Ece Uslu and Esin Becenen Original work on **Identical Object Distribution**

Theorem 1: If there are 2n identical balls, they can be put in boxes A (x many) and B (y many) for 0 < x < y as $\frac{2n-2}{2} = n-1$ different ways.

Proof: 2*n* ball distribution for boxes A (first term) and B (second term):

 $\begin{array}{c}
1 + (2n - 1) = 2n \\
2 + (2n - 2) = 2n \\
3 + (2n - 3) = 2n \\
\\
\\
\\
\\
\\
\\
\\
(n - 1) + (n + 1) = 2n
\end{array}$ There are n - 1 states satisfying 0 < x < y condition.

Theorem 2: If there are 2n-1 identical balls, they can be put in boxes A (x many) and B (y many) for 0 < x < y as

 $\frac{(2n-1)-1}{2} = n-1$ different ways.

Proof: 2n - 1 ball distribution for boxes A (first term) and B (second term):

Unification of theorem 1 and 2 gives;

Result 1: If there are *n* identical balls, they can be put in boxes A (x many) and B (y many) for 0 < x < y as b_n different ways. Where

$$b_n = \begin{cases} \frac{2n-1}{2} & n \text{ positive odd integer} \\ \frac{2n-2}{2} & n \text{ positive even integer} \end{cases}$$

We saw that if there are *n* identical balls, they can be put in boxes A (x many) and B (y many) for 0 < x < y as a_n different ways where

$$a_1 = 0, a_2 = 0, a_3 = 1, a_4 = 1, a_5 = 2, a_6 = 2, a_7 = 3, a_8 = 3, a_9 = 4, a_{10} = 4, a_{11} = 5, a_{12} = 5, a_{13} = 5, a_{14} = 5, a_{15} = 5, a_{15}$$

which is given by A004526 sequence of OEIS.

Question: In how many different ways can 10 identical balls be put in boxes A, B and C as x,y and z respectively, satisfying 0 < x < y < z condition?

Solution: 0 < x < y < z and x + y + z = 10;

A	В	С
1	2	7
1	3	6
1	4	5
2	3	5

Let's put one ball in each box. 7 remaining balls can be put in boxes B and C as $\frac{7-1}{2} = 3$ from Theorem 1.

Let's put 2 balls in each box. 4 remaining balls can be put in boxes B and C as $\frac{4-2}{2} = 1$ from Theorem 1.

Number of possible ways = 3+1=4

We can also evaluate the number of possibilities from the sequence as $a_{10} = b_7 + b_4 = 3 + 1 = 4$

Question: In how many different ways can 11 identical balls be put in boxes A, B and C as x,y and z respectively, satisfying 0 < x < y < z condition? Solution: 0 < x < y < z and x + y + z = 11;

Α	В	С
1	2	8
1	3	7
1	4	6
2	3	6
2	4	5

Let's put one ball in each box. 8 remaining balls can be put in boxes B and C as $\frac{8-2}{2} = 3$ from Theorem 1.

Let's put 2 balls in each box. 5 remaining balls can be put in boxes B and C as $\frac{5-1}{2} = 2$ from Theorem 1.

Number of possible ways = 3+2=5

We can also evaluate the number of possibilities from the sequence as $a_{11} = b_8 + b_5 = 3 + 2 = 5$

Question: In how many different ways can 12 identical balls be put in boxes A, B and C as x,y and z respectively, satisfying 0 < x < y < z condition?

Solution: 0 < x < y < z and x + y + z = 12

A	В	С
1	2	9
1	3	8
1	4	7
1	5	6
	3	7
2	4	6
3	4	5

Let's put one ball in each box. 9 remaining balls can be put in boxes B and C as $\frac{9-1}{2} = 4$ from Theorem 1.

Let's put 2 balls in each box. 6 remaining balls can be put in boxes B and C as $\frac{6-2}{2} = 2$ from Theorem 1.

Let's put 3 balls in each box. 3 remaining balls can be put in boxes B and C as $\frac{3-1}{2} = 1$ from Theorem 1.

Number of possible ways = 4+2+1=7

We can also evaluate the number of possibilities from the sequence as $a_{12} = b_9 + b_6 + b_3 = 4 + 2 + 1 = 7$

Theorem 3: If there are 6*n* identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z in $3n^2 - 3n + 1$ different ways.

Let's put 2 balls in each box. 6n - 6 remaining balls can be put in boxes B and C in

Let's put 3 balls in each box. 6n - 9 remaining balls can be put in boxes B and C in

Let's put 4 balls in each box. 6n-12 remaining balls can be put in boxes B and C in

A
B
C

$$(6n-12)-2$$

 $2 = 3n-7$ different ways

Let's put (2k-1) balls in each box. $6n - 3 \cdot (2k - 1)$ remaining balls can be put in boxes B and C in $\frac{[6n - 3 \cdot (2k - 1)] - 1}{2} = 3n - 3k + 1$ different ways.

