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Abstract- This paper proposes a novel spatial and spectral fusion method for satellite 

multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning. By 

combining the spectral information from sensors with low spatial resolution but high spectral 

resolution (LSHS) and the spatial information from sensors with high spatial resolution but low 

spectral resolution (HSLS), this method aims to generate fused data with both high spatial and 

spectral resolution. Based on the sparse non-negative matrix factorization technique, this method 

first extracts spectral bases of LSHS and HSLS images by making full use of the rich spectral 

information in LSHS data. The spectral bases of these two categories data then formulate a 

dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and 

HSLS data, respectively. Subsequently, the LSHS image is spatial unmixed by representing the 

HSLS image with respect to the corresponding learned dictionary to derive its representation 

coefficients. Combining the spectral bases of LSHS data and the representation coefficients of 

HSLS data, fused data are finally derived which are characterized by the spectral resolution of 

LSHS data and the spatial resolution of HSLS data. The experiments are carried out by 

comparing the proposed method with two representative methods on both simulation data and 

actual satellite images, including the fusion of Landsat/ETM+ and Aqua/MODIS data and the 

fusion of EO-1/Hyperion and SPOT5/HRG multispectral images. By visually comparing the 

fusion results and quantitatively evaluating them in term of several measurement indices, it can 

be concluded that the proposed method is effective in preserving both the spectral information 

and spatial details and performs better than the comparison approaches. 

 

Keywords: spatio-spectral fusion; high spatial resolution; high spectral resolution; dictionary-pair 

learning; sparse non-negative matrix factorization 



  

 

 

2

2

 

1. Introduction 

A specific feature of remote sensing images, captured from different satellites and different 

sensors, is a tradeoff between spatial resolution and spectral resolution. This is caused, on the 

one hand, by the system tradeoffs related to data volume and signal-to-noise ratio (SNR) 

limitations and, on the other hand, by the specific requirements of different applications for a 

high spatial resolution or a high spectral resolution. For example, to fulfill the high spatial 

resolution requirement in many land-oriented applications, sensors with spatial resolution of half 

meter to tens of meters are designed, including, but not limited to, ETM+ (30m) on a platform of 

Landsat, the sensor on QuickBird (2.4m for multispectral bands), and the instruments on SPOT 

(2.5m~10m). Sensors like the MODerate resolution Imaging Spectroradiometer (MODIS) 

on-board Aqua or Terra, the MEdium Resolution Imaging Spectrometer (MERIS) on-board 

ENVISAT, and the Hyperion instrument on-board the EO-1 satellite, can provide remote sensing 

images with high spectral resolution but with low spatial resolution. Although these remote 

sensing instruments have many different properties, such as the revisit period, the swath width, 

the purpose of the launch (commercial or science), a specific user can obtain large amounts of 

data from different instruments on a given study area. This promotes the development of new 

algorithms to obtain remote sensing data with the best resolution available by merging their 

complementary information. 

From the application point of view, remote sensing data with high spatial resolution are 

beneficial for the interpretation of satellite images and the extraction of spatial details of land 

cover, such as in land use/cover mapping and change detection [1]; whereas remote sensing data 

with high spectral resolution are capable of identifying those targets that cannot be easily 

distinguished by human eyes, such as in geological analysis and chemical contamination analysis 

[2]. To merge panchromatic (with a higher spatial resolution) and multispectral (with a lower 

spatial resolution) images from the same or separate sensors, pansharpening algorithms have 

been extensively studied in the past two decades [3, 4]. In this paper, we focus on the fusion of 

images from two categories of sensors: one category has low spatial resolution and high spectral 

resolution (hereinafter abbreviated as LSHS), such as Aqua (or Terra)/MODIS and 

EO-1/Hyperion; while the other category has high spatial resolution but low spectral resolution 
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(hereinafter abbreviated as HSLS), the data from which are usually termed as multispectral 

images, such as Landsat/ETM+ and SPOT5/HRG. The low resolution or high resolution herein 

is in a relative sense. Through integrating the spectral information of LSHS data and the spatial 

information of HSLS data, we expect to extend the applications of available satellite images, 

thereby meeting various demands of data users.    

To address this spatial and spectral fusion problem, one category of classic method is 

spatial-unmixing-based algorithms [5-9]. The processing steps of these methods are: (1) 

geometrical co-registration between the HSLS and LSHS images; (2) the multispectral 

classification on the high spatial resolution image (HSLS) to unmix the low spatial resolution 

image (LSHS); and (3) determination of the class spectra via regularized linear unmixing. These 

methods showed good performance at fusing Landsat images with MERIS [6, 7, 9] images or 

with ASTER [8] images for land applications. However, it should be noted that whether pure 

spectra exist resides in the sensor’s spatial resolution of the given HSLS data. These methods 

also have high demanding on the geometric registration accuracy of the given data (e.g., less 

than 0.1-0.2 of the low resolution pixel size according to reference [5]). The authors in [10-12] 

proposed to fuse multispectral and hyperspectral images in a maximum a posteriori (MAP) 

estimation framework by establishing an observation model between the desired image and the 

known image. The method reported in [10] employed a spatially varying statistical model to help 

exploit the correlations between multispectral and hyperspectral images. The methods developed 

in [11, 12] made use of a stochastic mixing model of the underlying scene content to enhance the 

spatial resolution of hyperspectral image. The authors in [13] proposed to improve the spatial 

resolution of hyperspectral image by fusing with high resolution panchromatic band images 

based on super-resolution technique. Firstly, this method learns the spatial information from 

panchromatic images by sparse representation; then the high-resolution hyperspectral image is 

constructed based on the learned spatial structures with a spectral regularization.   

