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Abstract In this chapter, we survey methods that perform keyword search on graph data.
Keyword search provides a simple but user-friendly interface to retrieve infor-
mation from complicated data structures. Since many real life datasets are repre-
sented by trees and graphs, keyword search has become an attractive mechanism
for data of a variety of types. In this survey, we discuss methods of keyword
search on schema graphs, which are abstract representation for XML data and
relational data, and methods of keyword search on schema-free graphs. In our
discussion, we focus on three major challenges of keyword search on graphs.
First, what is the semantics of keyword search on graphs, or, what qualifies as
an answer to a keyword search; second, what constitutes a good answer, or, how
to rank the answers; third, how to perform keyword search efficiently. We also
discuss some unresolved challenges and propose some new research directions
on this topic.
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1. Introduction

Keyword search is the de facto information retrieval mechanism for data on
the World Wide Web. It also proves to be an effective mechanism for querying
semi-structured and structured data, because of its user-friendly query inter-
face. In this survey, we focus on keyword search problems for XML documents
(semi-structured data), relational databases (structured data), and all kinds of
schema-free graph data.

Recently, query processing over graph-structured data has attracted increas-
ing attention, as myriads of applications are driven by and producing graph-
structured data [14]. For example, in semantic web, two major W3C standards,
RDF and OWL, conform to node-labeled and edge-labeled graph models. In
bioinformatics, many well-known projects, e.g., BioCyc (http://biocyc.org),
build graph-structured databases. In social network analysis, much inter-
est centers around all kinds of personal interconnections. In other applica-
tions, raw data might not be graph-structured at the first glance, but there are
many implicit connections among data items; restoring these connections of-
ten allows more effective and intuitive querying. For example, a number of
projects [1, 18, 3, 26, 8] enable keyword search over relational databases.
In personal information management (PIM) systems [10, 5], objects such as
emails, documents, and photos are interwoven into a graph using manually or
automatically established connections among them. The list of examples of
graph-structured data goes on.

For data with relational and XML schema, specific query languages, such
as SQL and XQuery, have been developed for information retrieval. In or-
der to query such data, the user must master a complex query language and
understand the underlying data schema. In relational databases, information
about an object is often scattered in multiple tables due to normalization con-
siderations, and in XML datasets, the schema are often complicated and em-
bedded XML structures often create a lot of difficulty to express queries that
are forced to traverse tree structures. Furthermore, many applications work on
graph-structured data with no obvious, well-structured schema, so the option
of information retrieval based on query languages is not applicable.

Both relational databases and XML databases can be viewed as graphs.
Specifically, XML datasets can be regarded as graphs when IDREF/ID links
are taken into consideration, and a relational database can be regarded as a data
graph that has tuples and keywords as nodes. In the data graph, for example,
two tuples are connected by an edge if they can be joined using a foreign key;
a tuple and a keyword are connected if the tuple contains the keyword. Thus,
traditional graph search algorithms, which extract features (e.g., paths [27],
frequent-patterns [30], sequences [20]) from graph data, and convert queries
into searches over feature spaces, can be used for such data.
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However, traditional graph search methods usually focus more on the struc-
ture of the graph rather than the semantic content of the graph. In XML and re-
lational data graphs, nodes contain keywords, and sometimes nodes and edges
are labeled. The problem of keyword search requires us to determine a group
of densely linked nodes in the graph, which may satisfy a particular keyword-
based query. Thus, the keyword search problem makes use of both the content
and the linkage structure. These two sources of information actually re-enforce
each other, and improve the overall quality of the results. This makes keyword
search a more preferred information retrieval method. Keyword search allows
users to query the databases quickly, with no need to know the schema of
the respective databases. In addition, keyword search can help discover unex-
pected answers that are often difficult to obtain via rigid-format SQL queries.
It is for these reasons that keyword search over tree- and graph-structured data
has attracted much attention [1, 18, 3, 6, 13, 16, 2, 28, 21, 26, 24, 8].

Keyword search over graph data presents many challenges. The first ques-
tion we must answer is that, what constitutes an answer to a keyword. For
information retrieval on the Web, answers are simply Web documents that
contain the keywords. In our case, the entire dataset is considered as a sin-
gle graph, so the algorithms must work on a finer granularity and decide what
subgraphs are qualified as answers. Furthermore, since many subgraphs may
satisfy a query, we must design ranking strategies to find top answers. The
definition of answers and the design of their ranking strategies must satisfy
users’ intention. For example, several papers [16, 2, 12, 26] adopt IR-style
answer-tree ranking strategies to enhance semantics of answers. Finally, a ma-
jor challenge for keyword search over graph data is query efficiency, which to a
large extent hinges on the semantics of the query and the ranking strategy. For
instance, some ranking strategies score an answer by the sum of edge weights.
In this case, finding the top-ranked answer is equivalent to the group Steiner
tree problem [9], which is NP-hard. Thus, finding the exact top k answers
is inherently difficult. To improve search efficiency, many systems, such as
BANKS [3], propose ways to reduce the search space. As another example,
BLINKS [14] avoids the inherent difficulty of the group Steiner tree problem
by proposing an alternative scoring mechanism, which lowers complexity and
enables effective indexing and pruning.

Before we delve into the details of various keyword search problems for
graph data, we briefly summarize the scope of this survey chapter. We classify
algorithms we survey into three categories based on the schema constraints in
the underlying graph data.

Keyword Search on XML Data:

Keyword search on XML data [11, 6, 13, 23, 25] is a simpler prob-
lem than on schema-free graphs. They are basically constrained to tree



252 MANAGING AND MINING GRAPH DATA

structures, where each node only has a single incoming path. This prop-
erty provides great optimization opportunities [28]. Connectivity infor-
mation can also be efficiently encoded and indexed. For example, in
XRank [13], the Dewey inverted list is used to index paths so that a key-
word query can be evaluated without tree traversal.

Keyword Search over Relational Databases:

Keyword search on relational databases [1, 3, 18, 16, 26] has attracted
much interest. Conceptually, a database is viewed as a labeled graph
where tuples in different tables are treated as nodes connected via
foreign-key relationships. Note that a graph constructed this way usu-
ally has a regular structure because schema restricts node connections.
Different from the graph-search approach in BANKS [3], DBXplorer [1]
and DISCOVER [18] construct join expressions and evaluate them, re-
lying heavily on the database schema and query processing techniques
in RDBMS.

