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Abstract

Multi-task learning (MTL) learns multiple related tasks simultaneously to improve
generalization performance. Alternating structure optimization (ASO) is a popular
MTL method that learns a shared low-dimensional predictivestructure on hypoth-
esis spaces from multiple related tasks. It has been appliedsuccessfully in many
real world applications. As an alternative MTL approach, clustered multi-task
learning (CMTL) assumes that multiple tasks follow a clustered structure, i.e.,
tasks are partitioned into a set of groups where tasks in the same group are similar
to each other, and that such a clustered structure is unknowna priori. The objec-
tives in ASO and CMTL differ in how multiple tasks are related. Interestingly,
we show in this paper the equivalence relationship between ASO and CMTL, pro-
viding significant new insights into ASO and CMTL as well as their inherent rela-
tionship. The CMTL formulation is non-convex, and we adopt aconvex relaxation
to the CMTL formulation. We further establish the equivalence relationship be-
tween the proposed convex relaxation of CMTL and an existingconvex relaxation
of ASO, and show that the proposed convex CMTL formulation issignificantly
more efficient especially for high-dimensional data. In addition, we present three
algorithms for solving the convex CMTL formulation. We report experimental
results on benchmark datasets to demonstrate the efficiencyof the proposed algo-
rithms.

1 Introduction

Many real-world problems involve multiple related classificatrion/regression tasks. A naive ap-
proach is to apply single task learning (STL) where each taskis solved independently and thus the
task relatedness is not exploited. Recently, there is a growing interest in multi-task learning (MTL),
where we learn multiple related tasks simultaneously by extracting appropriate shared information
across tasks. In MTL, multiple tasks are expected to benefit from each other, resulting in improved
generalization performance. The effectiveness of MTL has been demonstrated empirically [1, 2, 3]
and theoretically [4, 5, 6]. MTL has been applied in many applications including biomedical infor-
matics [7], marketing [1], natural language processing [2], and computer vision [3].

Many different MTL approaches have been proposed in the past; they differ in how the related-
ness among different tasks is modeled. Evgeniouet al. [8] proposed the regularized MTL which
constrained the models of all tasks to be close to each other.The task relatedness can also be mod-
eled by constraining multiple tasks to share a common underlying structure [4, 6, 9, 10]. Ando
and Zhang [5] proposed astructural learningformulation, which assumed multiple predictors for
different tasks shared a common structure on the underlyingpredictor space. For linear predictors,
they proposed the alternating structure optimization (ASO) that simultaneously performed inference
on multiple tasks and discovered the shared low-dimensional predictive structure. ASO has been
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shown to be effective in many practical applications [2, 11,12]. One limitation of the original ASO
formulation is that it involves a non-convex optimization problem and a globally optimal solution is
not guaranteed. A convex relaxation of ASO called CASO was proposed and analyzed in [13].

Many existing MTL formulations are based on the assumption that all tasks are related. In practical
applications, the tasks may exhibit a more sophisticated group structure where the models of tasks
from the same group are closer to each other than those from a different group. There have been
many prior work along this line of research, known as clustered multi-task learning (CMTL). In
[14], the mutual relatedness of tasks was estimated and knowledge of one task could be transferred
to other tasks in the same cluster. Bakker and Heskes [15] used clustered multi-task learning in a
Bayesian setting by considering a mixture of Gaussians instead of single Gaussian priors. Evgeniou
et al. [8] proposed the task clustering regularization and showedhow cluster information could
be encoded in MTL, and however the group structure was required to be known a priori. Xueet
al. [16] introduced the Dirichlet process prior which automatically identified subgroups of related
tasks. In [17], a clustered MTL framework was proposed that simultaneously identified clusters
and performed multi-task inference. Because the formulation is non-convex, they also proposed a
convex relaxation to obtain a global optimum [17]. Wanget al. [18] used a similar idea to consider
clustered tasks by introducing an inter-task regularization.