Due to the low spatial resolution or the existence of homogenous mixtures in the 

hyperspectral images, unmixing techniques are needed to decompose the mixed pixels observed 

into a set of constituents and the corresponding fractional coefficients, which denote the 

proportion of each constituent [14]. The first step in this spectral unmixing task is to collect a 

suitable set of endmembers to model the spectra of measured pixels by weighting these spectral 
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signatures. There are two categories of endmembers according to different extraction methods: 

image endmember derived directly from the images and library endmember derived from known 

target materials in field or laboratory spectra [15]. However, employing library endmembers is 

risky because it’s difficult to ensure that these spectra are captured under the same physical 

conditions as the observed data. Whereas image endmembers can avoid this problem due to the 

collection at the same scale as the observed data, thereby being linked to the scene features more 

easily [14]. A number of endmember extraction algorithms for hyperspectral data were 

quantitatively compared in [15]. In this paper, we employ this similar endmember extraction 

strategy for both HSLS and LSHS data and term the extracted spectral bases as dictionaries. For 

the second step of abundances estimation in hyperspectral unmixing, a popular and effective 

method is sparse unmixing [16]. The basic principle of this method is based on the observation 

that only a small portion of endmembers participated in the formation of each mixed pixel. 

Therefore, with the sparsity-inducing regularizers, i.e., the constraint of a few non-zero 

components for the abundance vectors, the abundances can be estimated by calling for linear 

sparse regression techniques [16]. In this paper, we adopt this similar sparse regularization when 

solving the representation coefficients of HSLS and LSHS data with respect to their 

representation atoms (or dictionaries). 

In this paper, we seek to extract a dictionary-pair for representing LSHS and HSLS data, 

respectively. Specifically, the representation atoms of LSHS and HSLS data are firstly extracted 

from the given images, respectively, and then to form the dictionary-pair. Each representation 

atom of the dictionary-pair herein is in correspondence. Accordingly, each pixel spectra of LSHS 

and HSLS data can be expressed as a linear combination of their corresponding dictionary atoms, 

which have the same functions as endmembers in hyperspectral unmixing. Based on this 

dictionary-pair, the proposed spatio-spectral fusion algorithm consists of two stages: in the first 

stage, the good spectral properties of the LSHS image are employed to extract the basis functions 

of spectra (representation atoms) and further to form the dictionary-pair by enforcing the same 

representation coefficients of the HSLS and the LSHS images with respect to their dictionaries; 

in the second stage, the good spatial properties of the HSLS image are utilized to derive the 

representation coefficients with respect to its dictionary. The representation coefficients herein 

have similar functions as abundances in hyperspectral unmixing but provide spatial location 
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properties due to the high spatial resolution of the HSLS image. Finally, the desired high spatial 

and high spectral resolution image can be obtained by the multiplication of representation atoms 

for the LSHS image (i.e., the LSHS dictionary) and representation coefficients for the HSLS 

image. 

The following section presents the theoretical basis of this paper. Section 3 describes the 

proposed method for the fusion of HSLS and LSHS data. Section 4 shows the experimental 

validation of the proposed algorithm through comparison with two representative algorithms on 

both simulated and actual satellite datasets. Finally, we conclude this paper with a discussion on 

the application of the proposed method and remarks about its inherent features. 

 

2. Theoretical Basis 

As introduced in Section 1, a dictionary-pair needs to be trained from the HSLS and LSHS 

data. Hence, the basic principles of dictionary-pair learning will first be introduced. Taking the 

non-negative properties of the bases spectra and fractional abundances of HSLS and LSHS data 

into account, we learn the required dictionary-pair by using sparse non-negative matrix 

factorization method, which will be presented in the second part of this section. 

2.1 Dictionary-pair learning 

Huge amounts of information captured by human eyes or satellite sensors are superfluous in 

a large part caused by the related signals in real world and the oversampling of sensors. 

Compared to the observed signals, the underlying generating signals actually have very small 

dimensions. Identifying the generating signals from the relevant information is, in fact, a 

dimension reduction process or finding the subspace where the data lie [17]. The combination of 

these generating signals or bases of subspace constitutes the dictionary, each component of 

which is a representation atom for the observed dataset. Given the observed data, building the 

dictionary to provide efficient representations for the given signals, is the dictionary learning 

process, which has greatly promoted the development of novel dictionary learning algorithms 

[17-19]. 

For representation convenience, we will use the superscript of symbols to discriminate 

variables and the subscript to denote the order of elements in this paper. Suppose for a given 
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signal x1 1BR ×∈ , we have determined an overcomplete dictionary, which is denoted as 

1 ×∈ B KD R (K>B) and its atoms as 1
kd , k = 1, 2,…, K, where K is the dictionary’s size. Usually, 

the dictionary atoms are set as unit norm functions in the signal representation space. Then, these 

dictionary atoms can be utilized to represent each signal x1 in this subspace via a linear 

combination, i.e., 

1 1 1 1 1

1
α α

=

= = ∑
K

k k
k

x D d                               (1) 

where 1αk  is the weighting coefficient for atom 1
kd  and α1 is termed as the representation 

coefficient for x1 in this paper. Since the number of dictionary atoms needed to represent one 

signal is usually very small compared to the total number of atoms, the sparsity constraint for 

representation coefficients comes into play, which has been proved efficient as regularization 

[17-19]. To this end, the representation coefficient vector α1 is restricted to hold few non-zero 

components, which is achieved via the following formula,  

1

21 1 1 1

0 2
min , . .

α
α α ε− ≤s t x D                          (2) 

where 
0
 denotes the number of non-zero elements and ε is an approximation error. To solve 

the sparse vector α1 in (2), various sparse coding algorithms have been developed. One category 

of these algorithms is greedy algorithms such as the orthogonal matching pursuit (OMP) [20], 

which picks the most appropriate local atoms iteratively. Another category of sparse coding 

methods rely on convex relaxation. Among them, the representative one is the least absolute 

shrinkage and selection operator (LASSO) [21], which replaces the non-convex l0 norm in (2) by 

a convex l1 norm as follows: 

( )1

21 1 1 1

2 1
min

α
α λ α− +x D                            (3) 

where λ is a regularization parameter. We recommend the interested readers on sparse coding 

algorithms to refer to the recently published review [22]. 