Let's put (2k) balls in each box. 6n - 6k remaining balls can be put in boxes B and C in $\frac{[6n-6k]-2}{2} = 3n - 3k - 1$ different ways.

If we continue similarly...

Let's put (2n-2) balls in each box. 6n - 3(2n - 2) = 6 remaining balls can be put in boxes B and C in $\frac{6-2}{2} = 4$ different ways.

Let's put (2n-1) balls in each box. 6n - 3(2n - 1) = 3 remaining balls can be put in boxes B and C in $\frac{3-1}{2} = 2$ different ways.

Sum of the situations which we put odd number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n} \frac{\left[6n - 3 \cdot (2k-1)\right] - 1}{2} = \sum_{k=1}^{n} (3n - 3k + 1) = 3 \cdot n^{2} - 3 \cdot \frac{n \cdot (n+1)}{2} + n = \frac{3n^{2} - n}{2}$$

Sum of the situations which we put even number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n-1} \frac{\left[6n-3.(2k)\right]-2}{2} = \sum_{k=1}^{n-1} (3n-3k-1) = 3.n.(n-1) - 3.\frac{(n-1).n}{2} - (n-1) = \frac{3n^2 - 5n + 2n}{2}$$

Sum of all situations: $\frac{3n^2 - n}{2} + \frac{3n^2 - 5n + 2}{2} = 3n^2 - 3n + 1.$

Theorem 4: If there are 6n-3 identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z in $3(n-1)^2$ different ways.

Proof: From Theorem 2;

$$a_{6n} = b_{6n-3} + b_{6n-6} + \dots + b_6 + b_3$$

$$a_{6n} = b_{6n-3} + \underbrace{b_{6n-6} + \dots + b_6 + b_3}_{a_{6n-3}}$$

$$a_{6n} = b_{6n-3} + a_{6n-3}$$

$$3n^2 - 3n + 1 = \frac{6n - 3 - 1}{2} + a_{6n-3}$$

$$3n^2 - 3n + 1 = 3n - 2 + a_{6n-3}$$

$$a_{6n-3} = 3(n-1)^2.$$

Theorem 5: If there are 6n + 1 identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z in $3n^2 - 2n$ different ways.

Proof: Lets put one ball in each box. 6n - 2 remaining balls can be put in boxes B and C in

Let's put 2 balls in each box. 6n - 5 remaining balls can be put in boxes B and C in

Let's put 3 balls in each box. 6n - 8 remaining balls can be put in boxes B and C in

Let's put 4 balls in each box. 6n - 11 remaining balls can be put in boxes B and C in

A B C
$$(6n-11)-1 = 3n-6$$
 different ways $6n-11$

Let's put (2k-1) balls in each box. 6n+1-3.(2k-1) remaining balls can be put in boxes B and C in $\frac{[6n+1-3.(2k-1)]-2}{2} = 3n-3k+1$ different ways

Let's put (2k) balls in each box. 6n+1-6k remaining balls can be put in boxes B and C in $\frac{[6n+1-6k]-1}{2} = 3n-3k$ different ways

If we continue similarly...

Let's put (2n-2) balls in each box. 6n + 1 - 3(2n - 2) = 7 remaining balls can be put in boxes B and C in $\frac{7-1}{2} = 3$ different ways

Let's put (2n-1) balls in each box. 6n + 1 - 3(2n - 1) = 4 remaining balls can be put in boxes B and C in $\frac{4-2}{2} = 1$ different ways

Sum of the situations which we put odd number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n} \frac{\left[6n+1-3(2k-1)\right]-2}{2} = \sum_{k=1}^{n} (3n-3k+1) = 3 \cdot n^{2} - 3 \cdot \frac{n \cdot (n+1)}{2} + n = \frac{3n^{2} - n}{2}$$

Sum of the situations which we put even number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n-1} \frac{\left[6n+1-3.(2k)\right]-1}{2} = \sum_{k=1}^{n-1} (3n-3k) = 3.n.(n-1) - 3.\frac{(n-1).n}{2} = \frac{3n^2 - 3n}{2}$$

Sum of all situations : $\frac{3n^2 - n}{2} + \frac{3n^2 - 3n}{2} = 3n^2 - 2n$

Theorem 6: If there are 6n - 2 identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z, in $3n^2 - 5n + 2$ different ways.