Keyword Search on Graphs: A great deal of work on keyword query-
ing of structured and semi-structured data has been proposed in re-
cent years. Well known algorithms includes the backward expanding
search [3], bidirectional search [21], dynamic programming techniques
DPBF [8], and BLINKS [14]. Recently, work that extend keyword
search to graphs on external memory has been proposed [7].

This rest of the chapter is organized as follows. We first discuss keyword
search methods for schema graphs. In Section 2 we focus on keyword search
for XML data, and in Section 3, we focus on keyword search for relational
data. In Section 4, we introduce several algorithms for keyword search on
schema-free graphs. Section 5 contains a discussion of future directions and
the conclusion.

2. Keyword Search on XML Data

Sophisticated query languages such as XQuery have been developed for
querying XML documents. Although XQuery can express many queries pre-
cisely and effectively, it is by no means a user-friendly interface for accessing
XML data: users must master a complex query language, and in order to use
it, they must have a full understanding of the schema of the underlying XML
data. Keyword search, on the other hand, offers a simple and user-friendly in-
terface. Furthermore, the tree structure of XML data gives nice semantics to
the query and enables efficient query processing.
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2.1 Query Semantics

In the most basic form, as in XRank [13] and many other systems, a keyword
search query consists of n keywords: Q = {k1, ⋅ ⋅ ⋅ , kn}. XSEarch [6] extends
the syntax to allow users to specify which keywords must appear in a satisfying
document, and which may or may not appear (although the appearance of such
keywords is desirable, as indicated by the ranking function).

Syntax aside, one important question is, what qualifies as an answer to a
keyword search query? In information retrieval, we simply return documents
that contain all the keywords. For keyword search on an XML document, we
want to return meaningful snippets of the document that contains the keywords.
One interpretation of meaningful is to find the smallest subtrees that contain all
the keywords.

A

B C D

x yx y

e x c l u s i v e  L C A  n o d e

m i n i m a l  L C A  n o d e

Figure 8.1. Query Semantics for Keyword Search Q = {x, y} on XML Data

Specifically, for each keyword ki, let Li be the list of nodes in the XML
document that contain keyword ki. Clearly, subtrees formed by at least one
node from each Li, i = 1, ⋅ ⋅ ⋅ , n contain all the keywords. Thus, an answer to
the query can be represented by lca(n1, ⋅ ⋅ ⋅ , nn), the lowest common ancestor
(LCA) of nodes n1, ⋅ ⋅ ⋅ , nn where ni ∈ Li. In other words, answering the
query is equivalent to finding:

LCA(k1, ⋅ ⋅ ⋅ , kn) = {lca(n1, ⋅ ⋅ ⋅ , nn)∣n1 ∈ L1, ⋅ ⋅ ⋅ , nn ∈ Ln}

Moreover, we are only interested in the “smallest” answer, that is,

SLCA(k1, ⋅ ⋅ ⋅ , kn) = {v ∣ v ∈ LCA(k1, ⋅ ⋅ ⋅ , kn) ∧
∀v′ ∈ LCA(k1, ⋅ ⋅ ⋅ , kn), v ⊀ v′} (8.1)

where ≺ denotes the ancestor relationship between two nodes in an XML
document. As an example, in Figure 8.1, we assume the keyword query
is Q = {x, y}. We have C ∈ SLCA(x, y) while A ∈ LCA(x, y) but
A ∕∈ SLCA(x, y).

Several algorithms including [28, 17, 29] are based on the SLCA semantics.
However, SLCA is by no means the only meaningful semantics for keyword
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search on XML documents. Consider Figure 8.1 again. If we remove node C
and the two keyword nodes under C, the remaining tree is still an answer to the
query. Clearly, this answer is independent of the answer C ∈ SLCA(x, y),
yet it is not represented by the SLCA semantics.

XRank [13], for example, adopts different query semantics for keyword
search. The set of answers to a query Q = {k1, ⋅ ⋅ ⋅ , kn} is defined as:

ELCA(k1, ⋅ ⋅ ⋅ , kn) = {v ∣ ∀ki ∃c c is a child node of v ∧
∕ ∃c′ ∈ LCA(k1, ⋅ ⋅ ⋅ , kn) and c ≺ c′∧
c contains ki directly or indirectly}

(8.2)

ELCA(k1, ⋅ ⋅ ⋅ , kn) contains the set of nodes that contain at least one oc-
currence of all of the query keywords, after excluding the sub-nodes that al-
ready contain all of the query keywords. Clearly, in Figure 8.1, we have
A ∈ ELCA(k1, ⋅ ⋅ ⋅ , kn). More generally, we have

SLCA(k1, ⋅ ⋅ ⋅ , kn) ⊆ ELCA(k1, ⋅ ⋅ ⋅ , kn) ⊆ LCA(k1, ⋅ ⋅ ⋅ , kn)
Query semantics has a direct impact on the complexity of query process-

ing. For example, answering a keyword query according to the ELCA query
semantics is more computationally challenging than according to the SLCA
query semantics. In the latter, the moment we know a node l has a child c that
contains all the keywords, we can immediately determine that node l is not an
SLCA node. However, we cannot determine that l is not an ELCA node be-
cause l may contain keyword instances that are not under c and are not under
any node that contains all keywords [28, 29].

2.2 Answer Ranking

It is clear that according to the lowest common ancestor (LCA) query se-
mantics, potentially many answers will be returned for a keyword query. It is
also easy to see that, due to the difference of the nested XML structure where
the keywords are embedded, not all answers are equal. Thus, it is important to
devise a mechanism to rank the answers based on their relevance to the query.
In other words, for every given answer tree T containing all the keywords, we
want to assign a numerical score to T . Many approaches for keyword search on
XML data, including XRank [13] and XSEarch [6], present a ranking method.