Suppose there exists another subspace expanded by atoms of 2 ×∈ b KD R (b<K), which has a 

different dimension with D1. If we want to establish correspondence between the signals in these 

two subspaces, a simple and intuitive approach is to build correspondence between their 

representation atoms and enforce the same representation coefficients for each signal pair. 
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Suppose the corresponding signal of x1 is 2 1×∈ bx R  in the subspace expanded by atoms of D2, 

then we can represent x2 by atoms of dictionary D2 with the same representation coefficient as x1 

in (1). Denote the atoms of D2 as 2
kd , k = 1, 2,…, K, then 

2 2 1 1 2

1
α α

=

= = ∑
K

k k
k

x D d                                 (4) 

The two dictionaries D1 and D2 in the above case are defined as a dictionary-pair, the 

representation atoms of which are in correspondence and can generate signal pairs by restricting 

the same representation coefficients. The application of dictionary-pair learning has been proved 

effective in image super-resolution [23, 24].    

  The key task in dictionary learning approaches is to train an appropriate dictionary from the 

given training samples. There are three main categories of these learning algorithms: (1) 

probabilistic methods; (2) clustering-based methods; and (3) learning methods with specific 

structures. For a detailed description of these algorithms, we recommend the interested readers to 

see [17, 25]. For one given training set X1 = [ 1
1x , 1

2x ,…, 1
Nx ] (N>>K), we can choose one 

dictionary learning method to best fit the given task. Under the application context of building 

spectral correspondence (i.e., the spectral atoms for one material captured by different sensors) 

between two signal spaces, the chosen dictionary learning method needs to be extended to two 

dictionaries (i.e., the dictionary-pair). Suppose the other training set is X2 = [ 2
1x , 2

2x ,…, 2
Nx ], 

whose signals are in correspondence with those of dataset X1. Two strategies have been proposed 

to generate the dictionary-pair from the training set pair X1- X2: in the first strategy, the two 

training sets are concatenated to [X1; X2], then, two dictionaries [D1; D2] with normalization are 

simultaneously learned from them by enforcing training sample pairs in X1 and X2 to have the 

same representation coefficients with respect to dictionaries D1 and D2, respectively [23]; in the 

second strategy, the training set with the higher amount of information, here we suppose it is X1, 

is firstly trained to obtain its dictionary D1 and then the dictionary D2 for the training set X2 is 

obtained by the multiplication of X2 and Pseudo-Inverse of the derived representation 

coefficients from X1 [24]. In this paper, we adopt an alternative update method by firstly 

updating the spectral bases of the LSHS image due to its affluent spectral information, and then 

updating the spectral bases of the HSLS image with the same representation coefficients derived 
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from the LSHS image.   

2.2 Sparse Non-negative Matrix Factorization (NMF) 

As one matrix factorization technique, non-negative matrix factorization (NMF) seeks to 

determine a parts-based representation [26]. Originally, this method was applied to learn facial 

features and textual semantics. Given a non-negative data matrix X ×∈ B NR , NMF seeks to 

decompose it into the multiplication of non-negative matrix ×∈ B KD R  and K NA R ×∈ , i.e., X ≈ 

DΑ, where each column of D is called representation basis, each column of A is an encoding for 

the corresponding data vector in X and K is the number of representation basis. The non-negative 

constraint, hereof, is to be compatible with the physical properties in practical applications (e.g., 

the quantities involved cannot be negative) [27]. To solve the matrices D and A, the most widely 

used optimization method is to minimize the approximation error between X and DΑ based on 

square error (Euclidean distance), i.e., 

( ) ( )( )22

,
, = − = −∑ ij ij

i j

E D A X DA X DA                       (5) 

The objective function (5) can be solved by a gradient algorithm or a multiplicative algorithm 

[27]. The standard multiplicative update rule in element-wise is as follows: 

( )
( )

( )
( ),← ←

T T

ij ij
ij ij ij ijT T

ij ij

XA D X
D D A A

DAA D DA
                     (6) 

   One feature of NMF is that it usually generates a sparse representation for the given data. 

However, such sparseness cannot be controlled by NMF in a direct manner. Concerning this 

disadvantage of NMF, Hoyer [27] proposed to extend NMF to include the option of controlling 

sparseness explicitly by introducing a sparseness term via incorporating the L1 norm and the L2 

norm: 

( ) ( ) ( )2

1
i iB x x

sparseness x
B

−
=

−
∑ ∑                      (7) 

where B is the dimensionality of x. It should be noted that B hereof is strictly larger than 1 and 

thus this method would not work on panchromatic (single band) imagery. The measurement in (7) 

equals to one when x includes only one non-zero element, and takes the value of zero when all 

elements are equal. This sparseness constraint can be applied to both basis matrix D and 

coefficient matrix A depending on the specific applications in question. Thus, the objective 
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function in (5) can be solved under the following optional constraints:  

( )
( )

,

,
i D

i A

sparseness d S i

sparseness S iα
= ∀

= ∀                          (8) 

where di is the i-th column of D and αi is the i-th column of A. SD and SA denote the desired 

sparseness of D and A, respectively. For the matrix with sparseness constraint, it can be solved 

by a projected gradient descent algorithm devised by Hoyer in [27].  

 

3. Proposed Methodology 

Based on the theoretical bases introduced in Section 2, this section presents the proposed 

method based on dictionary-pair learning and sparse NMF. Given two satellite datasets with 

LSHS and HSLS, respectively, the purpose of this paper is to combine their complementary 

information to obtain dataset with the spectral information of LSHS dataset and the spatial 

information of HSLS dataset (we abbreviate hereafter the desired dataset with high spatial 

resolution and high spectral resolution as HSHS). To achieve this, the two stages of the proposed 

method, i.e., the dictionary-pair learning stage from the given two datasets and the 

spatio-spectral fusion stage based on the projected gradient descent algorithm will be presented 

respectively. In the first stage, the spectral bases of LSHS and HSLS images are extracted by 

making use of the rich spectral information in the LSHS image; in the second stage, the desired 

HSHS image is predicted based on the spectral bases of the LSHS image and the spatial 

unmixing of the HSLS image. An overall graphical flow of the proposed methodology is shown 

in Fig. 1.  

