
536 O. JAKUBOV, P. KOVÁŘ, P. KAČMAŘÍK, F. VEJRAŽKA, WITCH NAVIGATOR - A LOW COST GNSS SOFTWARE RECEIVER . . .

The Witch Navigator - A Low Cost GNSS Software
Receiver for Advanced Processing Techniques

Ondřej JAKUBOV, Pavel KOVÁŘ, Petr KAČMAŘÍK, František VEJRAŽKA

Dept. of Radio Engineering, Czech Technical University in Prague, Faculty of Electrical Engineering,
Technická 2, 166 27 Prague 6, Czech republic

jakubon2@fel.cvut.cz, kovar@fel.cvut.cz

Abstract. The developement of advanced GNSS signal
processing algorithms such as multi-constellation, multi-
frequency and multi-antenna navigation requires an easily
reprogrammable software defined radio solution. Various re-
ceiver architectures for this purpose have been introduced.
RF front-end with FPGA universal correlators on Express-
Card connected directly to PC was selected and manufac-
tured. Such a unique hardware combination provides the
GNSS researchers and engineers with a great convenience
of writing the signal processing algorithms including track-
ing, acquisition and positioning in the Linux application pro-
gramming interface and enables them to reconfigure the RF
front-end easily by the PC program. With more of these Ex-
pressCards connected to the PC, the number of the RF chan-
nels, correlators or antennas can be increased to further
boost the computational power. This paper reveals the im-
plementation aspects of the receiver, named the Witch Navi-
gator, and gives the key test results.

Keywords
GNSS, Universal Correlator, GPS, Galileo,
GLONASS, Compass, SDR.

1. Introduction
Over the last decade the global navigation satellite

system (GNSS) market has grown rapidly and has mas-
sively penetrated into various application fields such as mil-
itary, civil aviation, car industry, geodesy, search and res-
cue, safety etc. The big demand on precise position, ve-
locity and time (PVT) estimation motivates governments
and companies all over the world to develope new sys-
tems (e.g. Galileo, Compass) or modernize the existing ones
(GPS, GLONASS).

Receivers estimating distances to more satellites natu-
rally yield improved PVT estimation, hence signal process-
ing of GNSS signals from various systems, named as multi-
constellation processing, is highly desired. This interoper-
ability requirements formed an international agreement on

L1 and L5 radio frequency bands and CDMA multiplex uni-
fication [4], which lowers the RF front-end costs and makes
possible the employment of universal processing techniques.

The processing of GNSS signals can be accomplished
by traditional receivers oriented on processing of particular
signals - not (or not simply) reconfigurable, pure software
defined radio receivers where the signal samples are directly
processed by a general purpose microprocessor, and offline
processing techniques.

The Witch Navigator (WitchNav) is a project with the
aim of developing a low cost, high performance GNSS soft-
ware receiver capable to process most of the present and fu-
ture GNSS signals. The main design requirements are:

• low cost and high performance processing of most
GNSS signals (multi-constellation),

• two frequencies in the first version (multi-frequency),
• separate antenna inputs (multi-antenna),
• free of charge development tools,
• available source code,
• operation examples and tutorials.

Our effort is devoted mainly to those studying or de-
veloping new GNSS processing algorithms which should be
fully programmed in C language under Linux operating sys-
tem (OS). Unlike current receiver architectures, the Witch
Navigator receiver would provide a common flexible way of
changing RF front-end parameters or acquisition, tracking
and PVT algorithms. Undoubtedly, the Witch Navigator re-
ceiver becomes a sophisticated software defined radio exam-
ple. Next, the device is intended to be employed in science
and special applications, therefore it should be portable and
of a reasonable size.

Despite the progress in satellite navigation, there are
still problems such as multipath propagation or indoor navi-
gation to be resolved. Many papers have been published on
these topics, however a reasonably conceptual solution has
not been found yet. Thus, a possibility of testing some of
these methods is a challenge for the Witch Navigator project,
as well.

Several GNSS software receiver architectures with si-
miliar goals to ours have been introduced [5], [6], [7] (see



RADIOENGINEERING, VOL. 19, NO. 4, DECEMBER 2010 537

Subsec. 2.2), but their potential is either limited or their price
is higher compared to the Witch Navigator receiver architec-
ture.