To decide which answer is more desirable for a keyword query, we note
several properties that we would like a ranking mechanism to take into consid-
eration:

1 Result specificity. More specific answers should be ranked higher than
less specific answers. The SLCA and ELCA semantics already exclude
certain answers based on result specificity. Still, this criterion can be
further used to rank satisfying answers in both semantics.
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2 Semantic-based keyword proximity. Keywords in an answer should ap-
pear close to each other. Furthermore, such closeness must reflect the
semantic distance as prescribed by the XML embedded structure. Ex-
ample 8.1 demonstrates this need.

3 Hyperlink Awareness. LCA-based semantics largely ignore the hyper-
links in XML documents. The ranking mechanism should take hyper-
links into consideration when computing nodes’ authority or prestige as
well as keyword proximity.

The ranking mechanism used by XRank [13] is based on an adaptation of
PageRank [4]. For each element v in the XML document, XRank defines
ElemRank(v) as v’s objective importance, and ElemRank(v) is computed
using the underlying embedded structure in a way similar to PageRank. The
difference is that ElemRank is defined at node granularity, while PageRank
at document granularity. Furthermore, ElemRank looks into the nested struc-
ture of XML, which offers richer semantics than the hyperlinks among docu-
ments do.

Given a path in an XML document v0, v1, ⋅ ⋅ ⋅ , vt, vt+1, where vt+1 directly
contains a keyword k, and vi+1 is a child node of vi, for i = 0, ⋅ ⋅ ⋅ , t, XRank
defines the rank of vi as:

r(vi, k) = ElemRank(vt)× decayt−i

where decay is a value in the range of 0 to 1. Intuitively, the rank of vi with
respect to a keyword k is ElemRank(vt) scaled appropriately to account for
the specificity of the result, where vt is the parent element of the value node
vt+1 that directly contains the keyword k. By scaling down ElemRank(vt),
XRank ensures that less specific results get lower ranks. Furthermore, from
node vi, there may exist multiple paths leading to multiple occurrences of key-
word k. Thus, the rank of vi with respect to k should be a combination of the
ranks for all occurrences. XRank uses r̂(v, k) to denote the rank of node v with
respect to keyword k:

r̂(v, k) = f(r1, r2, ⋅ ⋅ ⋅ , rm)

where r1, ⋅ ⋅ ⋅ , rm are the ranks computed for each occurrence of k (using the
above formula), and f is a combination function (e.g., sum or max). Finally,
the overall ranking of a node v with respect to a query Q which contains n
keywords k1, ⋅ ⋅ ⋅ , kn is defined as:

R(v,Q) =

⎛
⎝ ∑

1≤i≤n

r̂(v, ki)

⎞
⎠× p(v, k1, k2, ⋅ ⋅ ⋅ , kn) (8.3)
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Here, the overall ranking R(v,Q) is the sum of the ranks with re-
spect to keywords in Q, multiplied by a measure of keyword proximity
p(v, k1, k2, ⋅ ⋅ ⋅ , kn), which ranges from 0 (keywords are very far apart) to 1
(keywords occur right next to each other). A simple proximity function is the
one that is inversely proportional to the size of the smallest text window that
contains occurrences of all keywords k1, k2, ⋅ ⋅ ⋅ , kn. Clearly, such a proximity
function may not be optimal as it ignores the structure where the keywords are
embedded, or in other words, it is not a semantic-based proximity measure.

Eq 8.3 depends on function ElemRank(), which measures the importance
of XML elements bases on the underlying hyperlinked structure. ElemRank
is a global measure and is not related to specific queries. XRank [13] defines
ElemRank() by adapting PageRank:

PageRank(v) =
1− d
N

+ d×
∑

(u,v)∈E

PageRank(u)

Nu
(8.4)

where N is the total number of documents, and Nu is the number of out-going
hyperlinks from document u. Clearly, PageRank(v) is a combination of two
probabilities: i) 1

N , which is the probability of reaching v by a random walk on

the entire web, and ii) PageRank(u)
Nu

, which is the probability of reaching v by
following a link on web page u.

Clearly, a link from page u to page v propagates “importance” from u to
v. To adapt PageRank for our purpose, we must first decide what constitutes a
“link” among elements in XML documents. Unlike HTML documents on the
Web, there are three types of links within an XML document: importance can
propagate through a hyperlink from one element to the element it points to; it
can propagate from an element to its sub-element (containment relationship);
and it can also propagate from a sub-element to its parent element. XRank [13]
models each of the three relationships in defining ElemRank():

ElemRank(v) =
1− d1 − d2 − d3

Ne
+

d1 ×
∑

(u,v)∈HE

ElemRank(u)

Nℎ(u)
+

d2 ×
∑

(u,v)∈CE

ElemRank(u)

Nc(u)
+

d3 ×
∑

(u,v)∈CE−1

ElemRank(u)

(8.5)

where Ne is the total number of XML elements, Nc(u) is the number of sub-
elements of u, and E = HE ∪CE ∪CE−1 are edges in the XML document,
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where HE is the set of hyperlink edges, CE the set of containment edges, and
CE−1 the set of reverse containment edges.

As we have mentioned, the notion of keyword proximity in XRank is quite
primitive. The proximity measure p(v, k1, ⋅ ⋅ ⋅ , kn) in Eq 8.3 is defined to be
inversely proportional to the size of the smallest text window that contains all
the keywords. However, this does not guarantee that such an answer is always
the most meaningful.

Example 8.1. Semantic-based keyword proximity

<proceedings>

<inproceedings>

<author>Moshe Y. Vardi</author>

<title>Querying Logical Databases</title>

</inproceedings>

<inproceedings>

<author>Victor Vianu</author>

<title>A Web Odyssey: From Codd to XML</title>

</inproceedings>

</proceedings>

For instance, given a keyword query “Logical Databases Vianu”, the above
XML snippet [6] will be regarded as a good answer by XRank, since all key-
words occur in a small text window. But it is easy to see that the keywords
do not appear in the same context: “Logical Databases” appears in one paper’s
title and “Vianu” is part of the name of another paper’s author. This can hardly
be an ideal response to the query. To address this problem, XSEarch [6] pro-
poses a semantic-based keyword proximity measure that takes into account the
nested structure of XML documents.

