSE) function in
K-means clustering is given by [19, 20]:
k

SN wy — w3 = tr (W'W) — tr (FTWTWE), )

Jj=1 ’UEIj
where the matri¥’ € R™** is an orthogonal cluster indicator matrix with ; = ﬁf] ifi € Z; and

F; ; = 0 otherwise. If we ignore the special structurefofind keep the orthogonality requirement
only, the relaxed SSE minimization problem is:

min  tr (W'W) —tr (FTWTWF), ®3)
F:FTF=I,
resulting in the following penalty function for CMTL:
QomtL, (W, F) = a (tr (WTW) — tr (FTWTWEF)) + Btr (WTW), @)

where the first term is derived from thi§-means clustering objective and the second term is to
improve the generalization performance. Combing Eq. (4) tie empirical error ternf (W), we
obtain the following CMTL formulation:

min LW) + QewmrL, W, F). (5)
W,F:FTF=I,

2.3 Equivalence of ASO and CMTL

In the ASO formulation in Eq. (1), it is clear that the optimalis given byv; = ©w,. Thus, the
penalty in ASO has the following equivalent form:

Qaso(W;0) = > (af|w; — ©TOw|3 + Blwi|3)
=1
=a(tr (WW) —tr (WreTew)) + gtr (WTW), (6)
resulting in the following equivalent ASO formulation:
i L(W) + Qaso(W, O). 7
woml _ LIV) + Oaso(W, ©) ()

The penalty of the ASO formulation in Eq. (7) looks very simito the penalty of the CMTL
formulation in Eqg. (5), however the operations involved faredamentally different. In the CMTL
formulation in Eq. (5), the matri’ is operated on the task dimension, as it is derived from the
K-means clustering on the tasks; while in the ASO formulaiiBq. (7), the matrib® is operated

on the feature dimension, as it aims to identify a shareddonensional predictive structure for all
tasks. Although different in the mathematical formulafiare show in the following theorem that
the objectives of CMTL and ASO are equivalent.



Theorem 2.1. The objectives of CMTL in Eq. (5) and ASO in Eq. (7) are eqeiviaif the cluster
numberk, in K-means equals to the siZe,of the shared low-dimensional feature space.

Proof. DenoteQ(W) = L(W) + (a+ B) tr (WTW), with a, 8 > 0. Then, CMTL and ASO solve
the following optimization problems:

min QW) —atr (WFFTWT), min QW) —atr (W'eTew),
W,F:FTF=I, w,0:00T=],

respectively. Note that in both CMTL and ASO, the first te@vis independent of” or ©, for a
givenW. Thus, the optimaF' and® for these two optimization problems are given by solving:

[CMTL] max tr (WFETWT), [ASO] max tr(W'eTew).
F:FTF=], 0:007T=],

Since WW7T and W”W share the same set of nonzero eigenvalues, by the Ky-Fan- Theo
rem [21], both problems above achieve exactly the same mawiobjective valuel| WX W|| ;) =

S M (WTW), where), (W W) denotes the-th largest eigenvalue 617 W and||W "W || ;)
is known as the Ky Fah-norm of matrixW 7 W. Plugging the results back to the original objective,

the optimization problem for both CMTL and ASO beconesiyy Q(W) — af[ W W|| (). This
completes the proof of this theorem. O

3 Convex Relaxation of CMTL

The formulation in Eqg. (5) is non-convex. A natural approacto perform a convex relaxation on
CMTL. We first reformulate the penalty in Eq. (5) as follows:

Qomre, (W, F) = atr (W((1+n) — FET)WT), (8)
wherer is defined ag) = 3/« > 0. SinceF’' F = I, the following holds:
(1+n)I —FF" =n(1+n)(nl + FFT)~".
Thus, we can reformulat@cur, in Eq. (8) as the following equivalent form:

Qcure, (W, F) = an(1+n) tr (W(nl + FFT)"'wT). ©)
resulting in the following equivalent CMTL formulation:
min L:(W) + QCMTLl (VV, F) (10)
W,F:FTF=I,

Following [13, 17], we obtain the following convex relaxatiof Eq. (10), called cCMTL:
WAI} LW) 4 Qeemmt (W, M) st.tr (M) =k,M <1, M €S (11)

whereQccenr (W, M) is defined as:
QeemtL (W, M) = an(L +n) tr (W(nI + M) "W). (12)
The optimization problem in Eq. (11) is jointly convex withspect td? and M [9].