In the following text we overview the available archi-
tectures and describe an approach to the proposed architec-
ture with the final implementation. Our interoperability and
flexibility requirements led us to the design of so called uni-
versal correlator, introduced in [1] and briefly reviewed here.
Then, attention is turned to the implementation of a wide-
band data transfer between an FPGA with the universal cor-
relators and the selected signal processing platform – PC,
which became one of the major issues of our investigation.
A short discussion on the proposed PC program implemen-
tation is delivered as well as references to the available test
results of the receiver modules.

2. Overview of Available
GNSS Receiver Concepts

2.1 Traditional Concept
An example structure of a traditional receiver concept

is depicted in Fig. 1. The RF signal captured by the antenna
is amplified in a low noise amplifier (LNA). The antenna
with the LNA preselect the RF signal that is next mixed
into the intermediate frequency (IF) band or down converted
to the baseband. The signal is then filtered (FILTER) and
amplified (G) in order to remove all the unwanted spectral
components and to fit into the analog-to-digital converter’s
(ADC) dynamic range. The local oscillator signal (LO) can
be fed to both the down converter and the sampler. As soon
as enough data samples are available, the acquisition unit
can begin the estimation of coarse satellite pseudoranges and
Doppler frequency shifts in order to continue with precise
tracking for each satellite channel. The precise pseudorange,
Doppler shift, carrier phase, data symbol and SNR estimates
are fed to the PVT processor.

The DSP channels for tracking, computing the correla-
tion between the received signal and its generated replicas,
can be implemented either as an ASIC or in an FPGA. If
the acquisition is based on the serial search algorithm, the
correlations are usually computed in the DSP channels for
tracking. For parallel search algorithms, an extra acquisition
unit must be included. The navigation processor can be quite
simple, e.g. a single-chip microprocessor.

The advantage of the traditional concept is that the re-
ceiver can be implemented for a high bandwidth GNSS sig-
nal (51.15 MHz = reference bandwidth of the most compli-
cated GNSS signal - Galileo E5 [14]). On the other hand,
a rather complicated board design is necessary compared to
the architectures described further in this section, which do
not require any external FPGA or ASIC hardware for track-
ing and acquisition, but the PC. In case of the ASIC digital
signal processors for tracking and acquisition, the solution
misses a flexibility of any hardware change implementation.

The RF front-end is usually with the fixed frequency of the
conversion, the filter is not tunable and the correlators are
implemented for a group of definite codes which all limit the
receiver to particular GNSS signals.

LNA ×

PLL

FILTER G

LO

ADC

DOPPLER

REMOVAL

INTEGRATE

& DUMP

DLL&PLL

FILTERS

CARRIER

NCO

CODE

NCO

ACQUISITION

UNIT

PVT

PROCESSOR

I Q E L

DSP CHANNEL - one for each satellite

Fig. 1. Traditional GNSS receiver example structure.

2.2 Pure Software Defined Radio Concept
Another solution is to utilize the high clock frequency

of today’s personal computers and let one perform all signal
processing computations following the ADC. Such receivers
have been introduced in [5], [6], [7].

The NordNav R30 receiver [5] can process up to 4-bit
L1 signal samples with 16.3676 MHz sampling rate, trans-
ported to a PC via USB 2.0 bus. The real-time processing,
here on Windows – a non-real time OS, is accomplished by
storing a large amount of data (470 MB/min.) into the hard
disk and processing them all at once (max. 24 satellite chan-
nels).

The ipexSR receiver [6] is capable to process both L1,
L2 8-bit signal samples with 20 MHz sampling rate, which
is enough for almost all of the GNSS signals. The data are
transfered to the PC via PCI bus. The tracking and acqui-
sition software uses the instruction set of 3.2 GHz Intel P4
CPU and can process up to 12 satellite channels in real-time
mode.

A real-time GPS civilian L1/L2 software receiver intro-
duced in [7] processes 2-bit data stream on a 3.4 GHz Intel
Pentium 4 PC with a real-time Linux OS. PCI-DIO-32HS
card connected to the PC sends the data snapshots to the PC
using direct memory access (DMA). The system can process
up to 12 satellite channels.



538 O. JAKUBOV, P. KOVÁŘ, P. KAČMAŘÍK, F. VEJRAŽKA, WITCH NAVIGATOR - A LOW COST GNSS SOFTWARE RECEIVER . . .

These solutions appear to be quite robust; however, the
processing consumes a plenty of PC’s resources. The advan-
tage is its low price of the module and a possibility of the
algorithm reprogramming up to the bearable computational
load of the PC’s CPU(s).