The objective in CMTL differs from many MTL formulations (e.g., ASO which aims to identify a
shared low-dimensional predictive structure for all tasks) which are based on the standard assump-
tion that each task can learn equally well from any other task. In this paper, we study the inherent
relationship between these two seemingly different MTL formulations. Specifically, we establish
the equivalence relationship between ASO and a specific formulation of CMTL, which performs
simultaneous multi-task learning and task clustering: First, we show that CMTL performs cluster-
ing on the tasks, while ASO performs projection on the features to find a shared low-rank structure.
Next, we show that the spectral relaxation of the clustering(on tasks) in CMTL and the projection
(on the features) in ASO lead to an identical regularization, related to the negative Ky Fank-norm
of the weight matrix involving all task models, thus establishing their equivalence relationship. The
presented analysis provides significant new insights into ASO and CMTL as well as their inherent
relationship. To our best knowledge, the clustering view ofASO has not been explored before.

One major limitation of the ASO/CMTL formulation is that it involves a non-convex optimization,
as the negative Ky Fank-norm is concave. We propose a convex relaxation of CMTL, andestablish
the equivalence relationship between the proposed convex relaxation of CMTL and the convex ASO
formulation proposed in [13]. We show that the proposed convex CMTL formulation is significantly
more efficient especially for high-dimensional data. We further develop three algorithms for solving
the convex CMTL formulation based on the block coordinate descent, accelerated projected gra-
dient, and gradient descent, respectively. We have conducted experiments on benchmark datasets
including School and Sarcos; our results demonstrate the efficiency of the proposed algorithms.

Notation: Throughout this paper,Rd denotes thed-dimensional Euclidean space.I denotes the
identity matrix of a proper size.N denotes the set of natural numbers.Sm+ denotes the set of
symmetric positive semi-definite matrices of sizem by m. A � B means thatB − A is positie
semi-definite.tr (X) is the trace ofX.

2 Multi-Task Learning: ASO and CMTL

Assume we are given a multi-task learning problem withm tasks; each taski ∈ Nm is associated
with a set of training data{(xi

1, y
i
1), . . . , (x

i
ni
, yini

)} ⊂ R
d × R, and a linear predictive functionfi:

fi(x
i
j) = wT

i x
i
j , wherewi is the weight vector of thei-th task,d is the data dimensionality, andni

is the number of samples of thei-th task. We denoteW = [w1, . . . , wm] ∈ R
d×m as the weight

matrix to be estimated. Given a loss functionℓ(·, ·), the empirical risk is given by:

L(W ) =

m∑

i=1

1

ni




ni∑

j=1

ℓ(wT
i x

i
j , y

i
j)


 .

We study the following multi-task learning formulation:minW L(W ) + Ω(W ), whereΩ encodes
our prior knowledge about them tasks. Next, we review ASO and CMTL and explore their inherent
relationship.
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2.1 Alternating structure optimization

In ASO [5], all tasks are assumed to share a common feature space Θ ∈ R
h×d, whereh ≤

min(m, d) is the dimensionality of the shared feature space andΘ has orthonormal columns, i.e.,
ΘΘT = Ih. The predictive function of ASO is:fi(xi

j) = wT
i x

i
j = uT

i x
i
j+vTi Θxi

j , where the weight
wi = ui + ΘT vi consists of two components including the weightui for the high-dimensional
feature space and the weightvi for the low-dimensional space based onΘ. ASO minimizes the
following objective function:L(W ) + α

∑m
i=1 ‖ui‖22, subject to:ΘΘT = Ih, whereα is the reg-

ularization parameter for task relatedness. We can furtherimprove the formulation by including
a penalty,β

∑m

i=1 ‖wi‖22, to improve the generalization performance as in traditional supervised
learning. Sinceui = wi −ΘT vi, we obtain the following ASO formulation:

min
W,{vi},Θ:ΘΘT=Ih

L(W ) +

m∑

i=1

(
α‖wi −ΘT vi‖22 + β‖wi‖22

)
. (1)