3.1 Equivalence of cASO and cCMTL

A convex relaxation (cASO) of the ASO formulation in Eq. (shbeen proposed in [13]:
%irsl/l(W) + Qeaso(W, S) s.t.tr(S) =h,S <1, S e€S?, (13)

whereQcaso is defined as:
Qeaso(W, S) = an(1 +n) tr (WT(nI + S)_lVV) ) (14)

The cASO formulation in Eq. (13) and the cCMTL formulatiorig. (11) are different in the regu-
larization components: the respective Hessian of the aegalion with respect tdl” are different.
Similar to Theorem 2.1, our analysis shows that cASO and cCRIE equivalent.



Theorem 3.1. The objectives of the cCMTL formulation in Eq. (11) and th&©Aformulation
in Eq. (13) are equivalent if the cluster numbky,in K-means equals to the size, of the shared
low-dimensional feature space.

Proof. Define the following two convex functions &¥:
geemtL (W) = min tr (Wl +M)"'WT), sttr(M)=kM =<1, MeS}, (15)
and
geaso(W) = min tr (WT(nI+S)"'W), st.tr(S)=hS=<I, Ses. (16)
The cCMTL and cASO formulations can be expressed as uneamstt optimization w.r.tl:
[cCMTL] mmi/n LW) + ¢ gemr (W), [cASO] n‘}[i/n LW) + ¢ gaso(W),

wherec = an(1l +n). Leth = k < min(d, m). Next, we show that for a giveW, gcur (W) =
gASO(W) holds.

LetW = Q13Q2, M = PAPL, andS = P,Ay Py, be the SVD ofW, M, andS (M and

S are symmetric positive semi- definite) respectively, veher = diag{oy,09,...,0m}, Ay =
diag{ A" AW LAWY, andAy = (A2 AP Letq < & be the rank oft. It follows

from the basic properties of the trace that
tr (W(nl +M)""WT) =tr ((nI +A1) " Pl Q222Q5 Py) .
The problem in Eq. (15) is thus equivalent to:

d
min tr (] + M) PIQeE’QI ), st PPl = LPIPi=1)" AW =k @7
R i=1

It can be shown that the optim&}" is given byP; = @2 and the optimal\} is given by solving the
following simple (convex) optimization problem [13]:

q
Al = argmlnz s.t. Z )\21) =k,0< )\1(1) <1. (18)

It follows that gecmtL (W) = tr ((77[+A’{)*122). Similarly, we can show thagcaso(W) =
tr ((nI + A3)~'%?), where

q
A% = argmin

AP =n 0<A® <1,
(2 Z P US A S
Az L177+)\

It is clear that wherh = k, A* = A} holds. Therefore, we havgcuri (W) = geaso(W). This
completes the proof. O

Remark3.2. In the functional of cASO in Eq. (16) the variable to be optigd isS € S%, while

in the functional of cCMTL in Eq. (15) the optimization vabia is M < S7'. In many practical
MTL problems the data dimensionalitiis much larger than the task number and in such cases
cCMTL is significantly more efficient in terms of both time asphce. Our equivalence relationship
established in Theorem 3.1 provides an (equivalent) effidmplementation of CASO especially
for high-dimensional problems.

4 Optimization Algorithms

In this section, we propose to employ three different meshod., Alternating Optimization Method
(altCMTL), Accelerated Projected Gradient Method (apgQMTand Direct Gradient Descent
Method (graCMTL), respectively, for solving the convexasadtion in Eq. (11). Note that we focus
on smooth loss functions in this paper.



4.1 Alternating Optimization Method

The Alternating Optimization Method (altCMTL) is similay the Block Coordinate Descent (BCD)
method [22], in which the variable is optimized alterndtjverith the other variables fixed. The
pseudo-code of altCMTL is provided in the supplemental neteNote that using similar tech-
niques as the ones from [23], we can show that altCMTL findsgilbbally optimal solution to
Eqg. (11). The altCMTL algorithm involves the following tweeps in each iteration:

Optimization of W For a fixedM, the optimall’ can be obtained via solving:
n‘}i/n LW)+ctr (W(nl+M)"'WT). (19)
The problem above is smooth and convex. It can be solved gsatient-type methods [22]. In the
special case of a least square loss function, the problerg.i1®) admits an analytic solution.
Optimization of M For a fixedV, the optimal) can be obtained via solving:
min tr (WnI+M)"'WT), sttr(M)=kM =<1, MeST. (20)

From Theorem 3.1, the optimal to Eq. (20) is given by// = QA*QT, whereA* is obtained from
Eqg. (18). The problem in Eq. (18) can be efficiently solveashgsimilar techniques in [17].