For the given LSHS and HSLS images from different remote sensors, we assume that they 

are captured on the same day and cover the same area of the earth surface. For convenience of 

description, the involved 3-dimensional data cube (i.e., the multi-spectral images) is converted to 

2-dimensional matrices, each column of which denotes a pixel in all spectral bands. Suppose the 

input LSHS image is × ×∈lh w h BX R , where w, h and B denote the image width, the image height 

and the number of bands, respectively, then it can be converted to ×∈lh B nX R , where n = w×h is 

the total number of pixels in the LSHS dataset. Similarly, the input HSLS data × ×∈hl W H bX R  
can be converted to ×∈hl b NX R , where b (b<B) is the number of spectral bands in HSLS dataset  
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Fig.1. An overall graphical flow of the proposed methodology.  

 

and N = W×H (W>w, H>h, N>n) is the total number of pixels, and the desired HSHS data can be 

denoted as ×∈hh B NX R . In order to build the spatial correspondence between pixels of LSHS 

and HSLS images we up-sample the LSHS image to have the same width and height size as 

HSLS using bicubic interpolation method. Accordingly, the resized LSHS image is denoted as 
×∈lh B NX R . 

3.1 Dictionary-pair learning 

Given the input LSHS data ×∈lh B NX R  and HSLS data ×∈hl b NX R , we aim to determine 

two dictionaries to represent the spectral bases of Xlh and Xhl, respectively. We should note that 

the spectral bases hereof are not necessarily the pure signatures as defined in [28] in the sense 

that they are spectrally distinct signal sources, which may contain identified or unidentified 

image endmembers, anomalies and natural signatures [28]. This facilitates the consideration of 

land-cover variability induced by noise and nonhomogeneous substances. From the perspective 

view of signal generating, the mixed pixels in Xlh and Xhl are produced by the linear combination 

of a small number of spectral bases in their respective dictionaries. The spectral bases of LSHS 
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and HSLS data are deemed as different due to the following two reasons: their different spectral 

resolutions and the potential radiance difference caused by different illumination, atmospheric or 

sensor conditions. However, we can build correspondence between these two categories of 

spectral bases based on the assumption that the LSHS and HSLS images are consistent in spatial 

location and capture time. In previous literature [23, 24, 29], dictionary-pair learning is utilized 

to correlate two subspaces representing spatial features. In this paper, we employ the 

dictionary-pair learning technique to establish the correspondence between two subspaces 

representing spectral properties. 

   Taking the high spectral resolution of the LSHS image (usually much higher than the HSLS 

image) into account, we first determine the spectral bases with high spectral resolution by 

decomposing the LSHS image into a spectral dictionary Dh and the corresponding representation 

coefficients. Because only a small portion of spectral bases participates in each mixed pixel [16], 

the sparseness constraint is imposed on the representation coefficients for each mixed pixel. On 

the other hand, we consider the fact that the involved physical quantities in this research, such as 

radiance and reflectance, are nonnegative. Therefore, the dictionary Dh is learned from the input 

LSHS data ×∈lh B NX R  by utilizing the sparse nonnegative matrix factorization method 

proposed in [27]. With an appropriate sparseness parameter for the representation coefficient, the 

objective function is as follows: 

( ) { }
( )

2

,
, arg min

. ., 0, 0, ,α α

= −

> > = ∀

h

h lh h

D A

i i i A

D A X D A

s t d sparseness S i
                  (9) 

where di is the i-th column of Dh, αi is the i-th column of A and SA is the sparseness parameter for 

representation coefficients. Suppose the number of spectral bases is K, then Dh RB×K and 

A RK×N. K can be determined by the VD method proposed in [30], which was developed for 

identifying the number of spectrally distinct signal sources in hyperspectral data. According to 

the dictionary-pair learning method in [24], we can directly derive the spectral dictionary for the 
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HSLS image ×∈hl b NX R  via a Pseudo-Inverse expression (suppose that A has full row rank): 

( ) 1−+= =l hl hl T TD X A X A AA                          (10) 

where A is the same representation coefficient matrix derived from (9) and Dl Rb×K. 

   However, equation (10) cannot guarantee the non-negativity of Dl. We therefore adopt an 

alternate update mode to solve Dh, Dl, and A by minimizing the following formulation, 

( ) { }
( )

2 2

, ,
, , arg min

. ., 0, 0, 0, ,α α

= − + −

> > > = ∀

h l

h l lh h hl l

D D A

h l
i i i i A

D D A X D A X D A

s t d d sparseness S i
                (11) 

where h
id  is the i-th column of Dh and l

id  is the i-th column of Dl. (11) can still be optimized 

by utilizing the sparse nonnegative matrix factorization method proposed in [27]. Although the 

sparse NMF method can constrain the scale of both dictionary atoms and representation 

coefficient vectors, to be consistent with the dictionary learning methods as in [17-19], we fix the 

L2 norm of dictionary atoms to unity and make the scale of representation coefficients free, i.e., 

the norm of representation coefficients varies with the signals represented. The specific 

dictionary-pair training process based on the method in [27] is illustrated in Fig. 2. To assure that 

the spectral bases are extracted accurately, we first update the spectral bases of Dh in algorithm 1 

by making full use of the rich spectral information in the LSHS image. For the updating process 

of representation coefficients, see reference [27] for more details. Due to the spatial 

correspondence of training samples in Xlh and Xhl and the enforcement of the same sparse 

representation coefficients for them, the spectral bases in Dh and Dl are expected to be in 

correspondence. That means if one spectral basis in Dh denotes the spectral property of one 

specific material in the LSHS sensor, then the corresponding spectral basis in Dl reflects the 

spectral property of the same material in the HSLS sensor. The representation accuracy of these 

spectral bases is determined by the number of training samples, the co-registration accuracy 

between the LSHS and HSLS images, and the setting for the relevant parameters including the 

dimensionality of the dictionary-pair and the sparseness degree for the representation 

coefficients. 
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3.2 Spatio-spectral fusion  

Based on the learned dictionary-pair, we can derive the desired HSHS image by integrating the 

spatial information of the HSLS image into the LSHS image. Firstly, each pixel vector xhl of the 