2.2 Clustered multi-task learning

In CMTL, we assume that the tasks are clustered intok < m clusters, and the index set of the
j-th cluster is defined asIj = {v|v ∈ clusterj}. We denote the mean of thejth cluster to be
w̄j = 1

nj

∑
v∈Ij

wv. For a givenW = [w1, · · · , wm], the sum-of-square error (SSE) function in
K-means clustering is given by [19, 20]:

k∑

j=1

∑

v∈Ij

‖wv − w̄j‖22 = tr
(
WTW

)
− tr

(
FTWTWF

)
, (2)

where the matrixF ∈ R
m×k is an orthogonal cluster indicator matrix withFi,j =

1√
nj

if i ∈ Ij and
Fi,j = 0 otherwise. If we ignore the special structure ofF and keep the orthogonality requirement
only, the relaxed SSE minimization problem is:

min
F :FTF=Ik

tr
(
WTW

)
− tr

(
FTWTWF

)
, (3)

resulting in the following penalty function for CMTL:

ΩCMTL0
(W,F ) = α

(
tr
(
WTW

)
− tr

(
FTWTWF

))
+ β tr

(
WTW

)
, (4)

where the first term is derived from theK-means clustering objective and the second term is to
improve the generalization performance. Combing Eq. (4) with the empirical error termL(W ), we
obtain the following CMTL formulation:

min
W,F :FTF=Ik

L(W ) + ΩCMTL0
(W,F ). (5)

2.3 Equivalence of ASO and CMTL

In the ASO formulation in Eq. (1), it is clear that the optimalvi is given byv∗i = Θwi. Thus, the
penalty in ASO has the following equivalent form:

ΩASO(W,Θ) =

m∑

i=1

(
α‖wi −ΘTΘwi‖22 + β‖wi‖22

)

= α
(
tr
(
WTW

)
− tr

(
WTΘTΘW

))
+ β tr

(
WTW

)
, (6)

resulting in the following equivalent ASO formulation:

min
W,Θ:ΘΘT=Ih

L(W ) + ΩASO(W,Θ). (7)

The penalty of the ASO formulation in Eq. (7) looks very similar to the penalty of the CMTL
formulation in Eq. (5), however the operations involved arefundamentally different. In the CMTL
formulation in Eq. (5), the matrixF is operated on the task dimension, as it is derived from the
K-means clustering on the tasks; while in the ASO formulationin Eq. (7), the matrixΘ is operated
on the feature dimension, as it aims to identify a shared low-dimensional predictive structure for all
tasks. Although different in the mathematical formulation, we show in the following theorem that
the objectives of CMTL and ASO are equivalent.
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Theorem 2.1. The objectives of CMTL in Eq. (5) and ASO in Eq. (7) are equivalent if the cluster
number,k, in K-means equals to the size,h, of the shared low-dimensional feature space.

Proof. DenoteQ(W ) = L(W )+(α+β) tr
(
WTW

)
, with α, β > 0. Then, CMTL and ASO solve

the following optimization problems:

min
W,F :FTF=Ip

Q(W )− α tr
(
WFFTWT

)
, min

W,Θ:ΘΘT=Ip

Q(W )− α tr
(
WTΘTΘW

)
,

respectively. Note that in both CMTL and ASO, the first termQ is independent ofF or Θ, for a
givenW . Thus, the optimalF andΘ for these two optimization problems are given by solving:

[CMTL] max
F :FTF=Ik

tr
(
WFFTWT

)
, [ASO] max

Θ:ΘΘT=Ik

tr
(
WTΘTΘW

)
.

Since WWT and WTW share the same set of nonzero eigenvalues, by the Ky-Fan Theo-
rem [21], both problems above achieve exactly the same maximum objective value:‖WTW‖(k) =∑k

i=1 λi(W
TW ), whereλi(W

TW ) denotes thei-th largest eigenvalue ofWTW and‖WTW‖(k)
is known as the Ky Fank-norm of matrixWTW . Plugging the results back to the original objective,
the optimization problem for both CMTL and ASO becomesminW Q(W ) − α‖WTW‖(k). This
completes the proof of this theorem.

3 Convex Relaxation of CMTL

The formulation in Eq. (5) is non-convex. A natural approachis to perform a convex relaxation on
CMTL. We first reformulate the penalty in Eq. (5) as follows:

ΩCMTL0
(W,F ) = α tr

(
W ((1 + η)I − FFT )WT

)
, (8)

whereη is defined asη = β/α > 0. SinceFTF = Ik, the following holds:

(1 + η)I − FFT = η(1 + η)(ηI + FFT )−1.