2.3 Offline Processing
The offline processing is similar to that from the pre-

vious section, but the signal samples are processed after the
reception completion. A buffering method at the PC’s side
must be implemented for this purpose. Most of the pure soft-
ware defined radio receivers implement offline processing.

The Matlab environment may simplify the algorithms’
implementation. A universal program for processing of
some GNSS signals for various input conditions has been
developed [11]. However, for wideband signals and com-
plex algorithms, the computations become tedious.

3. Witch Navigator Concept
In this section, we pay attention to the concept of our

GNSS receiver structure. The structure should follow the
properties itemized in the introduction. We start our discus-
sion from the RF front-end and copying the signal path we
proceed up to the navigation processor. The implementation
of the key blocks is provided as well.

3.1 Universal RF Front End
All the available GNSS signals are transmitted within

the frequency range of 1÷ 2 GHz, not exceeding the band-
width of few tens of Megahertz (≤ 51.15 MHz). The power
of the incoming signals at the receiver antenna typically
ranges from -155 dBW to -165 dBW [15], [14].

To ensure the reception of any of these signals zero
IF DVB-S tuners MAX2120 can be employed. Each
tuner features I2C programmable frequency synthesizer
(925 ÷ 2175 MHz), baseband filter (4 ÷ 40 MHz) and two
variable gain amplifiers with dynamic range up to 75 dB for
automatic gain control (AGC) realization. We implemented
a pair of these tuners on a single board. This concept was in-
troduced in [2], [8]. In the Witch Navigator receiver, 20 MHz
highly stable quartz oscillator (TCXO) is used, which fre-
quency equals the sampling frequency of the ADC. An ac-
tive antenna must be connected to the RF channel input(s)
(CH1(2)). The gain of the active antenna is expected not
to be lower than 20 dB and the noise figure should be min-
imized (typically <2 dB). The block diagram is depicted in
Fig. 2.

3.2 Universal Correlators in FPGA
As discussed in Subsec. 2.2, the so far available signal

or universal processors have been able to perform multipli-
cation and accumulation (MAC) of the incoming signal sam-

MAX2120
Direct Conv.

RX

MAX1192
2×8 bits
ADC

TCXO
20 MHz

MAX2120
Direct Conv.

RX

MAX1192
2×8 bits
ADC

Spartan 6
xc6slx45T

Con�g.
Flash

Lin. Reg.
1.2V (core)

Lin. Reg.
1.2V (PCIe)

Lin. Reg.
2.5V (AUX)

CH1

CH2

AGC

AGC

I2C

I

Q

I

Q

clk

clk

PCIe
Lanes

Prog.
Con.

Fig. 2. The Witch Navigator receiver (v1.0) - block diagram.

ples with exponentially rotated code replicas in a sequen-
tial program in real time for several satellite channels and
for various GNSS signals, but with consuming a lot of re-
sources of expansive PCs. Hence, a fast parallel ASIC or
FPGA hardware preprocessing is needed. To meet the flex-
ibility requirement and minimize the design costs we resort
to the FPGA implementation.

Various GNSS signals have different modulations,
however, they share common properties such as direct-
sequence spread spectrum CDMA, code length and timing
conventions. Thus, universal correlator - a generalized hard-
ware structure accomplishing replica generation, complex
exponential rotation and MAC of the signal with early and
late replicas, was designed. If we implement as many of
these correlators as possible into the FPGA and enable the
user to interconnect a group of correlators with any radio
channel, the multi-constellation tracking problem can then
be adaptively resolved. We recall that the tuner frequency
can be reprogrammed online in order to select other fre-
quency band if desired.

3.3 Acquisition and Tracking on
Desktop PC or Notebook

The acquisition of wideband GNSS signals introduces
a high computational burden, since we search over long code
periods and several kilohertz frequency shifts due to the
Doppler effect. The serial algorithm is a brute force solu-
tion which takes a long time for the cold start of the receiver.
On the other hand, if coarse estimates of the receiver po-
sition and satellite ephemeris are available, the warm start
can be employed. The range of the Doppler shift is much
smaller and the elapsed time by the acquisition turns to be
much shorter.