4.2 Accelerated Projected Gradient Method

The accelerated projected gradient method (APG) has bg#ie@po solve many machine learning
formulations [24]. We apply APG to solve the cCMTL formutatiin Eqg. (11). The algorithm is
called apgCMTL. The key component of apgCMTL is to computecximal operator as follows:

min

~ 2 N 2
W —WH HM —MH st o tr(My) =k My <1, MycST (21
i z sF+ z Sl r(Mz) z 2 Z + (21)

where the details about the constructionlf; and AZs can be found in [24]. The optimization
problem in Eq. (21) is involved in each iteration of apgCMEnd hence its computation is critical
for the practical efficiency of apgCMTL. We show below thag tptimaliV; and Mz to Eq. (21)
can be computed efficiently.

Computation of W, The optimall¥/; to Eq. (21) can be obtained by solving:
“ 2
WZ—WSHF. (22)

min
Wz
Clearly the optimalV to Eq. (22) is equal téVs.
Computation of M, The optimalM  to Eq. (21) can be obtained by solving:
“ 2
My — MSHF, st tr(Mg) =k, My <1, My ST, (23)

min
My

where My is not guaranteed to be positive semidefinite. Our analymiw/s that the optimization
problem in Eg. (23) admits an analytical solution via sodvasimple convex projection problem.
The main result and the pseudo-code of apgCMTL are provitéuk supplemental material.

4.3 Direct Gradient Descent Method

In Direct Gradient Descent Method (graCMTL) as used in [17§, cCMTL problem in Eq. (11) is
reformulated as an optimization problem with one singléalde 117, given by:

mv[i/n LW)+ ¢ gemr (W), (24)
wheregeyr (W) is a functional ofit” defined in Eqg. (15).

Given the intermediate solutioW,,_; from the (k — 1)-th iteration of graCMTL, we compute
the gradient ofycmtL (W) and then apply the general gradient descent scheme [25}&mndl; .
Note that at each iterative step in line search, we need te@ gbe optimization problem in the
form of Eq. (20). The gradient ofcmrL(-) at Wi_; is given by [26, 27]: Vi gemr. (W) =
2(nl + M)~*W[_,, whereM is obtained by solving Eq. (20) & = W},_,. The pseudo-code of
graCMTL is provided in the supplemental material.



Truth RidgeSTL RegMTL cCMTL

Figure 1: The correlation matrices of the ground truth mpaledl the models learnt from RidgeSTL,
RegMTL, and cCMTL. Darker color indicates higher corraati In the ground truth there are 100
tasks clustered into 5 groups. Each task has 200 dimens@hsraining samples and 5 testing
samples are used in each task. The test errors (in terms oEhK6® RidgeSTL, RegMTL, and
cCMTL are 0.8077, 0.6830, 0.0354, respectively.

5 Experiments

In this section, we empirically evaluate the effectivenasd the efficiency of the proposed algo-
rithms on synthetic and real-world data sets. The normadlinean square error ((MSE) and the
averaged mean square error (aMSE) are used as the perfemeasure [23]. Note that in this

paper we have not developed new MTL formulations; insteadhmain focus is on the theoretical

understanding of the inherent relationship between ASO@wdL. Thus, an extensive compar-

ative study of various MTL algorithms is out of the scope aétpaper. As an illustration, in the

following experiments we only compare cCMTL with two bagelitechniques: ridge regression
STL (RidgeSTL) and regularized MTL (RegMTL) [28].

Simulation Study We apply the proposed cCMTL formulation in Eq. (11) on a sgtithdata
set (with a pre-defined cluster structure). We ti$eld cross-validation to determine the regulariza-
tion parameters for all methods. We construct the synthiztia set following a procedure similar
to the one in [17]: the constructed synthetic data set ctseis$ clusters, where each cluster in-
cludes20 (regression) tasks and each task is represented by a wegtar\of lengthd = 300.
Detalils of the construction is provided in the supplememttierial. We apply RidgeSTL, RegMTL,
and cCMTL on the constructed synthetic data. The correlataefficient matrices of the obtained
weight vectors are presented in Figure 1. From the resultameobserve (1) cCMTL is able to
capture the cluster structure among tasks and achievesliaestarror; (2) RegMTL is better than
RidgeSTL in terms of test error. It however introduces umseary correlation among tasks pos-
sibly due to the assumption that all tasks are related; (AMTL we also notice some ‘noisy’
correlation, which may because of the spectral relaxation.

Table 1: Performance comparison on the School data in tefm$ISE and aMSE. Smaller nMSE
and aMSE indicate better performance. All regularizatiaremeters are tuned using 5-fold cross
validation. The mean and standard deviation are calculzedd on 0 random repetitions.