Proof: From Theorem 2;

 $a_{6n+1} = b_{6n-2} + b_{6n-5} + \dots + b_7 + b_4.$ $a_{6n+1} = b_{6n-2} + \underbrace{b_{6n-5} + \dots + b_7 + b_4}_{a_{6n-2}}$ $a_{6n+1} = b_{6n-2} + a_{6n-2}$ $3n^2 - 2n = \frac{6n - 2 - 2}{2} + a_{6n-2}$ $3n^2 - 2n = 3n - 2 + a_{6n-2}$ $a_{6n-2} = 3n^2 - 5n + 2.$

Theorem 7: If there are 6n + 2 identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z in $3n^2 - n$ different ways.

Proof: Lets put one ball in each box. 6n - 1 remaining balls can be put in boxes B and C in

Let's put 2 balls in each box. 6n - 4 remaining balls can be put in boxes B and C in

Let's put 3 balls in each box. 6n - 7 remaining balls can be put in boxes B and C in

Let's put 4 balls in each box. 6n - 10 remaining balls can be put in boxes B and C in

Let's put (2k-1) balls in each box. $6n + 2 - 3 \cdot (2k - 1)$ remaining balls can be put in boxes B and C in $\frac{[6n + 2 - 3 \cdot (2k - 1)] - 1}{2} = 3n - 3k + 2$ different ways.

Let's put (2k) balls in each box. 6n + 2 - 6k remaining balls can be put in boxes B and C in $\frac{[6n + 2 - 6k] - 2}{2} = 3n - 3k$ different ways.

If we continue similarly...

Let's put (2n-2) balls in each box. 6n + 2 - 3(2n - 2) = 8 remaining balls can be put in boxes B and C in $\frac{8-2}{2} = 3$ different ways.

Let's put (2n-1) balls in each box. 6n + 2 - 3(2n - 1) = 5 remaining balls can be put in boxes B and C in $\frac{5-1}{2} = 2$ different ways. Sum of the situations which we put odd number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n} \frac{\left[6n+2-3(2k-1)\right]-1}{2} = \sum_{k=1}^{n} (3n-3k+2) = 3 \cdot n^{2} - 3 \cdot \frac{n \cdot (n+1)}{2} + 2n = \frac{3n^{2}+n}{2}$$

Sum of the situations which we put even number of balls in each box and distribute remaining balls:

$$\sum_{k=1}^{n-1} \frac{\left[6n + -3.(2k)\right] - 2}{2} = \sum_{k=1}^{n-1} (3n - 3k) = 3.n.(n-1) - 3.\frac{(n-1).n}{2} = \frac{3n^2 - 3n}{2}$$

Sum of all situations: $\frac{3n^2 + n}{2} + \frac{3n^2 - 3n}{2} = 3n^2 - n$.

Theorem 8: If there are 6n-1 identical balls, they can be put in boxes A, B and C as x, y and z respectively, satisfying 0 < x < y < z, in $3n^2 - 4n + 1$ different ways.

Proof: From Theorem 2;

$$a_{6n+2} = b_{6n-1} + b_{6n-4} + \dots + b_8 + b_5$$

$$a_{6n+2} = b_{6n-1} + \underbrace{b_{6n-4} + \dots + b_8 + b_5}_{a_{6n-1}}$$

$$a_{6n+2} = b_{6n-1} + a_{6n-1}$$

$$3n^2 - n = \frac{6n - 1 - 1}{2} + a_{6n-1}$$

$$3n^2 - n = 3n - 1 + a_{6n-1}$$

$$a_{6n-1} = 3n^2 - 4n + 1$$

We can now conclude that;

Combining Theorem 3,4,5,6,7 and 8 provides us the following sequence. This sequence's first 5 terms are zero. This is the sequence of how many different distributions can be made with 3 boxes (A (x balls) ,B (y balls) and C (z balls) where 0 < x < y < z) and at least 6 identical balls

 $a_1 = 0$, $a_2 = 0$, $a_3 = 0$, $a_4 = 0$, $a_5 = 0$ and for other terms;

$$a_n = \begin{cases} 3.n^2 - 6n + 3 & n = 6k - 3 & k \in N^+ \\ 3.k^2 - 5.k + 2 & n = 6k - 2 & k \in N^+ \\ 3.k^2 - 4.k + 1 & n = 6k - 1 & k \in N^+ \\ 3.k^2 - 3.k + 1 & n = 6k & k \in N^+ \\ 3.k^2 - 2.k & n = 6k + 1 & k \in N^+ \\ 3.k^2 - k & n = 6k + 2 & k \in N^+ \end{cases}$$

Here are some terms of the sequence a_n :

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a_n	0	0	0	0	0	1	1	2	3	4	5	7	8	10	12	14	16	19	21	24

																		38		40
a_n	27	30	33	37	40	44	48	52	56	61	65	70	75	80	85	91	96	102	108	114

0,0,0,0,0,1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341

Question: In how many different ways can 16 identical balls be put in boxes A, B, C and D as x, y, z and p respectively, satisfying 0 < x < y < z < p condition?