To lower the time to first fix for the cold start, we
have no choice but to employ parallel algorithms. Fast so-



RADIOENGINEERING, VOL. 19, NO. 4, DECEMBER 2010 539

lutions for the DSP acquisition with an FFT processor inside
are available. The ASIC implementations are not flexible
enough for the accommodation of new GNSS signals. The
FPGA implementations consume quite a lot of resources.
Employing an extra DSP or embedded PC requires an ex-
tra board design and expansive development tools. Hence,
we resort to the acquisition on a desktop PC or a notebook,
which would have enough computational power and provide
a flexible way of reprogramming.

Before the Witch Navigator project started off, our
group had implemented few GNSS receivers where the sig-
nal samples were sent via a gigabit Ethernet bus to a PC
where the parallel acquisition took place. Coarse code phase
and frequency shift estimates were transferred to the FPGA
correlators as initial parameters to commence tracking. The
data transfer between the PC and the FPGA and mainly
the acquisition computation suffered from a variable latency.
The feed-back loops were closed in the FPGA in an IP core
processor (Microblaze, Power PC).

Due to the embedded processor in the FPGA, the max-
imum number of correlators is lower than with the proces-
sor outside the FPGA. The processor should be translated
without the float-point unit to further save up with resources.
Because of these two facts we started thinking of relocating
the tracking processor out of the FPGA. Ethernet capacity
does enable high-rate data transfers to the PC; tracking dis-
criminator and filter output computations become easy for
such a powerful processor. However, neither Ethernet inter-
face nor ordinary operating systems guarantee the reaction
of data transfer completion being sufficiently short (�1 ms
= most of the GNSS system integrate&dump step). This im-
plies that the closure of the feed backs over PC might not be
prompt enough to ensure the stability of the loops.

3.4 ExpressCard Concept and
Low Latency Linux OS
The standardization of PCI Express Bus (PCIe) - two

wire packet-oriented bus featuring transfer rates of 4 Gbit/s
has been released. Its comprehensive description is given
in [13]. PCIe bus allows large data DMA transfers and un-
like Ethernet does not suffer from high protocol layer laten-
cies. PCIe cards (ExpressCards) can be added to the bus via
connectors with no extra switch. Therefore, we decided to
locate the RF front-end (except the LNA and antenna) with
the FPGA to a single ExpressCard. To further increase the
number of correlators, benefit from another antenna or re-
ceive signals in other frequency bands, one can connect an-
other identical ExpressCard to the PC. The addition of cards
can continue up to the limits of either the bus or the PC.

A research had been conducted on the topic of proper
operating system. Although there exist quite a few open
source real-time operating systems with exactly defined low
latencies (RTLinux, RTAI, Neutrino, . . . ), potential Witch
Navigator’s clients - researchers, engineers and students de-

veloping new algorithms would not appreciate learning spe-
cific programming conventions which definitely come with
any real-time system. An example of a PC real-time OS im-
plementation is given in [12], [7]. In [7] the authors use
RTAI where the critical part is implemented in the real-time
application programming interface (API) and the kernel runs
as the lowest priority thread.

A smart solution has been found by a group of Linux
kernel developers led by Ingo Molnar. They developed
a real-time patch which makes the kernel “more” preemp-
tive [10]. Simply said, a real-time priority process can inter-
rupt system calls being in the kernel mode at time instances
sufficiently close to each other. Next, the real-time priority
process cannot be further interrupted by any lower priority
process and the scheduler always allocates resources for this
process until it stops to sleep.

The prompt communication between the FPGA and the
PC turns out to be feasible. The correlators can now be con-
trolled by a user space PC program written in C language
with the advantage of float-point unit, standard compilers,
debuggers etc.

3.5 Other Communication Interfaces
Most FPGA vendors do not provide their customers

with complete PCIe Interface IP (PCIeIIP). Hence, an ex-
tra IP had been written (in Verilog language). Similarily
from the other side, PCIe Linux driver had to be developed,
as well. To make the RF tuners online reconfigurable from
the PC program, an I2C controller was implemented in the
FPGA. The I2C data words created by the PC program are
wrapped into the PCIe packets and forwarded by the I2C
controller to the I2C bus. The FPGA processor is depicted
in Fig. 3. The universal correlators are denoted as UCorIP.
PLL 125 MHz is a standard Xilinx block for clock synthe-
sis. It generates 125 MHz clock signal for PCIe IP from
100 MHz ExpressCard clock.

UCorIP PCIeIIP PCIe

I2C

Controller
PLL125

20MHz

ADC

AGC

I2C

PCIe

Lanes

125MHz

100MHz

Fig. 3. Block diagram of FPGA processor.