XSEarch defines an interconnected relationship. Let n and n′ be two nodes
in a tree structure T . Let ∣n, n′ denote the tree consisting of the paths from the
lowerest common ancestor of n and n′ to n and n′. The nodes n and n′ are
interconnected if one of the following conditions holds:

T∣n,n′ does not contain two distinct nodes with the same label, or

the only two distinct nodes in T∣n,n′ with the same label are n and n′.

As we can see, the element that matches keywords “Logical Databases”
and the element that matches keyword “Vianu” in the previous example are
not interconnected, because the answer tree contains two distinct nodes with
the same label “inproceedings”. XSEarch requires that all pairs of matched
elements in the answer set are interconnected, and XSEarch proposes an all-
pairs index to efficiently check the connectivity between the nodes.
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In addition to using a more sophisticated keyword proximity measure,
XSEarch [6] also adopts a tfidf based ranking mechanism. Unlike standard
information retrieval techniques that compute tfidf at document level, XSEarch
computes the weight of keywords at a lower granularity, i.e., at the level of the
leaf nodes of a document. The term frequency of keyword k in a leaf node nl
is defined as:

tf(k, nl) =
occ(k, nl)

max{occ(k′, nl)∣k′ ∈ words(nl)}

where occ(k, nl) denotes the number of occurrences of k in nl. Similar to the
standard tf formula, it gives a larger weight to frequent keywords in sparse
nodes. XSEarch also defines the inverse leaf frequency (ilf ):

ilf(k) = log

(
1 +

∣N ∣
∣{n′ ∈ N ∣k ∈ words(n′)∣}

)

where N is the set of all leaf nodes in the corpus. Intuitively, ilf(k) is the
logarithm of the inverse leaf frequency of k, i.e., the number of leaves in the
corpus over the number of leaves that contain k. The weight of each keyword
w(k, nl) is a normalized version of the value tf ilf(k, nl), which is defined as
tf(k, nl)× ilf(k).

With the tf ilf measure, XSEarch uses the standard vector space model
to determine how well an answer satisfies a query. The measure of similarity
between a queryQ and an answerN is the sum of the cosine distances between
the vectors associated with the nodes in N and the vectors associated with the
terms that they match in Q [6].

2.3 Algorithms for LCA-based Keyword Search

Search engines endeavor to speed up the query: find the documents where
word X occurs. A word level inverted list is used for this purpose. For each
word X, the inverted list stores the id of the documents that contain the word
X. Keyword search over XML documents operates at a finer granularity, but
still we can use an inverted list based approach: For each keyword, we store all
the elements that either directly contain the keyword, or contain the keyword
through their descendents. Then, given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, we find
common elements in all of the n inverted lists corresponding to k1 through kn.
These common elements are potential root nodes of the answer trees.

This na-“ve approach, however, may incur significant cost of time and space
as it ignores the ancestor-descendant relationships among elements in the XML
document. Clearly, for each smallest LCA that satisfies the query, the algo-
rithm will produce all of its ancestors, which may likely be pruned according
to the query semantics. Furthermore, the na-“ve approach also incurs signifi-
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cant storage overhead, as each inverted list not only contains the XML element
that directly contains the keyword, but also all of its ancestors [13].

Several algorithms have been proposed to improve the na-“ve approach.
Most systems for keyword search over XML documents [13, 25, 28, 19, 17,
29] are based on the notion of lowest common ancestors (LCAs) or its varia-
tions. XRank [13], for example, uses the ELCA semantics. XRank proposes
two core algorithms, DIL (Dewey Inverted List) and RDIL (Ranked Dewey
Inverted List). As RDIL is basically DIL integrated with ranking, due to space
considerations, we focus on DIL in this section.

The DIL algorithm encodes ancestor-descendant relationships into the el-
ement IDs stored in the inverted list. Consider the tree representation of an
XML document, where the root of the XML tree is assigned number 0, and
sibling nodes are assigned sequential numbers 0, 1, 2, ⋅ ⋅ ⋅ , i. The Dewey ID
of a node n is the concatenation of the numbers assigned to the nodes on the
path from the root to n. Unlike the na-“ve algorithm, in XRank, the inverted
list for a keyword k contains only the Dewey IDs of nodes that directly contain
k. This reduces much of the space overhead of the na-“ve approach. From their
Dewey IDs, we can easily figure out the ancestor-descendant relationships be-
tween two nodes: node A is an ancestor of node B iff the Dewey ID of node A
is a prefix of that of node B.

Given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, the DIL algorithm makes a single pass
over the n inverted lists corresponding to k1 through kn. The goal is to sort-
merge the n inverted lists to find the ELCA answers of the query. However,
since only nodes that directly contain the keywords are stored in the inverted
lists, the standard sort-merge algorithm cannot be used. Nevertheless, the
ancestor-descendant relationships have been encoded in the Dewey ID, which
enables the DIL algorithm to derive the common ancestors from the Dewey
IDs of nodes in the lists. More specifically, as each prefix of a node’s Dewey
ID is the Dewey ID of the node’s ancestor, computing the longest common
prefix will compute the ID of the lowest ancestor that contains the query key-
words. In XRank, the inverted lists are sorted on the Dewey ID, which means
all the common ancestors are clustered together. Hence, this computation can
be done in a single pass over the n inverted lists. The complexity of the DIL
algorithm is thus O(nd∣S∣) where ∣S∣ is the size of the largest inverted list for
keyword k1, ⋅ ⋅ ⋅ , kn and d is the depth of the tree.