Solution: 0 < x < y < z < p and x + y + z + p = 16

Α	В	С	D
1	2	3	10
1	2	4	9
1	2	5	8
1	2	6	7
1	3	4	8
1	3	5	7
1	4	5	6
2	3	4	7
2	4	5	6

Let's put one ball in each box. Using Theorem 3, 12 remaining balls can be put in boxes B, C and D in

$$a_{6n} = 3n^2 - 3n + 1$$

 $a_{12} = 3.2^2 - 3.2 + 1 = 7$ different ways

Let's put 2 balls in each box. Using Theorem 7, 8 remaining balls can be put in boxes B, C and D in

 $a_{6n+2} = 3n^2 - n$ $a_8 = 3.1^2 - 1 = 2$ different ways

Total number of different distributions: 7+2=9

Theorem 9: : If there are *n* identical balls, they can be distributed as x, y, z, p in boxes A, B, C and D respectively, for 0 < x < y < z < p, in c_n different ways. Where

(For *n* identical balls, their distribution as x, y, z in boxes A, B and C respectively for 0 < x < y < z is a_n)

$$c_n = \begin{cases} c_{4k} = c_{4k-4} + a_{4k-4} & k \in N^+ \\ c_{4k+1} = c_{4k-3} + a_{4k-3} & k \in N^+ \\ c_{4k+2} = c_{4k-2} + a_{4k-2} & k \in N^+ \\ c_{4k+3} = c_{4k-1} + a_{4k-1} & k \in N^+ \end{cases}$$

Proof:

Let's put one ball from 4k balls in each box. 4k-4 remaining balls can be put in boxes B, C and D in a_{4k-4} different ways

Let's put 2 balls from 4k balls in each box. 4k-8 remaining balls can be put in boxes B, C and D in a_{4k-8} different ways

If we continue similarly...

Let's put k-2 balls from 4k balls in each box. 8 remaining balls can be put in boxes B, C and D in a_8 different ways

Let's put k-1 balls from 4k balls in each box. 4 remaining balls can be put in boxes B, C and D in a_4 different ways

Sum of all possibilities:

$$c_{4n} = a_{4n-4} + a_{4n-8} + \dots + a_8 + a_4.$$

$$c_{4n} = a_{4n-4} + \underbrace{a_{4n-8} + \dots + a_8 + a_4}_{c_{4n-4}}$$

$$c_{4n} = a_{4n-4} + c_{4n-4}.$$

Let's put one ball from 4k+1 balls in each box. 4k-3 remaining balls can be put in boxes B, C and D in a_{4k-3} different ways

Let's put 2 balls from 4k+1 balls in each box. 4k-7 remaining balls can be put in boxes B, C and D in a_{4k-7} different ways

If we continue similarly...

Let's put k-2 balls from 4k+1 balls in each box. 9 remaining balls can be put in boxes B, C and D in a_9 different ways

Let's put k-1 balls from 4k+1balls in each box. 5 remaining balls can be put in boxes B, C and D in a_5 different ways

Let's put k balls from 4k+1balls in each box. 1 remaining ball can be put in boxes B, C and D in a_1 different ways

Sum of all possibilities:

 $c_{4n+1} = a_{4n-3} + a_{4n-7} + \dots + a_9 + a_5 + a_1.$ $c_{4n+1} = a_{4n-3} + \underbrace{a_{4n-7} + \dots + a_9 + a_5 + a_1}_{c_{4n-3}}$ $c_{4n+1} = a_{4n-3} + c_{4n-3}.$

Let's put one ball from 4k+2 balls in each box. 4k-2 remaining balls can be put in boxes B, C and D in a_{4k-2} different ways

Let's put 2 balls from 4k+2 balls in each box. 4k-6 remaining balls can be put in boxes B, C and D in a_{4k-6} different ways

If we continue similarly...

Let's put k-2 balls from 4k+2 balls in each box. 10 remaining balls can be put in boxes B, C and D in a_{10} different ways

Let's put k-1 balls from 4k+2 balls in each box. 6 remaining balls can be put in boxes B, C and D in a_6 different ways

Let's put k balls from 4k+2 balls in each box. 2 remaining ball can be put in boxes B, C and D in a_2 different ways

Sum of all possibilities:

 $c_{4n+2} = a_{4n-2} + a_{4n-2} + \ldots + a_{10} + a_6 + a_2.$

$$c_{4n+2} = a_{4n-2} + \underbrace{a_{4n-6} + \dots + a_{10} + a_6 + a_2}_{c_{4n-2}}$$

 $c_{4n+2} = a_{4n-2} + c_{4n-2}.$

Let's put one ball from 4k+3 balls in each box. 4k-1 remaining balls can be put in boxes B, C and D in a_{4k-1} different ways

Let's put 2 balls from 4k+3 balls in each box. 4k-5 remaining balls can be put in boxes B, C and D in a_{4k-5} different ways

If we continue similarly...