HSLS image Xhl can be sparsely represented as a linear combination of spectral bases in Dl. We 

solved these representation coefficients by utilizing the projected gradient descent algorithm 

proposed in [27] via optimizing the following function with non-negativity and sparseness 

constraints, 

( )

2

2
arg min ,

. ., 0, ,
α

α α

α α

= −

≥ = ∀

l hl l

i i A

x D

s t sparseness S i
                      (12) 

where the sparseness parameter SA was set as the same value in Eq. (11) to keep the sparse 

consistence in training and fusion stages. Combining the resolved coefficient vectors for all 

pixels, the representation coefficient matrix Al for the HSLS image is derived from (12). With Al 

and the high spectral resolution bases in Dh, the desired HSHS image Xhh can be obtained as 

follows: 

=hh h lX D A                                   (13) 

Due to the low spatial resolution of Xlh and the high spatial resolution of Xhl, this fusion 

procedure can also be deemed as the spatial unmixing of Xhl for Xlh. On the other hand, because 

of the high spectral resolution of Xlh and the low spectral resolution of Xhl, this fusion procedure 

can be deemed as the spectral unmixing of Xlh for Xhl. In a unified point of view, the detailed 

spatial information of Xhh is endowed with the HSLS image and the spectral characteristic of Xhh 

is endowed with the LSHS image. 

 

Algorithm 1. Training dictionary-pair 
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Input:  
  · LSHS dataset ×∈lh B NX R  and HSLS dataset ×∈hl b NX R ;  
  · The dictionary dimensionality K and the sparseness degree SA; 
  · The maximum iteration number J. 
Initialize: 
  · { }1 2, ,...,h h h

K
hD d d d← , { }1 2, ,...,l l l

K
lD d d d← , where h

kd  and l
kd  are randomly sampled unity 

vectors from Xlh and Xhl, respectively. 
  · j=0; Calculate the initializing error of the objective function according to (11) as Eold. 
While  j<J: 

   1. Fix Dh and Dl, update each column of sparse coefficients A with the sparseness degree SA; 
during updating process, calculate Enew and guarantee that Enew< Eold;  

  2. Fix Dl and A, update Dh by the standard NMF multiplicative algorithm as in (6); now the 
objective function is reduced to 2

2
{ }
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h

lh h h
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     during updating process, calculate Enew and guarantee that Enew< Eold; 
  3. Fix Dh and A, update Dl by the standard NMF multiplicative algorithm as in (6); now the 

objective function is reduced to 2
2

{ }
arg min{|| || }, . ., 0

l

hl l l
i

D
X D A s t d− >  

     during updating process, calculate Enew and guarantee that Enew< Eold; 

Output: 

· High spectral resolution dictionary Dh and low spectral resolution dictionary Dl.
 

Fig. 2. Dictionary-pair learning process 

4. Experimental results and Comparisons 

In this section, we apply the proposed algorithm to both simulated data and actual satellite 

data and compare it with the spatial unmixing method proposed in [7] and the sparse 

representation with spectral regularization method proposed in [13]. For the actual satellite 

images, we take the Landsat-7/ETM+ reflectance as the HSLS image and Aqua/ MODIS 

reflectance as the LSHS image in their VIR (visual and infrared) spectrum to obtain the fused 

image, which is characterized by the spatial resolution of ETM+ image and the spectral 

properties of MODIS image. Then, we combine the hyperspectral EO-1/Hyperion image and the 

multispectral (MS) SPOT5/HRG image to obtain fused data with the spectral resolution of the 

Hyperion image and the spatial resolution of the SPOT5 MS image. For description convenience, 

we term the proposed dictionary-pair learning method as DPLM, the sparse representation with 

spectral regularization method in [13] as SRSR and the spatial unmixing method in [7] as SUM 

in this section. For SRSR, we learned the spatial structures from all HSLS image bands and used 

the same training parameters as set in [13]; for SUM, the HSLS image was classified into M 

classes by means of an ISODATA algorithm and the sliding window size was set appropriately 
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according to the relevant class number. Since the function of class number for spectral signatures 

in SUM and SRSR is the same as the number of dictionary atoms in DPLM, their values are set 

to the same in all experiments by means of VD method [30]. 

4.1 Quality evaluation measurements for image fusion results 

For the simulated data, the fusion results are visually compared with the ground truth images 

and are quantitatively evaluated in terms of Root Mean Square Error (RMSE), the erreur relative 

global adimensionnelle de synthèse (ERGAS) [31], the spectral angle mapper (SAM) [32] in 

degrees and the structural similarity (SSIM) index [33]. For SSIM index, the values closer to 1 

indicate good preservation of the spatial details. For other measurements, lower values indicate 

better fusion performance in preserving radiometric or spectral properties. 

Regarding the satellite images, because there are no ground truth images, we adopted the 

evaluation methods devised for assessing the fusion results of multispectral and panchromatic 

data without reference [34]. To evaluate the spectral distortion, the correlation coefficients (CC) 

between fused HSHS and original LSHS images are calculated in each band. Similarly, a spatial 

quality index is to calculate the spatial correlation coefficients (CC) between the spatial details of 

the fused bands and those of the HSLS image bands. Such details are extracted by means of a 

Laplacian filter and the calculation of spatial CC is executed on the corresponding bands of 

LSHS and HSLS images in spectrum. For both spatial CC and spectral CC, good fusion 

performance is indicated when their values are close to 1. 

For satellite images, we also employed the spectral distortion index, the spatial distortion 

index and the jointly spectral and spatial quality index proposed in [34], which are denoted as Iλ, 

Is and QNR, respectively. The spectral distortion index is defined by a statistical similarity 

measurement between any couple of LSHS bands calculated before and after fusion. 

Analogously, the spatial distortion index is defined by the same statistical similarity 

measurement between each LSHS band and the intensity band of HSLS calculated before and 

after fusion. The intensity band of the HSLS image hereof is calculated by averaging all the 

bands. Iλ (or Is) is equal to zero when there are no spectral (or spatial) distortions during the 

image transformation from the spatial scale of LSHS data to that of the HSLS data. To combine 

the spatial and spectral assessments together, QNR is defined as follows: 
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( )( )1 1 sQNR I Iλ= − −                            (14) 

The highest value of QNR is one and is obtained when the spectral and spatial distortions are 

both zero. 