More recent approaches seek to further improve the performance of
XRank [13]. Both the DIL and the RDIL algorithms in XRank need to per-
form a full scan of the inverted lists for every keyword in the query. However,
certain keywords may be very frequent in the underlying XML documents.
These keywords correspond to long inverted lists that become the bottleneck
in query processing. XKSearch [28], which adopts the SLCA semantics for
keyword search, is proposed to address the problem. XKSearch makes an ob-
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servation that, in contrast to the general LCA semantics, the number of SLCAs
is bounded by the length of the inverted list that corresponds to the least fre-
quent keyword. The key intuition of XKSearch is that, given two keywords
w1 and w2 and a node v that contains keyword w1, there is no need to inspect
the whole inverted list of keyword w2 in order to find all possible answers.
Instead, we only have to find the left match and the right match of the list of
w2, where the left (right) match is the node with the greatest (least) id that is
smaller (greater) than or equal to the id of v. Thus, instead of scanning the
inverted lists, XKSearch performs an indexed search on the lists. This enables
XKSearch to reduce the number of disk accesses to O(n∣Smin∣), where n is
the number of the keywords in the query, and Smin is the length of the inverted
list that corresponds to the least frequent keyword in the query (XKSearch as-
sumes a B-tree disk-based structure where non-leaf nodes of the B-Tree are
cached in memory). Clearly, this approach is meaningful only if at least one of
the query keywords has very low frequency.

3. Keyword Search on Relational Data

A tremendous amount of data resides in relational databases but is reachable
via SQL only. To provide the data to users and applications that do not have
the knowledge of the schema, much recent work has explored the possibility
of using keyword search to access relational databases [1, 18, 3, 16, 21, 2]. In
this section, we discuss the challenges and methods of implementing this new
query interface.

3.1 Query Semantics

Enabling keyword search in relational databases without requiring the
knowledge of the schema is a challenging task. Keyword search in traditional
information retrieval (IR) is on the document level. Specifically, given a query
Q = {k1, ⋅ ⋅ ⋅ , kn}, we employ techniques such as the inverted lists to find
documents that contain the keywords. Then, our question is, what is relational
database’s counterpart of IR’s notion of “documents”?

It turns out that there is no straightforward mapping. In a relational schema
designed according to the normalization principle, a logical unit of information
is often disassembled into a set of entities and relationships. Thus, a relational
database’s notion of “document” can only be obtained by joining multiple ta-
bles.

Naturally, the next question is, can we enumerate all possible joins in a
database? In Figure 8.2, as an example (borrowed from [1]), we show all po-
tential joins among database tables {T1, T2, ⋅ ⋅ ⋅ , T5}. Here, a node represents
a table. If a foreign key in table Ti references table Tj , an edge is created
between Ti and Tj . Thus, any connected subgraph represents a potential join.
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T 1 T 2 T 3

T 4

T 5

Figure 8.2. Schema Graph

Given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, a possible query semantics is to check all
potential joins (subgraphs) and see if there exists a row in the join results that
contains all the keywords in Q.

a 1 a 2 a 3 a 9 8 a 9 9 a 1 0 0

b 1 b 2 b 9 8 b 9 9

Figure 8.3. The size of the join tree is only bounded by the data Size

However, Figure 8.2 does not show the possibility of self-joins, i.e., a table
may contain a foreign key that references the table itself. More generally, the
schema graph may contain a cycle, which involves one or more tables. In this
case, the size of the join is only bounded by the data size [18]. We demon-
strates this issue with a self-join in Figure 8.3, where the self-join is on a table
containing tuples (ai, bj), and the tuple (a1, b1) can be connected with tuple
(a100, b99) by repeated self-joins. Thus, the join tree in Figure 8.3 satisfies
keyword query Q = {a1, a100}. Clearly, the size of the join is only bounded
by the number of tuples in the table. Such query semantics is hard to imple-
ment in practice. To mitigate this vulnerability, we change the semantics by
introducing a parameter K to limit the size of the join we search for answers.
In the above example, the result of (a1, a100) is only returned if K is as large
as 100.

3.2 DBXplorer and DISCOVER

DBXplorer [1] and DISCOVER [18] are the most well known systems that
support keyword search in relational databases. While implementing the query
semantics discussed before, these approaches also focus on how to leverage the
physical database design (e.g., the availability of indexes on various database
columns) for building compact data structures critical for efficient keyword
search over relational databases.
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T 2 T 3
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T 2

T 2 T 3

T 5

T 2 T 3
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Figure 8.4. Keyword matching and join trees enumeration

Traditional information retrieval techniques use inverted lists to efficiently
identify documents that contain the keywords in the query. In the same spirit,
DBXplorer maintains a symbol table, which identifies columns in database ta-
bles that contain the keywords. Assuming index is available on the column,
then given the keyword, we can efficiently find the rows that contain the key-
word. If index is not available on a column, then the symbol table needs to
map keywords to rows in the database tables directly.

Figure 8.4 shows an example. Assume the query contains three keywords
Q = {k1, k2, k3}. From the symbol table, we find tables/columns that contain
one or more keywords in the query, and these tables are represented by black
nodes in the Figure: k1, k2, k3 all occur in T2 (in different columns), k2 occurs
in T4, and k3 occurs in T5. Then, DBXplorer enumerates the four possible
join trees, which are shown in Figure 8.4(b). Each join tree is then mapped
to a single SQL statement that joins the tables as specified in the tree, and
selects those rows that contain all the keywords. Note that DBXplorer does
not consider solutions that include two tuples from the same relation, or the
query semantics required for problems shown in Figure 8.3.

DISCOVER [18] is similar to DBXplorer in the sense that it also finds all
join trees (called candidate networks in DISCOVER) by constructing join ex-
pressions. For each candidate join tree, an SQL statement is generated. The
trees may have many common components, that is, the generated SQL state-
ments have many common join structures. An optimal execution plan seeks to
maximize the reuse of common subexpressions. DISCOVER shows that the
task of finding the optimal execution plan is NP-complete. DISCOVER intro-
duces a greedy algorithm that provides near-optimal plan execution time cost.
Given a set of join trees, in each step, it chooses the join m between two base
tables or intermediate results that maximizes the quantity frequencya

logb(size)
, where

frequency is the number of occurences of m in the join trees, size is the es-
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timated number of tuples of m and a, b are constants. The frequencya term
of the quantity maximizes the reusability of the intermediate results, while the
logb(size) minimizes the size of the intermediate results that are computed
first.