Let's put k-2 balls from 4k+3 balls in each box. 11 remaining balls can be put in boxes B, C and D in a_{11} different ways

Let's put k-1 balls from 4k+3 balls in each box. 7 remaining balls can be put in boxes B, C and D in a_7 different ways

Let's put k balls from 4k+3 balls in each box. 3 remaining ball can be put in boxes B, C and D in a_3 different ways

Sum of all possibilities:

 $c_{4n+3} = a_{4n-1} + a_{4n-1} + \dots + a_{11} + a_7 + a_3.$

$$c_{4n+3} = a_{4n-1} + \underbrace{a_{4n-5} + \dots + a_{11} + a_7 + a_3}_{c_{4n-1}}$$

$$c_{4n+3} = a_{4n-1} + c_{4n-1}.$$

We can distribute at least 10 balls to A,B,C,D boxes with 0 < x < y < z < p condition

Relationship between a_n and c_n :

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a_n	0	0	0	0	0	1	1	2	3	4	5	7	8	10	12	14	16	19	21	24
C _n	0	0	0	0	0	0	0	0	0	1	1	2	3	5	6	9	11	15	18	23

n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a_n	27	30	33	37	40	44	48	52	56	61	65	70	75	80	85	91	96	102	108	114
C _n	27	34	39	47	54	64	72	84	94	108	120	136	150	169	185	206	225	249	270	297

 a_n sequence is the sequence A211540 on OEIS

 c_n sequence is the sequence A266527 on OEIS

Theorem 10: If there are n identical balls, they can be put in boxes A, B, C, D and E as x, y, z, p and q respectively, satisfying 0 < x < y < z < p < q, in d_n different ways, where

(For *n* identical balls, their distribution as x, y, z, p in boxes A, B, C and D respectively for 0 < x < y < z < p is c_n)

$$d_{n} = \begin{cases} d_{5k} = c_{5k-5} + d_{5k-5} & k \in N^{+} \\ d_{5k+1} = c_{5k-4} + d_{5k-4} & k \in N^{+} \\ d_{5k+2} = c_{5k-3} + d_{5k-3} & k \in N^{+} \\ d_{5k+3} = c_{5k-2} + d_{5k-2} & k \in N^{+} \\ d_{5k+4} = c_{5k-1} + d_{5k-1} & k \in N^{+} \end{cases}$$

Proof:

Let's put one ball from 5k balls in each box. 5k-5 remaining balls can be put in boxes B, C, D and E in a_{5k-5} different ways

Let's put 2 balls from 5k balls in each box. 5k-10 remaining balls can be put in boxes B, C, D and E in a_{5k-10} different ways

If we continue similarly...

Let's put k-2 balls from 5k balls in each box. 10 remaining balls can be put in boxes B, C, D and E in a_{10} different ways

Let's put k-1 balls from 5k balls in each box. 5 remaining balls can be put in boxes B, C, D and E in a_5 different ways

Sum of all possibilities:

$$d_{5n} = c_{5n-5} + c_{5n-10} + \dots + c_{10} + c_5.$$

$$d_{5n} = c_{5n-5} + \underbrace{c_{5n-10} + \dots + c_{10} + c_5}_{d_{5n-5}}$$

$$d_{5n} = c_{5n-5} + d_{5n-5}.$$

Similarly;

$$d_{5n+1} = c_{5n-4} + c_{5n-9} + \dots + c_{11} + c_6 + c_1.$$

$$d_{5n+1} = c_{5n-4} + \underbrace{c_{5n-9} + \dots + c_{11} + c_6 + c_1}_{d_{5n-4}}$$

$$d_{5n+1} = c_{5n-4} + d_{5n-4}.$$

$$d_{5n+2} = c_{5n-3} + c_{5n-8} + \dots + c_{12} + c_7 + c_2.$$

$$d_{5n+2} = c_{5n-3} + \underbrace{c_{5n-8} + \dots + c_{12} + c_7 + c_2}_{d_{5n-3}}.$$

$$d_{5n+2} = c_{5n-3} + d_{5n-3}.$$

$$d_{5n+3} = c_{5n-2} + c_{5n-7} + \dots + c_{13} + c_8 + c_3.$$

$$d_{5n+3} = c_{5n-2} + \underbrace{c_{5n-7} + \dots + c_{13} + c_8 + c_3}_{d_{5n-2}}$$

$$d_{5n+3} = c_{5n-2} + d_{5n-2}.$$

$$d_{5n+4} = c_{5n-1} + c_{5n-6} + \dots + c_{14} + c_9 + c_4.$$

$$d_{5n+4} = c_{5n-1} + \underbrace{c_{5n-6} + \dots + c_{14} + c_9 + c_4}_{d_{5n-1}}_{d_{5n-1}}$$

$$d_{5n+4} = c_{5n-1} + d_{5n-1}.$$

We can distribute at least 15 balls to A,B,C,D,E boxes with 0 < x < y < z < p < q condition