4. Universal Correlator
The universal correlator was introduced in [1] with its

main intention not to prefer any GNSS system. It has been
successfully tested on E1b, E1c and E5 signals on an exper-
imental receiver using a signal generator [3].



540 O. JAKUBOV, P. KOVÁŘ, P. KAČMAŘÍK, F. VEJRAŽKA, WITCH NAVIGATOR - A LOW COST GNSS SOFTWARE RECEIVER . . .

4.1 Details of the Implementation
The universal correlator is a realization of the

Early/Late (E/L) correlator, such as a DSP channel in Fig. 1
without the filters, for processing of the BPSK signals. It’s
been equipped with a look up table for the code generation
of maximum 10 230 chips. The chip length can be optionally
shortened by the software.

The correlator is programmed in VHDL language and
is highly optimized to minimize the hardware resources.
The high performance and small hardware complexity was
reached by the utilization of simple blocks, pipelining tech-
nique and serial-parallel implementation. The correlator is
designed to process 8-bit baseband samples. The MAC op-
erations are executed by DSP48 slices without signal resolu-
tion limitation. Tab. 1 documents FPGA resources required
by the implementation of a single universal correlator. The
employed FPGA (Fig. 2) can accommodate 12 of these cor-
relators (including early/late, real/imaginary branches). FP-
GAs with larger capacity are planned to be implemented in
future versions of the Witch Navigator receiver.

Resources Quantity Note
Slice Registers 144 General registers

Slice LUTs 50 General logic
(Look Up Tab.)

RAM/FIFO 1.65 Look up table for ranging code
[18 kb block]

DSP48E 1.65 Correlation calculation, phase
accumulation in NCOs

Tab. 1. Xilinx Spartan 6 FPGA resources used for one universal
GNSS correlator.

4.2 Non-BPSK GNSS Modulation Processing
The binary offset carrier (BOC) modulated signals can

be processed as BPSK modulated signals with the chip rate
corresponding to the doubled subcarrier frequency. Espe-
cially for high subcarrier rate BOC modulations, a subopti-
mal algorithm based on processing each spectral side lobe
separately as a BSPK modulation (or QPSK for quadrature
components) and then applying a special joint control of
such correlates significantly lowers the sampling frequency
and consequently simplifies the hardware complexity. The
number of correlators is also reduced while the tracking per-
formance approximately attains the optimal correlator [9]
in example of Galileo E5 AltBOC(15,10). Its hardware re-
source allocation requirements in the FPGA and the tracking
performance is already available in [1].

The universal correlator can process most of the known
civil GNSS signals listed in Table 2. Reception of some sig-
nals like GPS L1 C/A, L5, GLONASS L1, L2 is fully sup-
ported; however, reception of the other signals like GPS L2
C/A, Galileo E1b and E1c is supported partially. The corre-
lator is for example capable to process the GPS L2 C/A data
signal. The pilot signal cannot be processed due to the very
long ranging code. The signals with an MBOC or TMBOC

System Signal Support. No. Note
of

Correl.
GPS L1 C/A Yes 1

L2 C/A Partially 1 Data channel only
L5 Yes 2

L1C Partially 2 BOC(1,1)
component only

GLONASS L1 Yes 1
L2 Yes 1

L1 K Not 1÷4 GLONASS K sat.
known sig. not specified

L5 K Not 2÷4 GLONASS K sat.
known sig. not specified

Galileo E1b Yes 1 BPSK method,
BOC(6,1) sig.

neglected, verified
E1c Yes 1 BPSK method

BOC(6,1) sig.
neglected, verified

E5 Yes 4 Two QPSK sub-
carriers

E5A Yes 2 Verified
E5B Yes 2 Verified

Tab. 2. Universal GNSS correlator supported signals.

modulation are processed as a BOC(1,1) signal only, the
BOC(6,1) component is neglected.

5. Data Transfer between
FPGA and PC
The data transfer relations are depicted in Fig. 4. The

data snapshots, correlator outputs, NCO actual states are
transmitted at every TIC event distanced by 800 µs from
one another. The total amount of one DMA data transfer is
32 536 B (= 40.67 MB/s). As soon as the DMA transfer fin-
ishes, MSI interrupt is handled in the Linux kernel. It is then
the responsibility of the PCIe Linux device driver to handle
the data and interface them with the user space process. The
user space process must be set as real time and is woken up
by the driver.