DBXplorer and DISCOVER use very simple ranking strategy: the answers
are ranked in ascending order of the number of joins involved in the tuple trees;
the reasoning being that joins involving many tables are harder to comprehend.
Thus, all tuple trees consisting of a single tuple are ranked ahead of all tuples
trees with joins. Furthermore, when two tuple trees have the same number of
joins, their ranks are determined arbitrarily. BANKS [3] (see Section 4) com-
bines two types of information in a tuple tree to compute a score for ranking:
a weight (similar to PageRank for web pages) of each tuple, and a weight of
each edge in the tuple tree that measures how related the two tuples are. Hris-
tidis et al. [16] propose a strategy that applies IR-style ranking methods into
the computation of ranking scores in a straightforward manner.

4. Keyword Search on Schema-Free Graphs

Graphs formed by relational and XML data are confined by their schemas,
which not only limit the search space of keyword query, but also help shape
the query semantics. For instance, many keyword search algorithms for XML
data are based on the lowest common ancestor (LCA) semantics, which is only
meaningful for tree structures. Challenges for keyword search on graph data
are two-fold: what is the appropriate query semantics, and how to design effi-
cient algorithms to find the solutions.

4.1 Query Semantics and Answer Ranking

Let the query consist of n keywords Q = {k1, k2, ⋅ ⋅ ⋅ , kn}. For each key-
word ki in the query, let Si be the set of nodes that match the keyword ki. The
goal is to define what is a qualified answer to Q, and the score of the answer.

As we know, the semantics of keyword search over XML data is largely de-
fined by the tree structure, as most approaches are based on the lowest common
ancestor (LCA) semantics. Many algorithms for keyword search over graphs
try to use similar semantics. But in order to do that, the answer must first
form trees embedded in the graph. In many graph search algorithms, including
BANKS [3], the bidirectional algorithm [21], and BLINKS [14], a response
or an answer to a keyword query is a minimal rooted tree T embedded in the
graph that contains at least one node from each Si.

We need a measure for the “goodness” of each answer. An answer tree T is
good if it is meaningful to the query, and the meaning of T lies in the tree struc-
ture, or more specifically, how the keyword nodes are connected through paths
in T . In [3, 21], their goodness measure tries to decompose T into edges and
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nodes, score the edges and nodes separately, and combine the scores. Specif-
ically, each edge has a pre-defined weight, and default to 1. Given an an-
swer tree T , for each keyword ki, we use s(T, ki) to represent the sum of
the edge weights on the path from the root of T to the leaf containing key-
word ki. Thus, the aggregated edge score is E =

∑n
i s(T, ki). The nodes,

on the other hand, are scored by their global importance or prestige, which is
usually based on PageRank [4] random walk. Let N denote the aggregated
score of nodes that contain keywords. The combined score of an answer tree is
given by s(T ) = EN� where � helps adjust the importance of edge and node
scores [3, 21].

Query semantics and ranking strategies used in BLINKS [14] are similar to
those of BANKS [14] and the bidirectional search [21]. But instead of using a
measure such as S(T ) = EN� to find top-K answers, BLINKS requires that
each of the top-K answer has a different root node, or in other words, for all
answer trees rooted at the same node, only the one with the highest score is
considered for top-K. This semantics guards against the case where a “hub”
pointing to many nodes containing query keywords becomes the root for a
huge number of answers. These answers overlap and each carries very little
additional information from the rest. Given an answer (which is the best, or
one of the best, at its root), users can always choose to further examine other
answers with this root [14].

Unlike most keyword search on graph data approaches [3, 21, 14], Objec-
tRank [2] does not return answer trees or subgraphs containing keywords in
the query, instead, for ObjectRank, an answer is simply a node that has high
authority on the keywords in the query. Hence, a node that does not even con-
tain a particular keyword in the query may still qualify as an answer as long
as enough authority on that keyword has flown into that node (Imagine a node
that represents a paper which does not contain keyword OLAP, but many im-
portant papers that contain keyword OLAP reference that paper, which makes
it an authority on the topic of OLAP). To control the flow of authority in the
graph, ObjectRank models labeled graphs: Each node u has a label �(u) and
contains a set of keywords, and each edge e from u to v has a label �(e) that
represents a relationship between u and v. For example, a node may be labeled
as a paper, or a movie, and it contains keywords that describe the paper or the
movie; a directed edge from a paper node to another paper node may have a
label cites, etc. A keyword that a node contains directly gives the node cer-
tain authority on that keyword, and the authority flows to other nodes through
edges connecting them. The amount or the rate of the outflow of authority from
keyword nodes to other nodes is determined by the types of the edges which
represent different semantic connections.
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4.2 Graph Exploration by Backward Search

Many keyword search algorithms try to find trees embedded in the graph so
that similar query semantics for keyword search over XML data can be used.
Thus, the problem is how to construct an embedded tree from keyword nodes
in the graph. In the absence of any index that can provide graph connectiv-
ity information beyond a single hop, BANKS [3] answers a keyword query
by exploring the graph starting from the nodes containing at least one query
keyword – such nodes can be identified easily through an inverted-list index.
This approach naturally leads to a backward search algorithm, which works as
follows.

1 At any point during the backward search, let Ei denote the set of nodes
that we know can reach query keyword ki; we call Ei the cluster for ki.

2 Initially, Ei starts out as the set of nodes Oi that directly contain ki;
we call this initial set the cluster origin and its member nodes keyword
nodes.

3 In each search step, we choose an incoming edge to one of previously
visited nodes (say v), and then follow that edge backward to visit its
source node (say u); any Ei containing v now expands to include u as
well. Once a node is visited, all its incoming edges become known to
the search and available for choice by a future step.

4 We have discovered an answer root x if, for each cluster Ei, either x ∈
Ei or x has an edge to some node in Ei.

BANKS uses the following two strategies for choosing what nodes to visit
next. For convenience, we define the distance from a node n to a set of nodes
N to be the shortest distance from n to any node in N .

1 Equi-distance expansion in each cluster: This strategy decides which
node to visit for expanding a keyword. Intuitively, the algorithm expands
a cluster by visiting nodes in order of increasing distance from the cluster
origin. Formally, the node u to visit next for cluster Ei (by following
edge u → v backward, for some v ∈ Ei) is the node with the shortest
distance (among all nodes not in Ei) to Oi.

