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a b s t r a c t

In recent years, Locality sensitive hashing (LSH) has been popularly used as an effective

and efficient index structure of multimedia signals. LSH is originally proposed for

resolving the high-dimensional approximate similarity search problem. Until now,

many kinds of variations of LSH have been proposed for large-scale indexing. Much of

the interest is focused on improving the query accuracy for skewed data distribution

and reducing the storage space. However, when using LSH, a final filtering process

based on exact similarity measure is needed. When the dataset is large-scale, the

number of points to be filtered becomes large. As a result, the filtering speed becomes

the bottleneck of improving the query speed when the scale of data becomes larger and

larger. Furthermore, we observe a ‘‘Non-Uniform’’ phenomenon in the most popular

Euclidean LSH which can degrade the filtering speed dramatically. In this paper, a pivot-

based algorithm is proposed to improve the filtering speed by using triangle inequality

to prune the search process. Furthermore, a novel method to select an optimal pivot for

even larger improvement is provided. The experimental results on two open large-scale

datasets show that our method can significantly improve the query speed of

Euclidean LSH.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Nearest Neighbors (NNs) search takes an important
role in computer vision, machine learning, data mining,
and information retrieval. However, for high-dimensional
data, all known techniques to solve the similarity search
problem will fall prey to the curse of dimensionality [1].
In some cases, such as high-dimensional learning for
video annotation, the curse of dimensionality can be
solved by multimodality learning [2]. In most cases,
Approximate Nearest Neighbour (ANN) algorithms have
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been shown to be effective approaches to drastically
improve the search speed while maintaining good preci-
sion. Locality sensitive hashing [3–6] is one of the most
popular ANN algorithms. Until now, LSH has been suc-
cessfully used for image retrieval [7,8] and 3D object
indexing [9,10]. Euclidean LSH [4] is the most successful
variation of basic LSH because it uses popular Euclidean
distance as similarity metric. However, some distance
metrics beyond Euclidean distance metric must be used
in practical applications [11–14]. Therefore, some other
variations are proposed for different distance metrics.
Indyk and Thaper [15] have proposed the method of
embedding EMD metric into the L2 norm, then using the
original LSH scheme to find the nearest neighbor in the
Euclidean space. Gorisse et al. [1] present a new LSH
scheme adapted to w2 distance for approximate nearest
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neighbors search in high-dimensional spaces. Although
LSH can get perfect results in theory, there are some
drawbacks when using LSH in practical.

The main limitation of LSH is that its memory con-
sumption is too large. The reason is that many hash tables
are needed to keep both high recall and high precision. In
[3,6], a large number of hash tables are used. When the
scale of dataset is large, if the number of hash tables is
also large, the index structure cannot be loaded into main
memory to get the best performance. To reduce the
storage space of LSH, some variations [16–18] based on
multi-probe strategy have been brought forward. The first
multi-probe strategy is proposed by entropy based LSH
[16]. Through randomly generating neighbor points near
the query point, additional hash buckets will be probed
and all probe results are merged. As a result, more points
will be returned and the recall will be improved. By using
this method, less hash tables are needed. Multi-probe LSH
[17] is inspired by and improves upon entropy based LSH
and query adaptive method [19]. It proposes a more
efficient algorithm to generate an optimal probe sequence
of hash buckets that are likely to contain similar points to
the query. Unlike multi-probe LSH which is based on
likelihood criteria, posteriori multi-probe LSH [18] puts
forward a more reliable posteriori model by taking
account some prior knowledge about the query and the
searched points. This prior knowledge helps to do a better
quality control and accurately select the hash buckets to
be probed. The multi-probe algorithms proposed in
[16–18] can save much storage space for LSH while
keeping the comparable query precision and recall. In
recent years, some new hashing-based methods which
convert each database item into a compact binary code
are proposed to get faster query time with much less
storage. Spectral hashing [20] learns data-dependent
directions via principal component analysis to generate
short binary codes. Wang et al. [21] propose a data-
dependent projection learning method such that each
hash function is designed to correct the errors made by
the previous one sequentially. Motivated by Weiss et al.
[20], Liu et al. [22] propose a graph-based hashing method
which automatically discovers the neighborhood struc-
ture inherent in the data to learn appropriate compact
codes in an unsupervised manner. Semi-Supervised Hash-
ing (SSH) [23] is proposed to learn efficient hash codes
which can handlesemantic similarity/dissimilarity among
the data points. It is also much faster than existing
supervised hashing methods and can be easily scaled to
large datasets.

