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Abstract

A crucial part of developing mathematical models of information processing in the
brain is the quantification of their success. One of the most widely-used metrics
yields the percentage of the variance in the data that is explained by the model.
Unfortunately, this metric is biased due to the intrinsic variability in the data.
We derive a simple analytical modification of the traditional formula that signifi-
cantly improves its accuracy (as measured by bias) with similar or better precision
(as measured by mean-square error) in estimating the true underlying Variance
Explained by the model class. Our estimator advances on previous work by a)
accounting for overfitting due to free model parameters mitigating the need for a
separate validation data set, b) adjusting for the uncertainty in the noise estimate
and c) adding a conditioning term. We apply our new estimator to binocular dis-
parity tuning curves of a set of macaque V1 neurons and find that on a population
level almost all of the variance unexplained by Gabor functions is attributable to
noise.

1 Introduction

Constructing models of biological systems, e.g. in systems neuroscience, mostly aims at providing
functional descriptions, not fundamental physical laws. It seems likely that any parametric model
of signal processing in single neurons can be ruled out given a sufficient amount of data. Rather
than only testing the statistical validity of a particular mathematical formulation against data, e.g.
by using a y2-test, it is equally important to know how much of the signal, or variance, in the data
is explained by the model. This is commonly measured by Variance Explained (VE), the coefficient
of determination or 72 statistic. A fundamental problem of the traditional estimator for VE is its
bias in the presence of noise in the data. This noise may be due to measurement error or sampling
noise owing to the high intrinsic variability in the underlying data. This is especially important when
trying to model cortical neurons where variability is ubiquitous. Either kind of noise is in principle
unexplainable by the model and hence needs to be accounted for when evaluating the quality of the
model. Since the total variance in the data consists of the true underlying variance plus that due to
noise, the traditional estimator yields a systematic underestimation of the true VE of the model in
the absence of noise [1][2][3].

This has been noted by several authors before us; David & Gallant compute the traditional measure
at several noise levels and extrapolate it to the noise-free condition [1]. This method relies on many
repeats of the same stimulus and is therefore often impractical. Sahani & Linden add an analytical
correction to the traditional formula in order to reduce its bias [2]. A number of subsequent studies
have used their corrections to evaluate their models (e.g. [4][5][6]). We further improve on Sahani
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& Linden’s formula in three ways: 1) most importantly by accounting for the number of parameters
in the model, 2) adding a correction term for the uncertainty in the noise estimation, and 3) including
a conditioning term to improve the performance in the presence of excessive noise. We propose a
principled method to choose the conditioning term in order to electively minimize either the bias or
the mean-square-error (MSE) of the estimator.

In numerical simulations we find that the analytical correction alone is capable of drastically reduc-
ing the bias at moderate and high noise levels while maintaining a mean-square-error about as good
as the traditional formula. Only for very high levels of noise is it advantageous to make use of the
conditioning term. We test the effect of our improved formula on a data set of disparity selective
macaque V1 neurons and find that for many cells noise accounts for most of the unexplained vari-
ance. On a population level we find that after adjusting for the noise, Gabor functions can explain
about 98% of the underlying response variance.

2 Derivation of an improved estimator

2.1 Traditional Variance Explained

Given a set of N measurements d; of process D and given the model predictions m;, the traditional
Variance Explained v is computed as the difference of total variance var(d;) and the variance of the
residuals of the model var(d; — m;). It is usually reported as a fraction of total variance:

)2
var(d;) — var(d; —my) 1 var(d; — m;) 1 ZZ (di = mi)
vV = = — — _

var(d;) var(d;)