2 Distance-balanced expansion across clusters: This strategy decides the
frontier of which keyword will be expanded. Intuitively, the algorithm
attempts to balance the distance between each cluster’s origin to its fron-
tier across all clusters. Specifically, let (u,Ei) be the node-cluster pair
such that u ∕∈ Ei and the distance from u to Oi is the shortest possible.
The cluster to expand next is Ei.
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He et al. [14] investigated the optimality of the above two strategies introduced
by BANKS [3]. They proved the following result with regard to the first strat-
egy, equi-distance expansion of each cluster (the complete proof can be found
in [15]):

Theorem 8.2. An optimal backward search algorithm must follow the strategy
of equi-distance expansion in each cluster.

However, the investigation [14] also showed that the second strategy,
distance-balanced expansion across clusters, is not optimal and may lead to
poor performance on certain graphs. Figure 8.5 shows one such example. Sup-
pose that {k1} and {k2} are the two cluster origins. There are many nodes that
can reach k1 through edges with a small weight (1), but only one edge into k2
with a large weight (100). With distance-balanced expansion across clusters,
we would not expand the k2 cluster along this edge until we have visited all
nodes within distance 100 to k1. It would have been unnecessary to visit many
of these nodes had the algorithm chosen to expand the k2 cluster earlier.

k1

1

1 k2

50

1001

1 u1

Figure 8.5. Distance-balanced expansion across clusters may perform poorly.

4.3 Graph Exploration by Bidirectional Search

To address the problem shown in Figure 8.5, Kacholia et al. [21] proposed
a bidirectional search algorithm, which has the option of exploring the graph
by following forward edges as well. The rationale is that, for example, in
Figure 8.5, if the algorithm is allowed to explore forward from node u towards
k2, we can identify u as an answer root much faster.

To control the order of expansion, the bidirectional search algorithm prior-
itizes nodes by heuristic activation factors (roughly speaking, PageRank with
decay), which intuitively estimate how likely nodes can be roots of answer
trees. In the bidirectional search algorithm, nodes matching keywords are
added to the iterator with an initial activation factor computed as:

au,i =
nodePrestige(u)

∣Si∣
,∀u ∈ Si (8.6)

where Si is the set of nodes that match keyword i. Thus, nodes of high prestige
will have a higher priority for expansion. But if a keyword matches a large
number of nodes, the nodes will have a lower priority. The activation factor is
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spreaded from keyword nodes to other nodes. Each node v spreads a fraction
� of the received activation to its neighbours, and retains the remaining 1− �
fraction.

As a result, keyword search in Figure 8.5 can be performed more efficiently.
The bidirectional search will start from the keyword nodes (dark solid nodes).
Since keyword node k1 has a large fanout, all the nodes pointing to k1 (includ-
ing node u) will receive a small amount of activation. On the other hand, the
node pointing to k2 will receive most of the activation of k2, which then spreads
to node u. Thus, node u becomes the most activated node, which happens to
be the root of the answer tree.

While this strategy is shown to perform well in multiple scenarios, it is dif-
ficult to provide any worst-case performance guarantee. The reason is that
activation factors are heuristic measures derived from general graph topology
and parts of the graph already visited. They do not accurately reflect the like-
lihood of reaching keyword nodes through an unexplored region of the graph
within a reasonable distance. In other words, without additional connectivity
information, forward expansion may be just as aimless as backward expan-
sion [14].

4.4 Index-based Graph Exploration – the BLINKS
Algorithm

The effectiveness of forward and backward expansions hinges on the struc-
ture of the graph and the distribution of keywords in the graph. However, both
forward and backward expansions explore the graph link by link, which means
the search algorithms do not have knowledge of either the structure of the graph
nor the distribution of keywords in the graph. If we create an index structure
to store the keyword reachability information in advance, we can avoid aim-
less exploration on the graph and improve the performance of keyword search.
BLINKS [14] is designed based on this intuition.

BLINKS makes two contributions: First, it proposes a new, cost-balanced
strategy for controlling expansion across clusters, with a provable bound on its
worst-case performance. Second, it uses indexing to support forward jumps
in search. Indexing enables it to determine whether a node can reach a key-
word and what the shortest distance is, thereby eliminating the uncertainty and
inefficiency of step-by-step forward expansion.

Cost-balanced expansion across clusters. Intuitively, BLINKS attempts to
balance the number of accessed nodes (i.e., the search cost) for expanding each
cluster. Formally, the cluster Ei to expand next is the cluster with the smallest
cardinality.
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This strategy is intended to be combined with the equi-distance strategy
for expansion within clusters: First, BLINKS chooses the smallest cluster to
expand, then it chooses the node with the shortest distance to this cluster’s
origin to expand.

To establish the optimality of an algorithm A employing these two expan-
sion strategies, let us consider an optimal “oracle” backward search algorithm
P . As shown in Theorem 8.2, P must also do equi-distance expansion within
each cluster. The additional assumption here is that P “magically” knows
the right amount of expansion for each cluster such that the total number of
nodes visited by P is minimized. Obviously, P is better than the best practical
backward search algorithm we can hope for. Although A does not have the
advantage of the oracle algorithm, BLINKS gives the following theorem (the
complete proof can be found in [15]) which shows that A is m-optimal, where
m is the number of query keywords. Since most queries in practice contain
very few keywords, the cost of A is usually within a constant factor of the
optimal algorithm.

Theorem 8.3. The number of nodes accessed by A is no more than m times
the number of nodes accessed by P , wherem is the number of query keywords.

Index-based Forward Jump. The BLINKS algorithm [14] leverages the
new search strategy (equi-distance plus cost-balanced expansions) as well as
indexing to achieve good query performance. The index structure consists of
two parts.

Keyword-node lists LKN . BLINKS pre-computes, for each keyword,
the shortest distances from every node to the keyword (or, more pre-
cisely, to any node containing this keyword) in the data graph. For a
keyword w, LKN (w) denotes the list of nodes that can reach keyword
w, and these nodes are ordered by their distances to w. In addition to
other information used for reconstructing the answer, each entry in the
list has two fields (dist, node), where dist is the shortest distance be-
tween node and a node containing w.