4.2 Experiments with simulated data 

   We conducted the simulation experiment on a spectral image database described in [35], 

which provides a multispectral dataset from 400nm to 700nm at 10nm intervals (31 bands in 

total) and an RGB image (three bands in total). Each band of this dataset is stored in 16-bit PNG 

format with an image size of 480 by 352 pixels. The RGB image and the three multispectral 

bands 4, 15 and 31, which are most close to the blue, green and red bands of the RGB image in 

spectrum, are shown in Fig. 3. To simulate the LSHS data we down-sampled the multispectral 

data to 30 by 22 pixels with a scale factor of 16. Taking the original RGB image as the HSLS 

data, we aim to fuse them via DPLM, SRSR and SUM, respectively, to obtain the HSHS data 

with the spectral resolution of the LSHS image and the spatial resolution of the HSLS image. 

 
Fig. 3. Illustration of simulation data. From the left, the images are RGB composite, multispectral bands 4, 15 
and 31, respectively. 
 

In the fusion process, the dictionary dimensionality of DPLM and the class number of SUM 

and SRSR were both set at 33, the sparseness degree of representation coefficients in DPLM was 

set at 0.85 and the window size of SUM was set at 19 after fine-tuning. The spatial and spectral 

fusion results of both methods are shown in Fig. 3. Due to the limitations of space, we chose the 

partial region of bands 7, 14 and 28 with an image size of 358×352 pixels to illustrate and 

compare the fusion results. In Fig. 4, from the top downwards, the rows demonstrate the input 

LSHS multispectral images (up-sampled by using bicubic interpolation), the SUM fusion results, 
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the SRSR fusion results, the DPLM fusion results and the original multispectral images, 

respectively; from left to right, the columns show bands 7, 14, 28 and their RGB composite 

(28-14-7 bands as R-G-B), respectively. The comparison in Fig. 4 shows that the SUM results 

preserved the overall spectral color; however, there exists obvious spatial incoherence, especially 

in object edges, which is caused by the imprecise classification and insufficient LSHS pixels for 

unmixing. For SRSR fusion results, we can observe that some high-frequency spatial details and 

part of spectral color were lost, which are mainly caused by the large gap in spatial resolution 

between the input LSHS and RGB images. In contrast, the DPLM fusion result maintained good 

spatial coherence and overall spectral color, but there appears spectral distortion in certain 

objects (see the bright yellow regions in the RGB image), which is caused by insufficient 

training samples for this category of spectral signature in the LSHS image. To further analyze the 

fusion results, the absolute error images between the actual image and the fusion results of SUM, 

SRSR and DPLM in bands 7, 14, 28 and the average absolute error image for all bands are  
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Fig. 4. Comparison of fusion results on simulated data. From the top downwards, the rows illustrate the input 
LSHS images, the fusion results of SUM, the fusion results of SRSR, the fusion results of DPLM and the 
original multispectral images, respectively. From left to right, the columns demonstrate bands 7, 14, 28 and 
their RGB composite, respectively. 
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Fig. 5. The absolute error images between the actual image and the fusion results of SUM, SRSR and DPLM. 
From top downwards, the rows illustrate the absolute error images of SUM, SRSR and DPLM, respectively; 
from left to right, the columns show the error images of bands 7, 14, 28 and the average error image of all 
bands, respectively.  

 

shown in Fig. 5 (from black to white the values denote 0 to 255). By comparing error images, we 

can observe that the prediction errors of SUM, SRSR and DPLM concentrate on object edges, 

specific band images and areas with less training samples, respectively. 

To illustrate the fused spectral quality, we selected two regions of interest (ROI) with 3×3 

pixels (Fig. 6(a)) and plotted the mean spectra of ROIs from the above fusion results as shown in 

Fig. 6(b). Comparing the spectra in Fig. 6(b), we can observe that the spectra from our algorithm 

are best fitted with the ground truth spectra. To quantitatively evaluate the fusion results, we 

calculated measurements between the actual image and the fusion results in terms of AAD, 

RMSE, ERGAS, SAM and SSIM, which are shown in Table 1. According to the comparisons in 

AAD and RMSE, we can conclude that our fusion results are the best at preserving radiometric 

property among three methods; the comparisons in ERGAS and SAM indicate that our fusion 

result preserved better spectral property than SUM and SRSR; based on the evaluations in SSIM, 

we can state that DPLM is better than the comparison approaches at preserving spatial details. 

Since the sparseness constraint SA is the main parameter for the proposed fusion algorithm, 

we analyze its impact on the fusion results. By setting SA from 0.65 to 0.92 at 0.03 intervals, we 

got 10 fusion results from the proposed algorithm. The curve of RMSE of fusion results and SA is 

shown in Fig. 6(c), from which we can see that when SA locates at a small range (0.8~0.9 in this 

case), the fusion result is not sensitive to it (small RMSE) but the fusion error increases quickly 

when the parameter is out of this range. Besides, the processing time increases when SA 

decreases because more projections are needed to deal with more representation bases.       
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Fig. 6. (a) Selected two ROIs; (b) Spectra comparison from different fusion methods; (c) RMSE-SA curve  

 
Table 1. Quantitative evaluation comparisons of fusion results on simulation data. The numbers are shown in 
the range of 8-bit images. Those in bold are the best scores between three methods 

Method AAD RMSE ERGAS SAM SSIM 

SUM 15.5875 21.8042 0.5513 15.4816 0.6874 

SRSR 13.7706 19.0457 0.4527 10.7634 0.7302 

DPLM 10.4404 14.9414 0.3676 6.9237 0.7654 

 