Thus, we can reformulateΩCMTL0
in Eq. (8) as the following equivalent form:

ΩCMTL1
(W,F ) = αη(1 + η) tr

(
W (ηI + FFT )−1WT

)
. (9)

resulting in the following equivalent CMTL formulation:

min
W,F :FTF=Ik

L(W ) + ΩCMTL1
(W,F ). (10)

Following [13, 17], we obtain the following convex relaxation of Eq. (10), called cCMTL:

min
W,M

L(W ) + ΩcCMTL(W,M) s.t. tr (M) = k,M � I, M ∈ S
m
+ . (11)

whereΩcCMTL(W,M) is defined as:

ΩcCMTL(W,M) = αη(1 + η) tr
(
W (ηI +M)−1WT

)
. (12)

The optimization problem in Eq. (11) is jointly convex with respect toW andM [9].

3.1 Equivalence of cASO and cCMTL

A convex relaxation (cASO) of the ASO formulation in Eq. (7) has been proposed in [13]:

min
W,S

L(W ) + ΩcASO(W,S) s.t. tr (S) = h, S � I, S ∈ S
d
+, (13)

whereΩcASO is defined as:

ΩcASO(W,S) = αη(1 + η) tr
(
WT (ηI + S)−1W

)
. (14)

The cASO formulation in Eq. (13) and the cCMTL formulation inEq. (11) are different in the regu-
larization components: the respective Hessian of the regularization with respect toW are different.
Similar to Theorem 2.1, our analysis shows that cASO and cCMTL are equivalent.
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Theorem 3.1. The objectives of the cCMTL formulation in Eq. (11) and the cASO formulation
in Eq. (13) are equivalent if the cluster number,k, in K-means equals to the size,h, of the shared
low-dimensional feature space.

Proof. Define the following two convex functions ofW :

gcCMTL(W ) = min
M

tr
(
W (ηI +M)−1WT

)
, s.t. tr (M) = k,M � I, M ∈ S

m
+ , (15)

and

gcASO(W ) = min
S

tr
(
WT (ηI + S)−1W

)
, s.t. tr (S) = h, S � I, S ∈ S

d
+. (16)

The cCMTL and cASO formulations can be expressed as unconstrained optimization w.r.t.W :

[cCMTL] min
W

L(W ) + c · gCMTL(W ), [cASO] min
W

L(W ) + c · gASO(W ),

wherec = αη(1 + η). Let h = k ≤ min(d,m). Next, we show that for a givenW , gCMTL(W ) =
gASO(W ) holds.

Let W = Q1ΣQ2, M = P1Λ1P
T
1 , andS = P2Λ2P

T
2 , be the SVD ofW , M , andS (M and

S are symmetric positive semi-definite), respectively, where Σ = diag{σ1, σ2, . . . , σm}, Λ1 =

diag{λ(1)
1 , λ

(1)
2 , . . . , λ

(1)
m }, andΛ2 = {λ(2)

1 , λ
(2)
2 , . . . , λ

(2)
m }. Let q < k be the rank ofΣ. It follows

from the basic properties of the trace that:

tr
(
W (ηI +M)−1WT

)
= tr

(
(ηI + Λ1)

−1PT
1 Q2Σ

2QT
2 P1

)
.

The problem in Eq. (15) is thus equivalent to:

min
P1,Λ1

tr
(
(ηI + Λ1)

−1PT
1 Q2Σ

2QT
2 P1

)
, s.t. P1P

T
1 = I, PT

1 P1 = I,
d∑

i=1

λ
(1)
i = k. (17)

It can be shown that the optimalP ∗
1 is given byP ∗

1 = Q2 and the optimalΛ∗
1 is given by solving the

following simple (convex) optimization problem [13]:

Λ∗
1 = argmin

Λ1

q∑

i=1

σ2
i

η + λ
(1)
i

, s.t.
q∑

i

λ
(1)
i = k, 0 ≤ λ

(1)
i ≤ 1. (18)

It follows that gcCMTL(W ) = tr
(
(ηI + Λ∗

1)
−1Σ2

)
. Similarly, we can show thatgcASO(W ) =

tr
(
(ηI + Λ∗

2)
−1Σ2

)
, where

Λ∗
2 = argmin

Λ2

q∑

i=1

σ2
i

η + λ
(2)
i

, s.t.
q∑

i

λ
(2)
i = h, 0 ≤ λ

(2)
i ≤ 1.