Another limitation of LSH is that the query accuracy
strongly depends on the selection of parameters. LSH
forest [24] is proposed to eliminate the different data-
dependent parameters for which LSH must be constantly
hand-tuned. LSH forest can guarantee LSH’s performance
for skewed data distributions while retaining the same
storage and query overhead. This characteristic makes
LSH forest suitable for large-scale dataset. Specially, LSH
forest can be constructed in main memory, on disk, in
parallel system, and in peer-to-peer systems.

LSH is efficient to index high-dimensional data. Its
variations discussed above can make it index large-scale
dataset. As a result, LSH has been a popular index
structure for large-scale and high-dimensional dataset.
However, whatever method is used, a final filtering
process based on exact similarity measure is inevitable.
When the scale of dataset becomes very large, the number
of points needed to be filtered becomes large too. In this
case, the cost of filtering is the main factor that influences
the query speed. Specially, the most popular Euclidean
LSH [4] uses the quantized projection of a data point on a
randomly selected direction as the hash value, which
makes the number of points in some buckets as signifi-
cantly larger than others. At the same time, a query will
also be mapped to these buckets with a high probability.
This kind of phenomenon, which we call ‘‘Non-Uniform’’,
makes the cost of filtering process significantly higher.
When the data scale becomes very large, the problem will
be even worse. In this work, we propose a pivot-based
algorithm which uses triangle inequality to accelerate the
filtering process of Euclidean LSH. The selection of pivot
point can significantly influence the acceleration effec-
tiveness. Some index structures [25–28] use some base
points, which are similar to our pivots, to accelerate the
search process. These base points are all selected ran-
domly. However, random selection cannot guarantee to
get the optimal result. In fact, there is no explicit criterion
put forward for base point selection until now.

This paper extends our previous work [29] and has the
following contributions: (1) provide a formal analysis of
‘‘Non-Uniform’’ problem of Euclidean LSH which can sig-
nificantly decrease filtering efficiency; (2) propose a pivot-
based algorithm using triangle inequality to accelerate the
filtering process of Euclidean LSH; (3) propose an effective
method to get an optimal pivot point which is superior to
other methods. The difference between this paper and our
previous work [29] lies in the following: (1) more complete
analysis of related works; (2) more rigorous and aborative
theoretical deduction; (3) analyse the factors that affect the
performance of the proposed algorithm; (4) do more experi-
ments on new dataset to validate the efficiency of the
proposed method; (5) verify the feasibility of accelerating
the proposed algorithm through sampling.

The rest of this paper is organised as follows. Section 2
introduces the background of our research. In Section 3,
we propose our pivot-based filtering algorithm and the
method to get an optimal pivot. Section 4 describes our
experiments and Section 5 concludes this paper.

2. Background

2.1. ‘‘Non-Uniform’’ phenomenon of Euclidean LSH

The basic idea of LSH is to hash similar points to same
bucket with higher probability than dissimilar points. Let
S be the domain of data points and D be the distance
measure. A function family H¼ fS-Ug is called
ðr1,r2,p1,p2Þ-sensitive for D if for any p,q 2 S:

if Dðp,qÞrr1 then PrðhðpÞ ¼ hðqÞÞZp1

if Dðp,qÞZr2 then PrðhðpÞ ¼ hðqÞÞrp2

where p14p2 and r1or2 to ensure the function family H

is useful. Hash function used in LSH is defined as:



X. Gu et al. / Signal Processing 93 (2013) 2244–22552246
G¼ fg : S-Uk
g

where gðpÞ ¼ ðh1ðpÞ,h2ðpÞ, . . . ,hkðpÞÞ and hi 2 H. The hash
value of each data point is a k-dimensional integer vector
and used to construct hash tables. LSH uses many hash
tables to guarantee query accuracy. Different LSH
schemes use different hash functions. The hash function
used in the most popular Euclidean LSH is

hðxÞ ¼
axþb

W

� �
ð1Þ

where W is a positive real number and b is chosen from
uniform distribution U½0,W �; a is a vector with the same
dimension number as x and each component is chosen
independently from standard Gaussian distribution. Since
Gaussian distribution is a 2-stable distribution [30], the
distribution of ax=W is N ð0,Jx=WJ2

2Þ. Thus the probability
of ax=W 2 ð�2Jx=WJ2,2Jx=WJ2Þ is almost 95.5%. More-
over, in order to map similar points to same bucket with
high probability, W is always comparable to JxJ2, which
means Jx=WJ2 is not very large. Therefore, a majority of
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figure, a little fraction of buckets contain a large part of data points, while mo
ax=W , even plus b/W (actually, the effect of plus b/W is
merely translation), is distributed in a small interval
(Fig. 1, left), thus after rounded to get hash value, the
hash value is also distributed in a small interval. When
using multi h(x) to construct hash table, the number of
points contained in each hash bucket will be very ‘‘Non-
Uniform’’. Fig. 2 is the histogram of the number of points
contained in each bucket of a LSH index built on
ANN_SIFT1M dataset [31]. As shown in Fig. 2, a little
fraction of buckets contain a large part of data points,
while most buckets contain a few data points.

This phenomenon also occurs when doing a query: the
hash value of query point is also distributed in a small
interval (Fig. 1, right) because the hash functions are same
for both the query points and the reference points. As a
result, a query will also be hashed to those buckets
already containing too many points with a high prob-
ability. This means that a large proportion of query points
will search their neighbor points in a little fraction of
buckets which contain a large number of data points.
When the scale of dataset is more and more large, there
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will be more and more data points in a little fraction of
buckets and the problem of ’’Non-Uniform’’ will be more
and more serious. Consequently, the final filtering process
based on exact similarity measure will be exhaustive for
most queries and dramatically degrade the query
efficiency.

The problem analysed above is intrinsic and inevitable
for Euclidean LSH. To make Euclidean LSH scale to large-
scale indexing, accelerating the final filtering process is
essential.

2.2. Using triangle inequality to prune the search

Similarity search problem in specific metric space, e.g.
Euclidean space, can be accelerated by using triangle
inequality [32]. Burkhard–Keller Tree (BKT) [33], probably
the first general solution of search problem in metric
space, is designed for discrete distance functions and
defined as follows. An arbitrary point p 2 U in dataset is
selected as root of the tree. For each distance i40, define
the set of all points at distance i to p as
Ui ¼ fu 2 U,dðu,pÞ ¼ ig. Then for each nonempty Ui, build
a subtree of p and recursively build BKT for Ui (labelled i).
This process is repeated recursively. Points selected as
roots of all subtrees are called pivots. When given a query
q and distance r, search process begins at the root and
enter into all subtree i such that dðp,qÞ�rr irdðp,qÞþr,
and proceed recursively. Since only a subset of U is
searched, the query process is accelerated. A further
development over BKT is fixed queries tree (FQT) [34],
its structure is similar with BKT while all pivots in the
nodes of same level are the same, and the actual data is
stored at leaves. The advantage of such construction is
that some comparisons between query and pivots are
saved along the backtracking in the tree. A variant of FQT
called ‘‘fixed-height FQT’’ (FHQT) is proposed in [35],
where all leaves are at the same depth. In [36], fixed
queries array (FQA) is presented. FQA can improve the
search efficiency by using many more pivots than the
original FHQT with the same memory.