Node-keywordmap MNK . BLINKS pre-computes, for each node u,
the shortest graph distance from u to every keyword, and organize
this information in a hash table. Given a node u and a keyword w,
MNK(u,w) returns the shortest distance from u to w, or ∞ if u can-
not reach any node that contains w. In fact, the information in MNK can
be derived from LKN . The purpose of introducing MNK is to reduce
the linear time search over LKN for the shortest distance between u and
w to O(1) time search over MNK .
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The search algorithm can be regarded as index-assisted backward and for-
ward expansion. Given a keyword query Q = {k1, ⋅ ⋅ ⋅ , kn}, for backward ex-
pansion, BLINKS uses a cursor to traverse each keyword-node list LKN(ki).
By construction, the list gives the equi-distance expansion order in each cluster.
Across clusters, BLINKS picks a cursor to expand next in a round-robin man-
ner, which implements cost-balanced expansion among clusters. These two
together ensure optimal backward search. For forward expansion, BLINKS
uses the node-keyword map MNK in a direct fashion. Whenever BLINKS vis-
its a node, it looks up its distance to other keywords. Using this information, it
can immediately determine if the root of an answer is found.

The index LKN and MNK are defined over the entire graph. Each of them
contains as many as N ×K entries, where N is the number of nodes, and K
is the number of distinct keywords in the graph. In many applications, K is on
the same scale as the number of nodes, so the space complexity of the index
comes to O(N2), which is clearly infeasible for large graphs. To solve this
problem, BLINKS partitions the graph into multiple blocks, and the LKN and
MNK index for each block, as well as an additional index structure to assist
graph exploration across blocks.

4.5 The ObjectRank Algorithm

Instead of returning sub-graphs that contain all the keywords, Objec-
tRank [2] applies authority-based ranking to keyword search on labeled graphs,
and returns nodes having high authority with respect to all keywords. To cer-
tain extent, ObjectRank is similar to BLINKS [14], whose query semantics
prescribes that all top-K answer trees have different root nodes. Still, BLINKS
returns sub-graphs as answers.

Recall that the bidirectional search algorithm [21] assigns activation factors
to nodes in the graph to guide keyword search. Activation factors originate at
nodes containing the keywords and propagate to other nodes. For each key-
word node u, its activation factor is weighted by nodePrestige(u) (Eq. 8.6),
which reflects the importance or authority of node u. Kacholia et al. [21] did
not elaborate on how to derive nodePrestige(u). Furthermore, since graph
edges in [21] are all the same, to spread the activation factor from a node u, it
simply divides u’s activation factor by u’s fanout.

Similar to the activation factor, in ObjectRank [2], authority originates at
nodes containing the keywords and flows to other nodes. Furthermore, nodes
and edges in the graphs are labeled, giving graph connections semantics that
controls the amount or the rate of the authority flow between two nodes.

Specifically, ObjectRank assumes a labeled graphG is associated with some
predetermined schema information. The schema information decides the rate
of authority transfer from a node labeled uG, through an edge labeled eG, and
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to a node labeled vG. For example, authority transfers at a fixed rate from
a person to a paper through an edge labeled authoring, and at another fixed
rate from a paper to a person through an edge labeled authoring. The two
rates are potentially different, indicating that authority may flow at a different
rate backward and forward. The schema information, or the rate of authority
transfer, is determined by domain experts, or by a trial and error process.

To compute node authority with regard to every keyword, ObjectRank com-
putes the following:

Rates of authority transfer through graph edges. For every edge
e = (u → v), ObjectRank creates a forward authority transfer edge
ef = (u → v) and a backward authority transfer edge eb = (v → u).
Specifically, the authority transfer edges ef and eb are annotated with
rates �(ef ) and �(eb):

�(ef ) =
{ �(efG)

OutDeg(u,efG)
if OutDeg(u, efG) > 0

0 if OutDeg(u, efG) = 0
(8.7)

where �(efG) denotes the fixed authority transfer rate given by the

schema, and OutDeg(u, efG) denotes the number of outgoing nodes

from u, of type efG. The authority transfer rate �(eb) is defined simi-
larly.

Node authorities. ObjectRank can be regarded as an extension to
PageRank [4]. For each node v, ObjectRank assigns a global authority
ObjectRankG(v) that is independent of the keyword query. The global
ObjectRankG is calculated using the random surfer model, which is
similar to PageRank. In addition, for each keyword w and each node v,
ObjectRank integrates authority transfer rates in Eq 8.7 with PageRank
to calculate a keyword-specific ranking ObjectRankw(v):

ObjectRankw(v) = d×
∑

e=(u→v)or(v→u)

�(e) ×ObjectRankw(u)+

+
1− d
∣S(w)∣

(8.8)

where S(w) is s the set of nodes that contain the keyword w, and
d is the damping factor that determines the portion of ObjectRank
that a node transfers to its neighbours as opposed to keeping to it-
self [4]. The final ranking of a node v is the combination combination
of ObjectRankG(v) and ObjectRankw(v).
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5. Conclusions and Future Research

The work surveyed in this chapter include various approaches for keyword
search for XML data, relational databases, and schema-free graphs. Because
of the underlying graph structure, keyword search over graph data is much
more complex than keyword search over documents. The challenges have three
aspects, namely, how to define intuitive query semantics for keyword search
over graphs, how to design meaningful ranking strategies for answers, and how
to devise efficient algorithms that implement the semantics and the ranking
strategies.

There are many remaining challenges in the area of keyword search over
graphs. One area that is of particular importance is how to provide a semantic
search engine for graph data. The graph is the best representation we have for
complex information such as human knowledge, social and cultural dynamics,
etc. Currently, keyword-oriented search merely provides best-effort heuristics
to find relevant “needles” in this humongous “haystack”. Some recent work,
for example, NAGA [22], has looked into the possibility of creating a semantic
search engine. However, NAGA is not keyword-based, which introduces com-
plexity for posing a query. Another important challenge is that the size of the
graph is often significantly larger than memory. Many graph keyword search
algorithms [3, 21, 14] are memory-based, which means they cannot handle
graphs such as the English Wikipedia that has over 30 million edges. Some
reacent work, such as [7], organizes graphs into different levels of granularity,
and supports keyword search on disk-based graphs.
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