It is clear that whenh = k, Λ∗
1 = Λ∗

2 holds. Therefore, we havegcCMTL(W ) = gcASO(W ). This
completes the proof.

Remark3.2. In the functional of cASO in Eq. (16) the variable to be optimized isS ∈ S
d
+, while

in the functional of cCMTL in Eq. (15) the optimization variable isM ∈ S
m
+ . In many practical

MTL problems the data dimensionalityd is much larger than the task numberm, and in such cases
cCMTL is significantly more efficient in terms of both time andspace. Our equivalence relationship
established in Theorem 3.1 provides an (equivalent) efficient implementation of cASO especially
for high-dimensional problems.

4 Optimization Algorithms

In this section, we propose to employ three different methods, i.e., Alternating Optimization Method
(altCMTL), Accelerated Projected Gradient Method (apgCMTL), and Direct Gradient Descent
Method (graCMTL), respectively, for solving the convex relaxation in Eq. (11). Note that we focus
on smooth loss functions in this paper.
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4.1 Alternating Optimization Method

The Alternating Optimization Method (altCMTL) is similar to the Block Coordinate Descent (BCD)
method [22], in which the variable is optimized alternatively with the other variables fixed. The
pseudo-code of altCMTL is provided in the supplemental material. Note that using similar tech-
niques as the ones from [23], we can show that altCMTL finds theglobally optimal solution to
Eq. (11). The altCMTL algorithm involves the following two steps in each iteration:

Optimization of W For a fixedM , the optimalW can be obtained via solving:

min
W

L(W ) + c tr
(
W (ηI +M)−1WT

)
. (19)

The problem above is smooth and convex. It can be solved usinggradient-type methods [22]. In the
special case of a least square loss function, the problem in Eq. (19) admits an analytic solution.

Optimization of M For a fixedW , the optimalM can be obtained via solving:

min
M

tr
(
W (ηI +M)−1WT

)
, s.t. tr (M) = k,M � I, M ∈ S

m
+ . (20)

From Theorem 3.1, the optimalM to Eq. (20) is given byM = QΛ∗QT , whereΛ∗ is obtained from
Eq. (18). The problem in Eq. (18) can be efficiently solved using similar techniques in [17].

4.2 Accelerated Projected Gradient Method

The accelerated projected gradient method (APG) has been applied to solve many machine learning
formulations [24]. We apply APG to solve the cCMTL formulation in Eq. (11). The algorithm is
called apgCMTL. The key component of apgCMTL is to compute a proximal operator as follows:

min
WZ ,MZ

∥∥∥WZ − ŴS

∥∥∥
2

F
+

∥∥∥MZ − M̂S

∥∥∥
2

F
, s.t. tr (MZ) = k, MZ � I, MZ ∈ S

m
+ , (21)

where the details about the construction ofŴS andM̂S can be found in [24]. The optimization
problem in Eq. (21) is involved in each iteration of apgCMTL,and hence its computation is critical
for the practical efficiency of apgCMTL. We show below that the optimalWZ andMZ to Eq. (21)
can be computed efficiently.

Computation of Wz The optimalWZ to Eq. (21) can be obtained by solving:

min
WZ

∥∥∥WZ − ŴS

∥∥∥
2

F
. (22)

Clearly the optimalWZ to Eq. (22) is equal tôWS .