DMA

t

TIC event TIC event

MSI
interrupt

800µs

soft. handling

Fig. 4. FPGA and PC data transfer time relations.

This can be accomplished by a blocking read() func-
tion. If required by the acquisition (ACQ) process, snapshot
data, which are delivered in all DMA transfers, can be stored
into a shared memory between the processes, controlled by
a semaphore mechanism. It is now time to perform a track-
ing loop step and save the results to the shared memory for
the PVT process. When a new satellite becomes acquired,
its coarse initial parameters can now be subtracted from the
shared memory. The updates for the correlators, optionally
tuner reconfiguration or PRN code data words, are send via
PCIe bus using write() function. A standard memory write
PCIe mechanism is employed here for simplicity, as we do



RADIOENGINEERING, VOL. 19, NO. 4, DECEMBER 2010 541

FPGA_handler

Real-time
Process

PCI Express
Driver

Shared
Memories

controlled by
Semaphores

PC with preemptive Linux OS
with real-time patch

ExpressCard

DMA
Channel

Output
Channel

read()

(blocking)

Track
(DLL,
PLL)

write()

(non-
blocking)

ACQ
Snapshot

New Sat.
Info

Track and
Data Info

from
FPGA

to
FPGA

interrupt
when
ready
(every
0.8ms)

to
ACQ
process

to
ACQ
process

to
PVT
process

Fig. 5. PC real time process handling FPGA communication.

CPU(s) 2×Intel Core (TM) 2 T6320 @ 1.86 GHz
Memory 2 GiB
Kernel Linux 2.6.33.7-rt29

Distribution Fedora 12 (Constantine), GNOME 2.28.2
CPU load 4.7 %
Mem. load <0.1 %

Tab. 3. PC test conditions for FPGA and PC data transfer related
time histograms. The CPU and memory loads are for the
application and the driver altogether.

not transport as much data as in the previous case. The situ-
ation is depicted in Fig. 5.

The times between two closest MSI interrupts have
been measured and their histogram for 20 000 transfers is
shown in Fig. 6. In the same experiment, we measured the
elapsed times from the MSI interrupt beginning up to the
write end, the MSI interrupt beginning to the read end and
write beginning to the write end, which histograms are de-
picted in Fig. 6. The DMA bus transfer duration, the time
between TIC event and MSI interrupt shown in Fig. 4, was
measured to be approx. 100 µs.

6. Discussion
The available architectures, discussed in Subsec. 2.2,

offer a flexible method of processing various GNSS signals.
The high computational load caused by correlations evalu-
ated in the PC has been removed by employing the universal
correlators in FPGA, prompt PCIe bus and a PC with Linux
OS with real-time preemptive patch. The Witch Navigator
receiver architecture does not require a specific micropro-
cessor, unless the user decides to process signal snapshots
for complete tracking on the PC. It is now clear that our ar-

780 790 800 810 820 830
0

200

400

600
MSI int. to MSI int. histogram

t [µs]

[-
]

20 40 60 80 100
0

200

400

600

800
MSI int. to write end histogram

t [µs]

[-
]

10 20 30 40 50 60
0

200

400

600
MSI int. to read end histogram

t [µs]

[-
]

0 2 4 6 8 10 12 14
0

2000

4000

6000
Write start to write end histogram

t [µs]

[-
]

Fig. 6. FPGA and PC data transfer related time histograms with
PC test conditions in Tab. 3.

chitecture can implement both the traditional concept and
the pure software defined radio concept. The PCIe bus fur-
ther does not limit the data throughput, unlike USB 2.0.

Due to the employment of the universal RF front-end
cascade, FPGA programmed I2C controller and PC util-
ity program, we remark that 1÷2 GHz carrier frequency,
4÷40 MHz bandwidth and 0÷15 dB baseband gain of the
received signal can be online reconfigured by the PC pro-
gram for each RF channel. Next, the universal correlators
can process optimally most of the GNSS signals and some
of them sub-optimally (Table 2). The RF channels and uni-
versal correlators can be interconnected dynamically by the
PC program. The latency of the overall data transfer be-
tween the PC and FPGA was minimized down to maximum
of ≈ 200µs. The remaining 600µs is a sufficient time for



542 O. JAKUBOV, P. KOVÁŘ, P. KAČMAŘÍK, F. VEJRAŽKA, WITCH NAVIGATOR - A LOW COST GNSS SOFTWARE RECEIVER . . .

the computation of DLL and PLL updates. The acquisition,
tracking and PVT algorithms can be fully written in C lan-
guage on PC using standard Linux API.