Relationship between	C_n	and	d_n
-----------------------------	-------	-----	-------

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
C_n	0	0	0	0	0	0	0	0	0	1	1	2	3	5	6	9	11	15	18	23
d_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	3	5	7

n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C_n	27	34	39	47	54	64	72	84	94	108	120	136	150	169	185	206	225	249	270	297
d_n	10	13	18	23	30	37	47	57	70	84	101	119	141	164	192	221	255	291	333	377

 c_n sequence is the sequence A266527 on OEIS

 d_n sequence is the sequence A267094 on OEIS

Theorem 11: If there are n identical balls, they can be put in boxes A, B, C, D, E and F as x, y, z, p, q, h respectively, satisfying 0 < x < y < z < p < q < h, in e_n different ways, where

(For *n* identical balls, their distribution as x, y, z, p, q in boxes A, B, C, D, E respectively for 0 < x < y < z < p < q is d_n)

$$e_{n} = \begin{cases} e_{6k} = d_{6k-6} + e_{6k-6} & k \in N^{+} \\ e_{6k+1} = d_{6k-5} + e_{6k-5} & k \in N^{+} \\ e_{6k+2} = d_{6k-4} + e_{6k-4} & k \in N^{+} \\ e_{6k+3} = d_{6k-3} + e_{6k-3} & k \in N^{+} \\ e_{6k+4} = d_{6k-2} + e_{6k-2} & k \in N^{+} \\ e_{6k+5} = d_{6k-1} + e_{6k-1} & k \in N^{+} \end{cases}$$

Similarly,

$$e_{6n} = d_{6n-6} + d_{6n-12} + \dots + d_{18} + d_{12} + d_6.$$

$$e_{6n} = d_{6n-6} + \underbrace{d_{6n-12} + \dots + d_{18} + d_{12} + d_6}_{e_{6n-6}}$$

$$e_{6n} = d_{6n-6} + e_{6n-6}.$$

$$e_{6n+1} = d_{6n-5} + d_{6n-11} + \dots + d_{19} + d_{13} + d_7 + d_1.$$

$$e_{6n+1} = d_{6n-5} + \underbrace{d_{6n-11} + \dots + d_{19} + d_{13} + d_7 + d_1}_{e_{6n-5}}$$

$$e_{6n+1} = d_{6n-5} + e_{6n-5}.$$

$$e_{6n+2} = d_{6n-4} + d_{6n-10} + \dots + d_{20} + d_{14} + d_8 + d_2.$$

$$e_{6n+2} = d_{6n-4} + \underbrace{d_{6n-10} + \dots + d_{20} + d_{14} + d_8 + d_2}_{e_{6n-4}}$$

$$e_{6n+2} = d_{6n-4} + e_{6n-4}.$$

$$e_{6n+3} = d_{6n-3} + d_{6n-9} + \dots + d_{21} + d_{15} + d_9 + d_3.$$

$$e_{6n+3} = d_{6n-3} + \underbrace{d_{6n-9} + \dots + d_{21} + d_{15} + d_9 + d_3}_{e_{6n-3}}$$

$$e_{6n+3} = d_{6n-3} + e_{6n-3}.$$

$$e_{6n+4} = d_{6n-2} + d_{6n-8} + \dots + d_{22} + d_{16} + d_{10} + d_4.$$

$$e_{6n+4} = d_{6n-2} + \underbrace{d_{6n-8} + \dots + d_{22} + d_{16} + d_{10} + d_4}_{e_{6n-2}}_{e_{6n-2}}$$

$$e_{6n+5} = d_{6n-1} + d_{6n-7} + \dots + d_{23} + d_{17} + d_{11} + d_5.$$

$$e_{6n+5} = d_{6n-1} + \underbrace{d_{6n-7} + \dots + d_{23} + d_{17} + d_{11} + d_5}_{e_{6n-1}}$$

$$e_{6n+5} = d_{6n-1} + e_{6n-1}.$$

We can distribute at least 21 balls to A,B,C,D,E,F boxes with 0 < x < y < z < p < q < h condition