Computation of Mz The optimalMZ to Eq. (21) can be obtained by solving:

min
MZ

∥∥∥MZ − M̂S

∥∥∥
2

F
, s.t. tr (MZ) = k, MZ � I, MZ ∈ S

m
+ , (23)

whereM̂S is not guaranteed to be positive semidefinite. Our analysis shows that the optimization
problem in Eq. (23) admits an analytical solution via solving a simple convex projection problem.
The main result and the pseudo-code of apgCMTL are provided in the supplemental material.

4.3 Direct Gradient Descent Method

In Direct Gradient Descent Method (graCMTL) as used in [17],the cCMTL problem in Eq. (11) is
reformulated as an optimization problem with one single variableW , given by:

min
W

L(W ) + c · gCMTL(W ), (24)

wheregCMTL(W ) is a functional ofW defined in Eq. (15).

Given the intermediate solutionWk−1 from the (k − 1)-th iteration of graCMTL, we compute
the gradient ofgCMTL(W ) and then apply the general gradient descent scheme [25] to obtain Wk.
Note that at each iterative step in line search, we need to solve the optimization problem in the
form of Eq. (20). The gradient ofgCMTL(·) at Wk−1 is given by [26, 27]:∇W gCMTL(Wk) =

2(ηI + M̂)−1WT
k−1, whereM̂ is obtained by solving Eq. (20) atW = Wk−1. The pseudo-code of

graCMTL is provided in the supplemental material.
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Truth RidgeSTL RegMTL cCMTL

Figure 1: The correlation matrices of the ground truth model, and the models learnt from RidgeSTL,
RegMTL, and cCMTL. Darker color indicates higher correlation. In the ground truth there are 100
tasks clustered into 5 groups. Each task has 200 dimensions.95 training samples and 5 testing
samples are used in each task. The test errors (in terms of nMSE) for RidgeSTL, RegMTL, and
cCMTL are 0.8077, 0.6830, 0.0354, respectively.

5 Experiments

In this section, we empirically evaluate the effectivenessand the efficiency of the proposed algo-
rithms on synthetic and real-world data sets. The normalized mean square error (nMSE) and the
averaged mean square error (aMSE) are used as the performance measure [23]. Note that in this
paper we have not developed new MTL formulations; instead our main focus is on the theoretical
understanding of the inherent relationship between ASO andCMTL. Thus, an extensive compar-
ative study of various MTL algorithms is out of the scope of this paper. As an illustration, in the
following experiments we only compare cCMTL with two baseline techniques: ridge regression
STL (RidgeSTL) and regularized MTL (RegMTL) [28].

Simulation Study We apply the proposed cCMTL formulation in Eq. (11) on a synthetic data
set (with a pre-defined cluster structure). We use5-fold cross-validation to determine the regulariza-
tion parameters for all methods. We construct the syntheticdata set following a procedure similar
to the one in [17]: the constructed synthetic data set consists of 5 clusters, where each cluster in-
cludes20 (regression) tasks and each task is represented by a weight vector of lengthd = 300.
Details of the construction is provided in the supplementalmaterial. We apply RidgeSTL, RegMTL,
and cCMTL on the constructed synthetic data. The correlation coefficient matrices of the obtained
weight vectors are presented in Figure 1. From the result we can observe (1) cCMTL is able to
capture the cluster structure among tasks and achieves a small test error; (2) RegMTL is better than
RidgeSTL in terms of test error. It however introduces unnecessary correlation among tasks pos-
sibly due to the assumption that all tasks are related; (3) IncCMTL we also notice some ‘noisy’
correlation, which may because of the spectral relaxation.

Table 1: Performance comparison on the School data in terms of nMSE and aMSE. Smaller nMSE
and aMSE indicate better performance. All regularization parameters are tuned using 5-fold cross
validation. The mean and standard deviation are calculatedbased on10 random repetitions.