Summarizing our discussions, we list the properties of
the Witch Navigator receiver in order to compare them with
those wanted in the introduction. The Witch Navigator re-
ceiver

• is a low cost and high performance product if a low
cost and powerful FPGA is used,

• is a multi-constellation and multi-frequency receiver
with any number of systems limited by the number of
correlators and two frequencies on one ExpressCard,

• is a multi-antenna receiver; two separate antennas can
be connected to one ExpressCard,

• is easy to reprogram, and therefore flexible to develope
new algorithms,

• is portable and of a small size when the ExpressCard(s)
is/are connected to a notebook (Fig. 7).

• By adding more ExpressCards, the number of correla-
tors and receiver’s frequencies can be increased to fur-
ther boost the performance.

Fig. 7. Witch Navigator ExpressCard.

7. Conclusion
A prototype of the Witch Navigator receiver has been

manufactured, universal correlators and RF front-end were
successfully tested on Galileo E5, E1b and E1c signals. The
communication between the FPGA and PC has been com-
pletely resolved and all the corresponding controllers and
drivers were developed and tested. Although the interrupt
latency on the PC has been measured to be sufficiently low,
long term tests depending on CPU and memory loads are
still to be done. Examples of tracking, acquisition, and PVT
algorithms are being written to serve as tutorials for users
new to the Witch Navigator. After that, we would like to
research our own or verify the existing algorithms that have
been tested only by a simulation.

So far one ExpressCard connected to a desktop PC has
been tested (all the hardware modules and the PCIe driver).
The functionality of the concept with more than one Express-
Cards is to be verified.

Acknowledgements
This publication was supported by the grant

MSM 6840770014 ”Research of the Prospective Informa-
tion Technologies” of the Ministry of Education of the Czech
Republic.

References

[1] KOVÁŘ, P., KAČMAŘÍK, P., VEJRAŽKA, F. Low complex inter-
operable GNSS signal processor and its performance. In Proceedings
of IEEE/ION PLANS 2010 Position Location and Navigation Sym-
posium [CD-ROM]. Palm Springs (CA, USA), 2010, p. 947 – 951.

[2] KOVÁŘ, P., KAČMAŘÍK, P., VEJRAŽKA, F. Universal front end
for software GNSS receiver. In Proceedings of 13th IAIN World
Congress [CD-ROM]. Bergen (Norway), 2009, p. 1 – 6.

[3] KOVÁŘ, P., VEJRAŽKA, F., SEIDL, L., KAČMAŘÍK, P. Exper-
imental software receiver of signals of satellite navigation systems.
In 11th IAIN World Congress on Smart Navigation, Systems and Ser-
vices. Berlin (Germany), 2003, p.391 – 394.

[4] HEIN, G. GNSS interoperability: Achieving a global system
of systems or “Does everything have to be the same?”. [On-
line]. Inside GNSS, 2006, vol. Jan/Feb, p. 57 – 60. Available at:
http://www.insidegnss.com/auto/0106 Working Papers IGM.pdf .

[5] NORMARK, P. L., STAHLBERG, C. Hybrid GPS/Galileo real time
software receiver. In Proceedings of ION GNSS 2005. Long Beach
(CA, USA), 2005, p. 1906 – 1913.

[6] PANY, T., FÖRSTER, F., EISSFELLER, B. Real-time processing
and multipath mitigation of high-bandwidth L1/L2 GPS signals with
a PC-based software receiver. In Proceedings of ION GNSS 2004.
Long Beach (CA, USA), 2004, p. 971 – 985.

[7] LEDVINA, B., PSIAKI, M., SHEINFELD, D., CERRUTI, A., POW-
ELL, S., KINTER, P. Real-time software receiver tracking of GPS L2
civilian signals using a hardware simulator. In Proceedings of ION
GNSS 2005. Long Beach (CA, USA), 2005, p. 1598 – 1610.

[8] ŠPAČEK, J., PURIČER, P. Front-end module for GNSS software
receiver. In Proceedings of ELMAR 2006. Zadar (Croatia), 2006,
p. 211 – 214.

[9] KOVÁŘ, P., KAČMAŘÍK, P., VEJRAŽKA, F. High performance
Galileo E5 correlator design. In Proceedings of 13th IAIN World
Congress. Bergen (Norway), 2009, p. 1 – 8.