(D

N
=1

N -
2. (di —d)?
=1

In most cases, the d; themselves are averages of individual measurements and subject to a sampling
error. Since the variances of independent random variables add, this measurement noise leads to
additive noise terms in both numerator and denominator of equation (1). Below we show that as
the noise level increases, v — (n — 1)/(N — 1) with n being the number of model parameters (see
equation 8). The consequence is a systematic misestimation of the true Variance Explained (typically
underestimation since (n — 1)/(N — 1) is usually smaller than the true VE). The effect of this can
be seen in Figure 1 for two example simulations. In each simulation we fit a model to simulated
noisy data sampled from a different but known underlying function. This allows us to compare
the estimated VE to the true one, in the absence of noise. The average bias (estimated VE minus
true VE) of the traditional variance explained is shown for 2000 instantiations of each simulation
(shown in triangles). As we simulate an increase in sampling noise, the variance explained decreases
significantly, underestimating the true VE by up to 30% in our examples.

2.2 Noise bias

Letd; =1 /R; Zf‘:l d;; where the R; are the number of observations for each variable 7. We further
assume that the measured d;; are drawn from a Gaussian distribution around the frue means D; with
a variance of RO?. Then the d; are drawn from A'[D;; ©2]. To simplify the presentation we assume
that the variables have been transformed to equalize all ¥ = ¥; and that R = R;. It follows that
o2 = 1/(RN(R-1)) N, Zle(dij — d;)? is an estimate of ©2 based on measurements with
N, = N(R — 1) degrees of freedom. In the terms of Sahani & Linden [2], o2 is the noise power.
Our estimator, however, is more direct and accurate — especially for small N and R.

Let M; be the best fitting model to D, of a given model class with parameters. Then the variance
explained in the absence of noise becomes:
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where D = 1/N Zfil D;. Then vy is the true value for the Variance Explained that one would
like to know: based on the best fit of the model class to the underlying data in the absence of any
measurement or sampling noise. v is of course unknown and the values obtained by (1) are drawn
from a probability distribution around the true Variance Explained.

Normalizing both denominator and numerator of formula (1) by o2 leaves v unchanged. However it
becomes clear that the resulting denominator is drawn from a noncentral F'-distribution:
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with N—1and N, = N(R2—1) degrees of freedom, the noncentrality parameter A\pp = vazl (D;—
D)?/¥?andd = 1/N Zfil d;. For N, > 2 the mean of this distribution is given by
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With the same reasoning we find that the numerator of equation (1)
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follows a noncentral F’-distribution with N — n and N,, degrees of freedom and the noncentrality
parameter Apyr = Yo, (D; — M;)? /2. Hence, an unbiased estimator of 31\ (D; — M;)? /%2 =
ApM is given by
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Combining (5) and (7) yields an estimator for vy whose numerator and denominator are individually
unbiased:
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Note that apart from the difference in noise estimation, the estimator proposed by Sahani & Linden
is contained in ours as a special case, becoming identical when there is no uncertainty in the noise
estimate (N, — o0) and testing a model with no free parameters (n = 0). N, — oo is an excellent
approximation in their case of fitting receptive fields to long series of data, but less so in the case
of fitting tuning curves with a limited number of data points. However, the fact that their noise-
term does not account for overfitting due to free parameters in the model means that their formula
overestimates the true Variance Explained. Hence, it requires a separate validation data set which
might be costly to obtain.

At this point we wish to note that (5), (7) and (8) readily generalize to cases where the noise level
>J; and the number of observations R; on which the means d; are based (and therefore N,,) differ
between those data points.