Relationship between d_n and e_n ;

n	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d_n	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	3	5	7
e_n	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d_n	10	13	18	23	30	37	47	57	70	84	101	119	141	164	192	221	255	291	333	377
e_n	1	1	2	3	5	7	11	14	20	26	35	44	58	71	90	110	136	163	199	235

 d_n sequence is the sequence A267094 on OEIS

 e_n sequence is the sequence A267118 on OEIS

Theorem 12: If there are n identical balls, they can be put in boxes A, B, C, D, E, F and G as x, y, z, p, q, h, j respectively, satisfying 0 < x < y < z < p < q < h < j, in f_n different ways, where

(For *n* identical balls, their distribution as x, y, z, p in boxes A, B, C, D, E, F respectively for 0 < x < y < z < p < q < h is e_n)

$$f_n = \begin{cases} f_{7k} = e_{7k-7} + f_{7k-7} & k \in N^+ \\ f_{7k+1} = e_{7k-6} + f_{7k-6} & k \in N^+ \\ f_{7k+2} = e_{7k-5} + f_{7k-5} & k \in N^+ \\ f_{7k+3} = e_{7k-4} + f_{7k-4} & k \in N^+ \\ f_{7k+4} = e_{7k-3} + f_{7k-3} & k \in N^+ \\ f_{7k+5} = e_{7k-2} + f_{7k-2} & k \in N^+ \\ f_{7k+6} = e_{7k-1} + f_{7k-1} & k \in N^+ \end{cases}$$

Similarly,

$$f_{7n} = e_{7n-7} + e_{7n-14} + \dots + e_{14} + e_{7} \text{ dir.}$$

$$f_{7n} = e_{7n-7} + \underbrace{e_{7n-14} + \dots + e_{14} + e_{7}}_{f_{7n-7}}$$

$$f_{7n} = e_{7n-7} + f_{7n-7}$$

$$f_{7n+1} = e_{7n-6} + e_{7n-13} + \dots + e_{15} + e_8 + e_1.$$

$$f_{7n+1} = e_{7n-6} + \underbrace{e_{7n-13} + \dots + e_{15} + e_8}_{f_{7n-6}} + e_1$$

$$f_{7n+1} = e_{7n-6} + f_{7n-6}$$

$$f_{7n+2} = e_{7n-5} + e_{7n-12} + \dots + e_{16} + e_9 + e_2.$$

$$f_{7n+2} = e_{7n-5} + \underbrace{e_{7n-12} + \dots + e_{16} + e_9 + e_2}_{f_{7n-5}}$$

$$f_{7n+2} = e_{7n-5} + f_{7n-5}$$

$$f_{7n+3} = e_{7n-4} + e_{7n-11} + \dots + e_{17} + e_{10} + e_3.$$

$$f_{7n+3} = e_{7n-4} + \underbrace{e_{7n-11} + \dots + e_{17} + e_{10} + e_3}_{f_{7n-4}}$$

$$f_{7n+3} = e_{7n-4} + f_{7n-4}.$$

$$f_{7n+4} = e_{7n-3} + e_{7n-10} + \ldots + e_{18} + e_{11} + e_4.$$

$$f_{7n+4} = e_{7n-3} + \underbrace{e_{7n-10} + \dots + e_{18} + e_{11} + e_4}_{f_{7n-3}}$$

$$f_{7n+4} = e_{7n-3} + f_{7n-3} .$$

$$f_{7n+5} = e_{7n-2} + e_{7n-9} + \dots + e_{19} + e_{12} + e_5.$$

$$f_{7n+5} = e_{7n-2} + \underbrace{e_{7n-9} + \dots + e_{19} + e_{12} + e_5}_{f_{7n-2}}$$

$$f_{7n+5} = e_{7n-2} + f_{7n-2} .$$

$$f_{7n+6} = e_{7n-1} + e_{7n-8} + \dots + e_{20} + e_{13} + e_6.$$

$$f_{7n+6} = e_{7n-1} + \underbrace{e_{7n-8} + \dots + e_{20} + e_{13} + e_6}_{f_{7n-1}}$$

$$f_{7n+6} = e_{7n-1} + f_{7n-1}.$$

We can distribute at least 28 balls to A,B,C,D,E,F,G boxes with 0 < x < y < z < p < q < h < j condition

Relationship between e_n and f_n ;

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
e_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

r	1	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
e	e _n	1	1	2	3	5	7	11	14	20	26	35	44	58	71	90	110	136	163	199	235
e	f_n	0	0	0	0	0	0	0	1	1	2	3	5	7	11	15	21	28	38	49	65

e_n sequence is the sequence A267118 on OEIS

f_n sequence is the sequence A267120 on OEIS

Theorem 13: If there are n identical balls, they can be put in boxes A, B, C, D, E, F, G and H as x, y, z, p, q, h, j, m respectively, satisfying 0 < x < y < z < p < q < h < j < m, in g_n different ways, where