Measure Ratio RidgeSTL RegMTL cCMTL
nMSE 10% 1.3954± 0.0596 1.0988± 0.0178 1.0850± 0.0206

15% 1.1370± 0.0146 1.0636± 0.0170 0.9708± 0.0145
20% 1.0290± 0.0309 1.0349± 0.0091 0.8864± 0.0094
25% 0.8649± 0.0123 1.0139± 0.0057 0.8243± 0.0031
30% 0.8367± 0.0102 1.0042± 0.0066 0.8006± 0.0081

aMSE 10% 0.3664± 0.0160 0.2865± 0.0054 0.2831± 0.0050
15% 0.2972± 0.0034 0.2771± 0.0045 0.2525± 0.0048
20% 0.2717± 0.0083 0.2709± 0.0027 0.2322± 0.0022
25% 0.2261± 0.0033 0.2650± 0.0027 0.2154± 0.0020
30% 0.2196± 0.0035 0.2632± 0.0028 0.2101± 0.0016

Effectiveness ComparisonNext, we empirically evaluate the effectiveness of the cCMTL formu-
lation in comparison with RidgeSTL and RegMTL using real world benchmark datasets including
the School data1 and the Sarcos data2. The regularization parameters for all algorithms are deter-

1http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://gaussianprocess.org/gpml/data/
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Figure 2: Sensitivity study of altCMTL, apgCMTL, graCMTL interms of the computation cost (in
seconds) with respect to feature dimensionality (left), sample size (middle), and task number (right).

mined via5-fold cross validation; the reported experimental resultsare averaged over10 random
repetitions. The School data consists of the exam scores of15362 students from139 secondary
schools, where each student is described by 27 attributes. We vary the training ratio in the set
5 × {1, 2, · · · , 6}% and record the respective performance. The experimental results are presented
in Table 1. We can observe that cCMTL performs the best among all settings. Experimental results
on the Sarcos dataset is available in the supplemental material.

Efficiency Comparison We compare the efficiency of the three algorithms including altCMTL,
apgCMTLand graCMTL for solving the cCMTL formulation in Eq.(11). For the following exper-
iments, we setα = 1, β = 1, andk = 2 in cCMTL. We observe a similar trend in other settings.
Specifically, we study how the feature dimensionality, the sample size, and the task number affect
the required computation cost (in seconds) for convergence. The experimental setup is as follows:
we terminate apgCMTL when the change of objective values in two successive steps is smaller than
10−5 and record the obtained objective value; we then use such a value as the stopping criterion
in graCMTL and altCMTL, that is, we stop graCMTL or altCMTL when graCMTL or altCMTL
attains an objective value equal to or smaller than the one attained by apgCMTL. We use Yahoo
Arts data for the first two experiments. Because in Yahoo datathe task number is very small, we
construct a synthetic data for the third experiment.

In the first experiment, we vary the feature dimensionality in the set[500 : 500 : 2500] with the
sample size fixed at4000 and the task numbers fixed at17. The experimental result is presented
in the left plot of Figure 2. In the second experiment, we varythe sample size in the set[3000 :
1000 : 9000] with the dimensionality fixed at500 and the task number fixed at17. The experimental
result is presented in the middle plot of Figure 2. From the first two experiments, we observe that
larger feature dimensionality or larger sample size will lead to higher computation cost. In the third
experiment, we vary the task number in the set[10 : 10 : 190] with the feature dimensionality fixed
at600 and the sample size fixed at2000. The employed synthetic data set is constructed as follows:
for each task, we generate the entries of the data matrixXi from N (0, 1), and generate the entries
of the weight vector fromN (0, 1), the response vectoryi is computed asyi = Xiwi + ξ, where
ξ ∼ N (0, 0.01) represents the noise vector. The experimental result is presented in the right plot of
Figure 2. We can observe that altCMTL is more efficient than the other two algorithms.

6 Conclusion

In this paper we establish the equivalence relationship between two multi-task learning techniques:
alternating structure optimization (ASO) and clustered multi-task learning (CMTL). We further es-
tablish the equivalence relationship between our proposedconvex relaxation of CMTL and an ex-
isting convex relaxation of ASO. In addition, we propose three algorithms for solving the convex
CMTL formulation and demonstrate their effectiveness and efficiency on benchmark datasets. The
proposed algorithms involve the computation of SVD. In the case of a very large task number, the
SVD computation will be expensive. We seek to further improve the efficiency of the algorithms by
employing approximation methods. In addition, we plan to apply the proposed algorithms to other
real world applications involving multiple (clustered) tasks.
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