2.3 Conditioning term

First it is important to note that while both numerator and denominator in formula (8) are now unbi-
ased, the ratio is generally not. In fact, the ratio is not even well-defined for arbitrary measurements
since the denominator can become zero and negative. In practice this is avoided by implicit or ex-
plicit selection criteria imposed by the experimenter requiring a minimum SNR in the data before
further analysis. An example would be a criterion based on the significance level paonova of the
modulation in the data as assessed by a 1-way ANOVA test. (Any criterion can be used in the context
of the framework described here, as long as it is used consistently.) The effect of such a criterion
is to cut off the lower tail of the distribution from which the denominator is drawn to exclude zero.
This introduces a bias to the denominator the size of which depends on the amount of noise and
the strictness of the criterion used. We recognize that both biases are strongest when the data is
such that the ratio is close to singular and therefore propose an additive conditioning term C' in the
denominator of (8):
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Depending on the application, the optimal C' can be chosen to either minimize the mean-square-
error (MSE) E[Y(C) — vp] or the bias |E[Y(C)] — 1| of the estimator. Generally, the optimal
levels of conditioning for the two scenarios are different, i.e. unbiasedness comes at the expense of
an increased MSE and vice versa. For individual estimates a small bias can be acceptable in order
to improve accuracy (and hence minimize MSE). When averaging over a large number of estimates,
e.g. from a population of neurons, it becomes important that the estimator is unbiased.

C = C(N,n, Ny, A\pm, ApD; PANOva ) is itself a function of a number of variables, only two of
which, Apy and App, are unknown a priori. We approximate them by our estimates from equations
(5) and (7). The optimal C' can then be determined in each case by a simple minimization across a
large number of random samples drawn from the appropriate distributions (compare equations (3)
and (6)):
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Note that the X?VU distributions in numerator and denominator, sampling over varying estimates
of the underlying noise o2, are shared in both formulas since the o2 is shared. Those two mini-
mization problems can easily be solved by Monte-Carlo sampling the probability distributions and
subsequently find the minimum of MSE or bias, respectively, across all samples.

2.4 Application to simulated data

Figure 1 demonstrates the performance of various estimators of VE for three synthetic examples. In
the left column we show the results when testing a model that consists of a 3rd degree polynomial
that has been fit to noisy data sampled from a Gaussian distribution around an underlying sine-
function. Over the domain studied here, the true VE of the model as fit to the data in the noiseless
condition would be 77%. The center & right column shows the case of a Gabor function that is fit to
noisy data sampled from a difference-of-Gaussians “reality”. Here the true VE is 90%. The center
column simulates Gaussian and the right column Gamma noise (Fano factor of 2).

We confirm that the traditional VE measure (triangles) has an increasingly negative bias with in-
creasing noise level o. Applying the Sahani-Linden correction (squares) this negative bias is turned
into a positive one since the overfitting of noise due to the free parameters in the model is not taken
into consideration. This leads to an overestimation of the true VE when applied to the fitting data
instead of a separate set of validation data. Accounting for the number of parameters greatly reduces
the bias to close to zero across a large range of noise levels (dots). The bias becomes notable only
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Figure 1: Simulation results: Left column: a 3rd degree polynomial is fit to noise data drawn from
an underlying sine-function. Center & Right column: a Gabor function is fit to noisy data around
a linear combination of three Gaussians — two ’excitatory’ and one ’inhibitory’. Left & Center:
Gaussian noise, Right: Gamma distributed noise (Fano factor of 2). First row: data (stars) and
model (lines) are shown in the noise-free condition. Their true VE is 77% and 90%, respectively.
Rows 2-5: bias (defined as estimated minus true VE) and RMSE are shown as a function of noise
o. The traditional estimator is shown by triangles, the Sahani-Linden correction by squares, our
estimator from eq.(8) by dots. Rows 4 & 5: We enforce our prior knowledge that 0 < v < 1.
Estimators with conditioning term C' (eq.9) optimized for bias (+) and MSE (x), both dashed, are
shown. Restricting VE to 0 < v < 1 is the reason for the plateau in the bias of the Sahani-Linden
estimator (right column, fourth from the top). In all panels data samples with insignificant variation
in the data (panova > 0.05) were excluded from the analysis. Note the different scales in each
panel.
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Figure 2: Tradeoff between number of conditions N and number of repetitions R at each condition.
Traditional measure: triangles; unbiased estimate: dots. The total number of measurements was
fixed at N - R = 120, while the number of different conditions N is varied along the abscissa.

at the highest noise levels (at which a large number of data samples does not pass the ANOVA-
test for significant modulation), while still remaining smaller than that of the traditional estimator.
The reason for the decreasing bias of the Sahani-Linden estimator at very high noise levels is the
coincidental cancellation of two bias terms: the negative bias at high noise levels also seen in our
estimator for Gabor-fits to differences of Gaussians, and their general positive bias due to not taking
the over-fitting of parameters into account. Comparing the MSE (shown as root-mean-square-error
or RMSE) of the different estimators shows that they are similar in the case of fitting a polyno-
mial (left column) and significantly improved in the case of fitting a Gabor function (center & right
column — note the different y-axis scales among all column). !