Measure| Ratio RidgeSTL RegMTL cCMTL

nNMSE 10% | 1.3954 £0.0596 1.0988 £0.0178 1.0850 £ 0.0206
15% | 1.1370 £0.0146 1.0636 £0.0170 0.9708 £ 0.0145
20% | 1.0290 £ 0.0309 1.0349 £ 0.0091  0.8864 £ 0.0094
25% | 0.8649 £+ 0.0123 1.0139 4+ 0.0057  0.8243 4+ 0.0031
30% | 0.8367 &+ 0.0102 1.0042 £ 0.0066 0.8006 + 0.0081

aMSE 10% | 0.3664 £0.0160 0.2865 £ 0.0054  0.2831 £ 0.0050
15% | 0.2972 £0.0034 0.2771 £0.0045 0.2525 £ 0.0048
20% | 0.2717+0.0083 0.2709 +0.0027 0.2322 £+ 0.0022
25% | 0.2261 +0.0033  0.2650 &+ 0.0027  0.2154 £ 0.0020
30% | 0.2196 + 0.0035 0.2632 £+ 0.0028 0.2101 4 0.0016

Effectiveness ComparisonNext, we empirically evaluate the effectiveness of the c@Mdrmu-
lation in comparison with RidgeSTL and RegMTL using real Mldrenchmark datasets including
the School dafaand the Sarcos da&taThe regularization parameters for all algorithms are rdete

hitp://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://gaussianprocess.org/gpml/data/
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Figure 2: Sensitivity study of altCMTL, apgCMTL, graCMTL terms of the computation cost (in
seconds) with respect to feature dimensionality (lefipsie size (middle), and task number (right).

mined via5-fold cross validation; the reported experimental resatts averaged ovell0 random
repetitions. The School data consists of the exam scorés3s2 students froml39 secondary
schools, where each student is described by 27 attributes.vafy the training ratio in the set
5x{1,2,---,6}% and record the respective performance. The experimersaltseare presented
in Table 1. We can observe that cCMTL performs the best ambhisgttings. Experimental results
on the Sarcos dataset is available in the supplementaliadater

Efficiency Comparison We compare the efficiency of the three algorithms includit@MTL,
apgCMTLand graCMTL for solving the cCMTL formulation in E¢L1). For the following exper-
iments, we setv = 1, 8 = 1, andk = 2 in cCMTL. We observe a similar trend in other settings.
Specifically, we study how the feature dimensionality, tample size, and the task number affect
the required computation cost (in seconds) for convergefbe experimental setup is as follows:
we terminate apgCMTL when the change of objective valuesinduccessive steps is smaller than
10~° and record the obtained objective value; we then use suchua @a the stopping criterion
in graCMTL and altCMTL, that is, we stop graCMTL or altCMTL wh graCMTL or altCMTL
attains an objective value equal to or smaller than the otaénatl by apgCMTL. We use Yahoo
Arts data for the first two experiments. Because in Yahoo ttegask number is very small, we
construct a synthetic data for the third experiment.

In the first experiment, we vary the feature dimensionalityhie se{500 : 500 : 2500] with the
sample size fixed at000 and the task numbers fixed HI. The experimental result is presented
in the left plot of Figure 2. In the second experiment, we vl sample size in the sE&000 :
1000 : 9000] with the dimensionality fixed &t00 and the task number fixed &f. The experimental
result is presented in the middle plot of Figure 2. From th&t fivo experiments, we observe that
larger feature dimensionality or larger sample size walkdeo higher computation cost. In the third
experiment, we vary the task number in the[g6t: 10 : 190] with the feature dimensionality fixed
at600 and the sample size fixed 2000. The employed synthetic data set is constructed as follows:
for each task, we generate the entries of the data matriftom N (0, 1), and generate the entries
of the weight vector from\/(0, 1), the response vectey; is computed ag; = X;w; + &, where

& ~ N(0,0.01) represents the noise vector. The experimental result gepted in the right plot of
Figure 2. We can observe that altCMTL is more efficient thandther two algorithms.

6 Conclusion

In this paper we establish the equivalence relationshiydsen two multi-task learning techniques:
alternating structure optimization (ASO) and clusteredtirtask learning (CMTL). We further es-
tablish the equivalence relationship between our proposedex relaxation of CMTL and an ex-
isting convex relaxation of ASO. In addition, we proposesthalgorithms for solving the convex
CMTL formulation and demonstrate their effectiveness dfidiency on benchmark datasets. The
proposed algorithms involve the computation of SVD. In theecof a very large task number, the
SVD computation will be expensive. We seek to further imprthe efficiency of the algorithms by
employing approximation methods. In addition, we plan tplaphe proposed algorithms to other
real world applications involving multiple (clusteredsks.
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