(For *n* identical balls, their distribution as x, y, z, p, q, h, j in boxes A, B, C, D, E, F, G respectively for 0 < x < y < z < p < q < h < j is f_n)

$$g_{n} = \begin{cases} g_{8k} = f_{8k-8} + g_{8k-8} & k \in N^{+} \\ g_{8k+1} = f_{8k-7} + g_{8k-7} & k \in N^{+} \\ g_{8k+2} = f_{8k-6} + g_{8k-6} & k \in N^{+} \\ g_{8k+3} = f_{8k-5} + g_{8k-5} & k \in N^{+} \\ g_{8k+4} = f_{8k-4} + g_{8k-4} & k \in N^{+} \\ g_{8k+5} = f_{8k-3} + g_{8k-3} & k \in N^{+} \\ g_{8k+6} = f_{8k-2} + g_{8k-2} & k \in N^{+} \\ g_{8k+7} = f_{8k-1} + g_{8k-1} & k \in N^{+} \end{cases}$$

Similarly,

$$g_{8n} = f_{8n-8} + f_{8n-16} + \dots + f_{16} + f_8.$$

$$g_{8n} = f_{8n-8} + \underbrace{f_{8n-16} + \dots + f_{16} + f_8}_{g_{8n-8}}$$

$$g_{8n} = f_{8n-8} + g_{8n-8}.$$

$$g_{8n+1} = f_{8n-7} + f_{8n-15} + \dots + f_{17} + f_9 + f_1.$$

$$g_{8n+1} = f_{8n-7} + \underbrace{f_{8n-15} + \dots + f_{17} + f_9 + f_1}_{g_{8n-7}}$$

$$g_{8n+1} = f_{8n-7} + g_{8n-7}.$$

$$g_{8n+2} = f_{8n-6} + f_{8n-14} + \dots + f_{18} + f_{10} + f_2.$$

$$g_{8n+2} = f_{8n-6} + \underbrace{f_{8n-14} + \dots + f_{18} + f_{10} + f_2}_{g_{8n-6}}$$
$$g_{8n+2} = f_{8n-6} + g_{8n-6}.$$

$$g_{8n+3} = f_{8n-5} + f_{8n-13} + \dots + f_{19} + f_{11} + f_3.$$

$$g_{8n+3} = f_{8n-5} + \underbrace{f_{8n-13} + \dots + f_{19} + f_{11} + f_3}_{g_{8n-5}}$$

$$g_{8n+3} = f_{8n-5} + g_{8n-5}.$$

$$g_{8n+4} = f_{8n-4} + f_{8n-12} + \dots + f_{20} + f_{12} + f_4.$$

$$g_{8n+4} = f_{8n-4} + \underbrace{f_{8n-12} + \dots + f_{20} + f_{12} + f_4}_{g_{8n-4}}$$

$$g_{8n+4} = f_{8n-4} + g_{8n-4}.$$

$$g_{8n+5} = f_{8n-3} + f_{8n-11} + \dots + f_{21} + f_{13} + f_5.$$

$$g_{8n+5} = f_{8n-3} + \underbrace{f_{8n-11} + \dots + f_{21} + f_{13} + f_5}_{g_{8n-3}}$$

$$g_{8n+5} = f_{8n-3} + g_{8n-3}.$$

$$g_{8n+6} = f_{8n-2} + f_{8n-10} + \dots + f_{22} + f_{14} + f_6.$$

$$g_{8n+6} = f_{8n-2} + \underbrace{f_{8n-10} + \dots + f_{22} + f_{14} + f_6}_{g_{8n-2}}$$

$$g_{8n+6} = f_{8n-2} + g_{8n-2}.$$

$$g_{8n+7} = f_{8n-1} + f_{8n-9} + \dots + f_{23} + f_{15} + f_7.$$

$$g_{8n+7} = f_{8n-1} + \underbrace{f_{8n-9} + \dots + f_{23} + f_{15} + f_7}_{g_{8n-1}}.$$

$$g_{8n+7} = f_{8n-1} + g_{8n-1}.$$

We can distribute at least 36 balls to A,B,C,D,E,F,G, H boxes with 0 < x < y < z < p < q < h < j < m condition

Relationship between e_n and f_n ;

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
f_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
g_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
f_n	0	0	0	0	0	0	0	1	1	2	3	5	7	11	15	21	28	38	49	65
g_n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	3	5

 f_n sequence is the sequence A267120 on OEIS

 g_n sequence is the sequence A267121 on OEIS