The bottom two rows simulate the situation where our prior knowledge that 0 < VE < 1 is explicitly
enforced. Since the numerator in our unbiased estimator (eq.8) yields values around its noiseless
value that can be positive and negative, the estimator can be negative or greater than one. Restricting
our estimator to [0..1] interferes with its unbiasedness. We test whether a conditioning term can
improve the performance of our estimator and find that this is the case for the Gabor fit, but not the
polynomial fit. In the case of the Gabor fit, the improvement due to the conditioning term is greatest
at the highest noise levels as expected. The bias is decreased at the highest three noise levels tested
and the MSE is slightly decreased (at the highest noise level) or the same as with conditioning.

Where the purely analytical formula outperforms the one with conditioning that is because the ap-
proximations we have to make in determining the optimal C' are greater than the inaccuracy in the
analytical formula at those noise levels. This is especially true in the 3rd column where the strongly
non-Gaussian noise is incompatible with the Gaussian assumption in our computation of C. We
conclude that unless one has to estimate VE in the presence of extremely high noise, and has con-
firmed that conditioning provides an improvement for the particular situation under consideration,
our analytical estimator is preferable. (Note the different y-axis scales across the 2nd and 4th rows.)

Using an estimator that accounts for the amount of noise has another major benefit. Because the total
number of measurements /N - R one can make is usually limited, there is a tradeoff between number
of conditions NV and number of repeats R. Everything else being equal the result from the traditional
estimator for VE will depend strongly on that choice: the more conditions and the fewer repeats,
the higher the standard error of the means o (noise) and hence the lower the estimated VE will be
— regardless of the model. Figure 2 demonstrates this behavior in the case of fitting a Gabor to a
difference-of-Gaussians exactly as in Figure 1. Keeping the total number of measurements constant,
the traditional VE (triangles) decreases drastically as the number of conditions N is increased. The
new unbiased estimator (dots) in comparison has a much reduced bias and depends only weakly
on R. This means that relatively few repeats (but at least 2) are necessary, allowing many more
conditions to be tested than previously, hence increasing resolution.

't is not surprising that the precise behavior of the respective estimators varies between examples. Two
approximations were made in the analytical derivation: (1) the model is approx. linear in its parameters and (2)
unbiasing the denominator is not the same as unbiasing the ratio. Both approximations are accurate in the small
noise regime. However, as noise levels increase they introduce biases that interact depending on the situation.
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Figure 3: Disparity tuning curves of V1 neurons fit with a Gabor function: A: Data from an example
neuron shown by their standard error of the mean (SEM) errorbars. Estimate of VE by Gabor
fit (solid line) changes from 85% to 93% when noise is adjusted for. B: Data from 2nd example
neuron. VE of Gabor fit changes from 94% to 95%. x2—test on compatibility of data with model:
Dy2 =4 10~%. C: Unbiased VE as a function of signal-to-noise power. One outlier at (0.93:4.0) not
shown. D: Traditional VE estimate vs unbiased VE with conditioning to minimize MSE. VE values
are limited to 0..1 range. C & D: Filled symbols denote cells whose responses are incompatible
with the Gabor model, as evaluated by a x?—test (py2 < 0.05).