4.3 Fusion of Landsat/ETM+ and Aqua/ MODIS 

In this section, the spatial and spectral fusions of Landsat/ETM+ and Aqua/MODIS 

reflectance data are carried out by SUM, SRSR and DPLM, respectively. The ETM+ image was 

captured on November 20, 2001 and the MODIS image was acquired on November 17, 2001; we 

therefore considered they recorded the same scene of earth’s surface due to their short capture 

interval. The ETM+ imager provides 7 bands in VIR region (30 m spatial resolution) and one 

band in the thermal infrared (TIR) region (60 m spatial resolution); and the MODIS sensor 

generates 36 bands (from 0.4 to 14.4 μm) with a spatial resolution of 250/500/1000 m. We focus 

on the fusion of the VIR region of ETM+ and MODIS in this paper, i.e., bands 1~5, 7, 8 of 

ETM+ and bands 1~19 of MODIS (1~7 bands with 500 m spatial resolution and 8~19 bands 
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with 1000 m spatial resolution). Before fusion, the MODIS data was geometrically registered to 

the Landsat ETM+ data. The study area is located in Hong Kong, China, covering an area of 1.5 

km by 1.5 km with a Landsat image size of 500×500 pixels and MODIS image size of 30×30 

pixels (8~19 bands with 1000 m spatial resolution are resampled with a scale factor of 2). The 

partial region of the study area is shown in Fig. 7, in which the Landsat image size is 328×328 

pixels and the MODIS image is up-sampled by using bicubic interpolation to the same spatial 

size of Landsat. From left to right the scenes are ETM+ composite image (NIR-red-green as the 

R-G-B), and the MODIS bands of 2, 7, and 17, respectively. 

 

 
Fig. 7. Illustration of ETM+ and MODIS images. From left to right, the scenes are the ETM+ RGB composite 
image, MODIS bands 2, 7 and 17, respectively. 

 

   Taking the MODIS image as LSHS data and the ETM+ image as HSLS data, we expect to 

fuse them to obtain HSHS data with the spatial details of ETM+ and the spectral properties of 

MODIS by utilizing SUM, SRSR and DPLM, respectively. In the fusion process, the dictionary 

dimensionality of DPLM and the class number of SUM and SRSR were both set at 30, the 

sparseness degree of representation coefficients in DPLM was set at 0.8 and the window size of 

SUM was set at 25 via fine-tuning. The fusion results of SUM, SRSR and DPLM are 

demonstrated in Fig. 8 without enhancement. To save space, we chose a partial region of interest 

(with an image size of 240×240 pixels) and bands of 3, 7, 12 and 18 to illustrate the fusion 

results. From the top downwards, the rows show the input MODIS image, the fusion result of 

SUM, the fusion result of SRSR and the fusion result of DPLM, respectively; from left to right, 

the columns show bands of 3, 7, 12 and 18, respectively. From the comparisons in Fig. 8, we can 

observe that the SUM fusion result is lack of smoothing due to the classification step; the SRSR 

result is over-smoothing due to the super-resolution strategy; while the spatial information in our 
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fusion result is best predicted due to the spectral bases extraction strategy. 

 

 

 

 

 
Fig. 8. Comparison of fusion results on ETM+ and MODIS data. From the top downwards, the rows illustrate 
the input MODIS image, the fusion result of SUM, the fusion result of SRSR and the fusion result of DPLM, 
respectively; from left to right, the columns show the scenes of bands 3, 7, 12 and 18, respectively. 
 

   To quantitatively evaluate the fusion results, we calculated the spectral CC, the spatial CC, 

the spectral distortion index Iλ, the spatial distortion index Is and the joint spatial and spectral 

quality index QNR, respectively. When calculating the spectral CC, we down-sampled the fused 

results to the same spatial resolution of MODIS and calculated the CCs between the 
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down-sampled fusion results and the actual MODIS image for all bands. For the spatial CCs, 

they were calculated between the corresponding bands of fused results and the original ETM+ 

image. The position of the ETM+ and MODIS bands in the spectrum is shown in Fig. 9. Since 

the fused HSHS data has the same spectral information as MODIS, their spectral position with 

ETM+ is the same as MODIS. The average spectral CC of 19 bands, the average spatial CC for 

the corresponding 6 bands in Fig. 9, Iλ, Is and QNR are shown in Table 2. From the comparisons 

of spectral CC and Iλ, we can conclude that the performance of SRSR is the worst and SUM and 

DPLM perform very similarly at preserving spectral information; from the comparisons of 

spatial CC and Is, we can conclude that DPLM is the best at preserving spatial information. 
 
Table 2. Quantitative evaluation comparisons of fusion results on ETM+ and MODIS without reference. Those 
in bold are the best scores among the three methods 

Method Spectral CC Spatial CC Iλ Is QNR 

SUM 0.7838 0.4577 0.0562 0.1012 0.8482 

SRSR 0.7047 0.6925 0.0752 0.0804 0.8504 

DPLM 0.7872 0.7523 0.0642 0.0717 0.8687 

 

 
Fig. 9. The top row shows the position of ETM+ and MODIS bands in the spectrum; the bottom row shows the 
position of SPOT5 and Hyperion bands in the spectrum. 

 

4.4 Fusion of EO-1/Hyperion and SPOT5/HRG 

In this section, we applied the proposed method, SRSR and SUM to fuse hyperspectral and 
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multispectral images: EO-1/Hyperion and SPOT5/HRG multispectral data. The Hyperion 

generates 220 bands in spectra range of 0.4~2.5 μm with a 30 m spatial resolution and the 

SPOT5/HRG offers a panchromatic image and a multispectral (MS) image (including green, red, 

NIR and SWIR bands from 0.5 to 1.75 μm) with spatial resolution of 5 m and 10 m, respectively. 

Taking the Hyperion image as the LSHS data and SPOT5 MS image as HSLS data, we expect to 

generate the desired HSHS data with the spectral information of Hyperion and the spatial 

information of SPOT5 MS by employing SUM, SRSR and DPLM, respectively. These two 

datasets were both captured on 28 November, 2008 and are located in Hong Kong, China, 

covering an area of 5km by 10 km with an image size of 336×171 pixels for Hyperion image and 

an image size of 1008×513 pixels for SPOT5 MS image. In the pre-processing step, we 

de-noised the Hyperion image by means of the method in [36] and kept 167 good-quality bands 

by removing those with strong noise; then the regions of interest in these two datasets are 

co-registered by choosing the ground control points in ENVI software. The partial region of 

interest is shown in Fig. 10, in which the image size of SPOT5 MS is 513×513 pixels and the 

Hyperion image is up-sampled by using bicubic interpolation to the same spatial size of SPOT5 

MS with a scale factor of 3. From left to right the scenes are the SPOT5 composite image 

(NIR-red-green as an R-G-B), the Hyperion bands 20, 30 and 48 (which are closest to green, red 

and the NIR bands of SPOT5 in the spectrum), respectively. 