[10] Config preempt RT Patch (web page). [Online]. Cited 2010-10-09.
Available at:
https://rt.wiki.kernel.org/index.php/CONFIG PREEMPT RT Patch

[11] BORRE, K., AKOS, D. M., BERTELSEN, N., RINDER, P.,
JENSEN, S. H. A Software-Defined GPS and Galileo Receiver.
1st ed. Boston: Birkhauser, 2007.

[12] KELLEY, C., CHENG, J., BARNES, J. Open source software
for learning about GPS. In Proceedings of 15th Int. Tech. Meet-
ing of the Satellite Division of the U.S. Inst. of Navigation
[Online]. Portland (USA), 2002, p. 2524 – 2533. Available at:
www.gmat.unsw.edu.au/snap/publications/opensourcegps.pdf

[13] MINDSHARE, INC., BUDRUK, R., ANDERSON, D., SHAN-
LEY, T. PCI Express System Architecture. 4th ed. Boston (USA):
Addison-Wesley, 2004.



RADIOENGINEERING, VOL. 19, NO. 4, DECEMBER 2010 543

[14] Galileo OS SIS ICD/D.0. Galileo Open Service - Signal in Space In-
terface Control Document (OS SIS ICD) [Online]. 1st issue. Cited
2010-10-02. Available at: http://ec.europa.eu/enterprise/policies/
space/files/galileo/galileo os sis icd revised 2 en.pdf .

[15] ICD-GPS-200D. Navstar GPS Space Segment/Navigation User In-
terfaces [Online]. Revision D. Cited 2010-02-11. Available at:
http://www.gps.gov/technical/icwg/IS-GPS-200D.pdf .

About Authors . . .

Ondřej JAKUBOV was born in Liberec, Czech Republic,
1986. He received his M.Sc. (Ing.) from the CTU in Prague
in 2010 and he is a postgraguate student at the same uni-
versity at the Department of Radioelectronics. His research
interests include GNSS signal processing algorithms and re-
ceiver architectures.

Pavel KOVÁŘ was born in Uherské Hradiště in 1970.
He received his M.Sc. (Ing.) and Ph.D. (Dr.) degrees from
the CTU in Prague in 1994 and 1998, respectively. Since
1997 to 2000 he worked in MESIT Instruments as a de-
signer of avionics instruments. Since 2000 he has been
with the Faculty of Electrical Engineering of the CTU in
Prague as an assistant professor and since 2007 as an asso-
ciate proffesor (Doc.). His interests are satellite navigation,
digital communication and signal processing.

Petr KAČMAŘÍK was born in 1978. He received
his M.Sc. (Ing.) degree from the CTU in Prague in 2002.
During his postgraduate studies (2002 - 2006) he was en-
gaged in the investigation of satellite navigation receiver

techniques in hard conditions and wrote his Ph.D. thesis
with its main topic on GNSS signal tracking using DLL/PLL
with applicability to week signal environment. He defended
the thesis in 2009. Since 2006 he works as an assistant pro-
fessor at the Faculty of Electrical Engineering of the CTU
in Prague. His main professional interests are satellite navi-
gation, digital signal processing, implementations and simu-
lations of signal processing algorithms.

František VEJRAŽKA was born in 1942. He received his
M.Sc. (Ing.) degree from the CTU in Prague in 1965. He
served as an assistant professor (1970) and associate profes-
sor (1981) at the Department of Radio Engineering. He is
a full professor of radio navigation, radio communications
and signals and systems theory since 1996. He was ap-
pointed the Head of the Department of Radio Engineering
(1994 – 2006), vice-dean of the Faculty (2000 – 2001) and
vice-rector of the CTU in Prague (2001 – 2010). His main
(professional) interest is in radio satellite navigation where
he participated on the design of the first Czech GPS receiver
(1990) for the MESIT Instruments. He was responsible for
the development of Galileo E5 receiver for Korean ETRI
during 2008 and E1 and E5a receiver in 2009. Prof. Vejrazka
has published 11 textbooks, more than 200 conference pa-
pers and many technical reports. He is the former president
of the Czech Institute of Navigation, Fellow of the Royal
Institute of Navigation in London, member of the Institute
of Navigation (USA), vice-president of IAIN, vice-chairman
of CGIC/IISC, member of IEEE, member of Editorial Board
of GPS World, Editorial Board of InsideGNSS, etc.