3 Application to experimental data

3.1 Methods

The data are recorded extracellularly from isolated V1 neurons in two awake, fixating rhesus
macaque monkeys and have been previously published in [7]. The stimulus consisted of dynamic
random dots (RDS) with a binocular disparity applied perpendicular to the preferred orientation of
the cell. We only included neurons in the analysis which were significantly modulated by binocular
disparity as evaluated by a one-way ANOVA test. 109 neurons passed the test with panova < 0.05.
Since neuronal spike counts are approximately Poisson distributed we perform all subsequent anal-
ysis using the square root of the spike rates to approximately equalize variances. We fit a Gabor
function with six parameters to the spike rates of each cell and perform a y2— test on the residu-
als. The minimum number of different conditions N, = 13 and the median number of repeats
median(R) = 15.

3.2 Results

Most disparity tuning curves in V1 are reasonably well-described by Gabor functions, which explain
more than 90% of the variance in two thirds of the neurons [8]. Whether the remaining third reflect
a failure of the model or are merely a consequence of noise in the data has been an open question.

Panels A & B in Figure 3 show the responses of two example cells together with their best-fitting
Gabor functions. The traditional VE in panel A is only 82% even though the data is not significantly
different from the model (p,> = 0.64). After adjusting for noise, the unbiased VE becomes 92%,
i.e. more than half of the unexplained variance can be attributed to the response variability for each
measurement. Panel B shows the opposite situation: 94% of the variance is explained according
to the traditional measure and only an additional 1% can be attributed to noise. However, despite



this high VE, since the measurement error is relatively small, the model is rejected with a high
significance (py2 = 4 - 1074

Panel C shows the unbiased estimate of the VE for the entire population of neurons depending on
their noise power relative to signal power. At high relative noise levels there is a wide spread of
values and for decreasing noise, the VE values asymptote near 1. In fact, the overall population
mean for the unbiased VE is 98%, compared with the traditional estimate of 82%. This means that
for the entire population, most of the variance previously deemed unexplained by the model can in
fact be accounted for by our uncertainty about the data. 22 out of 109 cells or 20% rejected the
model (p,2> < 0.05) and are denoted by filled circles. Panel D demonstrates the effect of the new
measure on each individual cell. For the estimation of the true VE for each neuron individually, we
incorporate our knowledge about the bounds 0 < 1y < 1 and optimize the conditioning term for
minimum MSE. With the exception of two neurons, the new estimate of the true VE is greater than
the traditional one. On average 40% of the unexplained variance in each individual neuron can be
accounted for by noise.

4 Conclusions

We have derived an new estimator of the variance explained by models describing noisy data. This
estimator improves on previous work in three ways: 1) by accounting for overfitting due to free
model parameters, 2) by adjusting for the uncertainty in our estimate of the noise and 3) by describ-
ing a way to add an appropriate level of conditioning in cases of very low signal-to-noise in the
data or other imposed constraints. Furthermore, our estimator does not rely on a large number of
repetitions of the same stimulus in order to perform an extrapolation to zero noise. In numerical sim-
ulations with Gaussian and strongly skewed noise we have confirmed that our correction is capable
of accounting for most noise levels and provides an estimate with greatly improved bias compared
to previous estimators. We note that where the results from the two simulations differ, it is the more
realistic simulation where the new estimator performs best.

Another important benefit of our new estimator is that it addresses the classical experimenter’s
dilemma of a tradeoff between number of conditions N and number of repeats R at each condi-
tion. While the results from the traditional estimator quickly deteriorate with increasing /N and
decreasing R, the new estimator is much closer to invariant with respect to both — allowing the
experimenter to choose a greater NV for higher resolution.

When applying the new VE estimator to a data set of macaque V1 disparity tuning curves we find
that almost all of the variance previously unaccounted for by Gabor fits can be attributed to sampling
noise. For our population of 109 neurons we find that 98% of the variance can be explained by a
Gabor model. This is much higher than previous estimates precisely because they did not account
for the variability in their data, illustrating the importance of this correction especially in cases where
the model is good. The improvement we present is not limited to neuronal tuning curves but will be
valuable to any model testing where noise is an important factor.
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