 

    
Fig. 10. Illustration of SPOT5 MS and Hyperion images. From left to right, the scenes are the SPOT5 RGB 
composite image, Hyperion bands of 20, 30 and 48, respectively. 
 

In the fusion process, the dictionary dimensionality of DPLM and the class number of SUM 

and SRSR were both set at 30, the sparseness degree for the representation coefficients in DPLM 

was set at 0.85 and the window size of SUM was set to 25 via fine tuning. The fusion results of 
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SUM, SRSR and DPLM are demonstrated in Fig. 11. To save space, we chose a partial region of 

interest with an image size of 290×290 pixels and bands of 8, 31, 56 and 120 to illustrate the 

fusion results. From the top downwards, the rows show the input Hyperion image, the fusion 

results of SUM, the fusion results of SRSR and the fusion results of DPLM, respectively; from 

left to right, the columns show bands of 8, 31, 56 and 120, respectively. From the comparisons in 

Fig. 11, we can clearly see that the spatial information is best preserved in our fusion result 

among three methods. Besides, we can observe that the existing noise in bands 8 and 120 of 

Hyperion image is removed in all fusion results.  
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Fig. 11. Comparison of fusion results on Hyperion and SPOT5 data. From the top downwards, the rows 
illustrate the input Hyperion image, the fusion result of SUM, the fusion result of SRSR and the fusion result 
of DPLM, respectively; from left to right, the columns show the images of bands 8, 31, 56 and 120, 
respectively. 

 

   To quantitatively evaluate the fusion results, we calculated the spectral CC, the spatial CC, 

the spectral distortion index Iλ, the spatial distortion index Is and the joint spatial and spectral 

quality index QNR, respectively. When calculating the spectral CC, we down-sampled the fused 

results to the same spatial resolution of Hyperion and calculated the CCs between the 

down-sampled fusion results and the Hyperion image for all bands. For the spatial CCs, they are 

calculated between the corresponding bands of fused results and the SPOT5 MS image. The 

position of SPOT5 MS and Hyperion bands in the spectrum is shown in Fig. 9. Since the fused 

HSHS data has the same spectral information as Hyperion, their spectral position with SPOT5 

MS is the same as Hyperion. The average spectral CC on 167 bands, the average spatial CC for 

the corresponding 44 bands in Fig. 7, Iλ, Is and QNR are shown in Table 3. From the comparisons 

of spectral CC and Iλ, we can conclude that SRSR is the worst and SUM and DPLM perform 

very similarly at preserving spectral information; from the comparisons of spatial CC and Is, we 

can conclude that DPLM is the best among three methods at preserving spatial information. 

 
Table 3. Quantitative evaluation comparisons of fusion results on Hyperion and SPOT5 MS data without 
reference. Those in bold are the best scores among three methods 

Method Spectral CC Spatial CC Iλ Is QNR 

SUM 0.8752 0.5358 0.1310 0.0463 0.8288 

SRSR 0.8412 0.8151 0.1428 0.0278 0.8333 

DPLM 0.8689 0.9429 0.0760 0.0181 0.9072 
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5. Conclusion 

We proposed a spatial and spectral fusion method based on dictionary-pair learning. This 

method is devised for the fusion of two categories of remote sensing data: one category 

possesses coarse spatial details, wide spectrum coverage and more spectral bands, termed as data 

with low spatial resolution and high spectral resolution (LSHS); while the other category data is 

characterized by fine spatial details, narrow spectrum coverage and less spectral bands, termed as 

data with high spatial resolution and low spectral resolution (HSLS). By fusing the spectral 

information of LSHS data and the spatial information of HSLS data, this method generates 

synthetic data with both high spatial and high spectral resolutions. Based on sparse non-negative 

matrix factorization and relevant sparse coding techniques, this method includes two stages: in 

the first stage, two spectral dictionaries with high and low spectral resolutions (dictionary-pair) 

are learned to represent the spectral bases of LSHS data and HSLS data, respectively; in the 

second stage, the fused data is derived by ensuring the LSHS and HSLS data have the same 

representation coefficients with respect to their dictionaries, thereby incorporating the spatial 

details from the HSLS data into the LSHS data. The good performance of the proposed method 

on both simulation data and satellite images validated its effectiveness in fusing multispectral 

and hyperspectral (or high-spectral) data. When compared with the classic spatial unmixing 

based method and the sophisticated super-resolution method, the superiority of the proposed 

method in preserving both spatial information and spectral information is demonstrated.   

By representing each pixel vector as a linear combination of the learned spectral bases, the 

proposed method earns a more consistent prediction with accurate spatial details than the spatial 

unmixing based method. Comparing the fusion results on simulation data and satellite data, we 

can observe that our proposed method performs better on simulation data than on satellite data at 

preserving spectral information, which is caused by the relative poor quality of satellite data. 

Comparing the fusion results on two satellite data settings, we can conclude that the proposed 

method performs better at preserving spectral information when the given LSHS image has a 

larger number of spectral bands; while a smaller scale factor in spatial resolution between LSHS 

and HSLS data is favorable for our method in preserving spatial details. Since the spatial details 

are directly extracted from HSLS data for SUM and our method, good geometrical registration 

between LSHS and HSLS data is required for both methods. However, from the existence of 
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noise bands in fusion of Hyperion and SPOT5 data, we can conclude that the dictionary learning 

method has a capability of anti-noise. That means if the registration errors are deemed as noise, 

the proposed method has a certain degree of tolerance for these registration errors. This error 

tolerance capability is increased when there are sufficient training samples.   
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