The methods described above are designed for discrete
distance functions, which are rare in practical applica-
tions. Thus many indexes for continuous distance func-
tions are proposed. The ‘‘metric tree’’ presented in [37] is
a tree data structure designed for continuous distance
functions, and Yianilos and Chiueh [25,26] based on the
same idea call it ‘‘vantage-point tree’’ or VPTs. VPTs are a
kind of binary tree and built recursively as follows. An
arbitrary point p 2 U is selected as the root of the tree and
the median value of the set of all distances,
M¼medianfdðp,uÞ : u 2 Ug, is calculated. Those points u

such that dðp,uÞoM are stored in the left subtree, while
those such that dðp,uÞ4M are stored in the right subtree.
To solve a query q with distance r, first measure d¼ dðq,pÞ,
then if d�roM we enter into the left subtree, and if
dþr4M we enter into the right subtree. An extension of
VPTs is ‘‘multi-vantage-point tree’’ (MVPT) [27,28]. Dif-
ferent with VPTs, MVPT uses m�1 uniform percentiles
instead of just the median to build the index. In [38],
‘‘bisector trees’’ (BSTs) are proposed. BSTs are also a
binary tree and built recursively as follows. In each node,
two ‘‘centers’’ c1 and c2 are selected. Points closer to c1

than c2 are stored into the left subtree and those closer to
c2 are stored in the right subtree. For each of the two
centers, its ‘‘covering radius’’, which is the maximum
distance from the center to any other point in its subtree,
is stored. When doing query, we enter into the subtree if
dðq,ciÞ�r is not larger than the covering radius of ci.
Proposed in [37], the ‘‘generalized-hyperplane tree’’
(GHT) is identical to BSTs on construction while using
the hyperplane between c1 and c2 instead of the covering
radius as the pruning criterion. GHT is extended in [27] to
an m-ary tree, called GNAT (geometric near-neighbor
access tree), keeping the same essential idea while using
m centers in each node. In [39] the M-tree (MT) data
structure is presented. It has dynamic capabilities and
good I/O performance. The structure of MT has some
resemblances to GNAT: at each node, a set of representa-
tives are chosen and the points that are closer to one
representative are stored in the subtree rooted by that
representative. When query, in each node, is compared to
all representatives of the node and the search algorithm
uses covering radius as criterion to pruning the search
process.

All the methods described above, whether designed for
discrete distance functions or continuous distance func-
tions, use triangle inequality to prune the query process.
As the similarity measure in Euclidean LSH is Euclidean
distance, we can also use triangle inequality to accelerate
the filtering process. The triangle inequality in Euclidean
space is

8p,q,r 2 En,9dðq,rÞ�dðp,rÞ9rdðq,pÞ ð2Þ

Thus for each bucket, we can choose a point r (r can be a
data point in this bucket or not) as pivot and precompute
the distance between each data point p and r. For a query
q, we compute dðq,rÞ at the beginning, and when deter-
mining whether a data point p is similar with q, we first
compute d0 ¼ 9dðq,rÞ�dðp,rÞ9: if d0 exceeds predefined
similarity threshold, then it is not necessary to compute
the exact distance dðp,qÞ. With different pivot r, the
speedup can be very different [32]. As introduced above,
in [25–28], some base points, which are similar to our
pivots, have been used to construct index structure to
accelerate search process. However, these base points are
all selected randomly. Our experiments in Section 4.1
show that random selection is not very effective.

3. Pivot-based filtering algorithm

In this section, we present a method to get an optimal
pivot and propose our pivot-based algorithm.

3.1. Data-based pivot point

As we use triangle inequality to prune the exhaustive
exact distance computation, the bigger the d0 ¼ 9dðq,rÞ�
dðp,rÞ9 is, the higher the probability of d0 exceeding the
similarity threshold would be. Thus a proper criterion for
pivot selection in d0 should be as large as possible. To
make d0 large, pivot r should be close to the line through p
and q and far away from p and q (if r is not in the line
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through p and q). We give a simple proof as follows:

dðr,p1Þ�dðr,p2Þ ¼ d sin g=sin a�d sin b=sin a ð3Þ

¼ 2d cos
gþb

2
sin

g�b
2

� ��
sin a

¼ 2d sin
a
2

cos
a
2
þb

� �.
sin a

¼ d cos
a
2
þb

� �.
cos

a
2

¼ d cos b�tan
a
2

sin b
� �

ð4Þ

As shown in the left of Fig. 3, r is the pivot point, p1 and p2

are two arbitrary points. r, p1 and p2 make a triangle. a, b
and c are three internal angles of the triangle. d is the
distance of p1 and p2. Without loss of generality, we
assume dðr,p1Þ4dðr,p2Þ, thus we have g4b and
g¼ p�a�b. From Eq. (4), it is easy to see that the smaller
the a and b, the larger the dðr,p1Þ�dðr,p2Þ, thus r is closer
to the line through p1 and p2 and farther away from p1

and p2.
Let X � Rd be the dataset in a bucket and query q is

extracted from the distribution of X, the quality of a pivot
r can be measured by the Mean of Differences (MDs)
between the distance of each data point p to r and the
distance of query q to r:

MDðrÞ ¼ Eð9dðq,rÞ�dðp,rÞ9Þ ð5Þ

MDðrÞ ¼
ZZ

q,p2X
pðq,pÞ9dðq,rÞ�dðp,rÞ9 dq dp ð6Þ

where q, p 2 X and pðq,pÞ is the probability distribution
function of ðq,pÞ. Thus a pivot r can be obtained by solving
the following optimization problem:

r ¼ arg max
r2Rd

MDðrÞ ¼ arg max
r2Rd

Eð9dðx1,rÞ�dðx2,rÞ9Þ ð7Þ

where x1, x2 2 X.
The middle of Fig. 3 illustrates how to choose a good

pivot (red points): based on Eq. (4) and considering the
data distribution, if pivot r is chosen in line with direction
u1, in which direction the data points distribute in a larger
interval, MDðrÞ is larger than the one computed in the
direction u2 or u3. We take the direction of the line
through pivot r and mean of X (denoted by x) as pivot
direction, with direction vector x, thus pivot r can be set
to

r ¼ xþLnx ð8Þ

where L is the distance between x and r.
It can be seen from Eq. (8), to get r is to get x and L.

We can shift pivot r to the origin. This operation does not
change the value of Eq. (7). Let Xn

¼ fxn ¼ x�r : x 2 Xg be
Fig. 3. Illustrations for the derivation of optimal pivot selection. (For interpreta

to the web version of this article.)
the shifted dataset and the optimization problem (7) can
be rewritten as:

ðx,LÞ ¼ arg max
ðx2Rd ,L2RÞ

Eð9Jxn

1J2�Jxn

2J29Þ ð9Þ

where xn

1, xn

2 2 Xn.
Since these data points are in the same bucket, the

distribution scale in some direction is relatively small
(otherwise the hash values of these data points are not
same). If r is far from these data points (which means L is
large enough), as shown in the right of Fig. 3, we would
have y1,y2-0, then we can make an approximation of
Jxn

1J2�Jxn

2J2:

9Jxn

1J2�Jxn

2J9¼
P1 cos y2�P2cos y1

cos y1cos y2

				
				

�
P1�P2

cos y1n cos y2
�oðP1�P2Þ

				
				 �!y1 ,y2-0

9P1�P29 ð10Þ

where P1, P2 are the projections of xn

1, xn

2 on x.
Eq. (10) means that Jxn

1J2�Jxn

2J2 is proportional to the
difference between their projections on x when pivot r is
far away. Thus, to maximize MDðrÞ (which is
Eð9Jxn

1J2�Jxn

2J29Þ in Eq. (9)) is to maximize Eð9xn

1 �x�xn

2 �

x9Þ when pivot r is far away. After being shifted to the
origin, the absolute position of r is no longer needed to be
considered. Moreover, since we set pivot r far away from
all data points to get an approximation (Eq. (10)), L in Eq.
(8) is no longer needed to consider either. Thus the pivot
direction x is the only factor now. The optimization
problem (9) can be rewritten as:

x¼ arg max
x2Rd

Eð9xn

1 �x�xn

2 �x9Þ ð11Þ

where xn

1, xn

2 2 Xn. From Cauchy–Schwarz inequality we
have

Eð9xn

1 �x�xn

2 �x9ÞrðEð9xn

1 �x�xn

2 �x92
ÞÞ

1=2
ð12Þ

Eq. (12) gives an upper bound of MDðrÞ. Maximizing
the upper bound would guarantee a high probability to
maximize the related MDðrÞ. Let Y ¼ fy¼ x �x : x 2 Xg be
the projection set of the original dataset X to x and
Yn
¼ fyn ¼ xn �x : xn 2 Xn

g be the projection set of the
shifted dataset Xn to x. It is easy to prove

Eð9xn

1 �x�xn

2 �x92
Þ ¼ Eð9yn

1�yn

29
2
Þ ¼ 2 VarðYn

Þ ð13Þ

where yn

1, yn

2 2 Yn and VarðYn
Þ is the variance of Yn. Since

the original dataset are shifted by subtracting r, the
change of all original projections is the same, thus

VarðYn
Þ ¼VarðYÞ ¼Varðx �xÞ ð14Þ

where x 2 X.
tion of the references to color in this figure caption, the reader is referred
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From the above derivation, we can conclude that, to
get an optimal pivot r is to get the pivot direction x and L

in Eq. (8). When L is large enough, L no longer needs to be
considered. Furthermore, pivot direction x can be
obtained by maximizing Varðx �xÞ (x 2 X). From principal
component analysis [40], we know that when data points
are projected to the eigenvector of covariance matrix with
the largest eigenvalue, the variance of the distribution of
projections would be largest. Thus x can be obtained by
solving the following equation:

Sx¼ lx ð15Þ

where S is the covariance matrix of X. The direction vector of
eigenvector of S with the largest eigenvalue is selected as x.
So far, according to Eq. (8), we can get an optimal pivot r.

3.2. Pivot-based filtering algorithm

After constructing LSH index, for each bucket, Upda-
teIndex is invoked to get m pivots ri (reasons for using
multi pivots is discussed in Section 3.3) and compute the
distance between each pivot ri and each data point in this
bucket. Algorithm UpdateIndex is illustrated in Algorithm
1. When a query q is given, QueryFiltering is invoked to get
result. It is illustrated in Algorithm 2. For range query, the
initial similarity threshold T and the inner similarity thresh-
olds t are set to the similar radius. For (Approximate)
Nearest Neighbor query (ANN) and (Approximate) k-Near-
est Neighbor query (k NN), the initial threshold T is set to1
and the inner similarity threshold t is variable during the
query process: for ANN query, t is updated to the distance
between q and the nearest neighbor encountered so far,
and for k NN query t is updated to the distance between q
and the k-th nearest neighbor encountered so far.

Algorithm 1. UpdateIndex

Input: a data bucket (with dataset X of size N) and pivot number m.

Output: an updated data bucket.

Initialization: set covariance matrix S¼0, x ¼ 0;

for i’1 to N do

S¼ Sþxix
T
i ;

x ¼ xþxi;

end
x ¼ x=N;

S¼ S=N�xxT ;

solve Sx¼ lx, get m eigenvectors with the first m largest

eigenvalue;

for i’1 to m do
set pivot ri ¼ xþLioi;

save pivot ri to index;

end

for i’1 to N do

for j’1 to m do

calculate dðxi ,rjÞ and save it to index;

end
end

Algorithm 2. QueryFiltering
Input: query q, predefined similarity threshold T.

Output: query result List

Initialization: set inner similarity threshold t¼T and result List
empty;

calculate the hash value of q and enter into the corresponding

bucket, the bucket size is N and the pivots in it is ri , i 2 ½1,m�;
for i’1 to m do

calculate dðq,riÞ;

end

for i’1 to N do

if there is no j 2 ½1,m� such that 9dðq,rjÞ�dðxi ,rjÞ94t then

calculate dðq,xiÞ;

if dðq,xiÞot then

update List with xi;

update inner threshold t;

end
end

end
In Section 4, we conduct a series of experiments to test
our algorithm, and the experimental results validate the
effectiveness of our algorithm.

3.3. Algorithm analysis

As shown in our experiments in Section 4, our algo-
rithm can accelerate the online query process of Euclidean
LSH. However, there are still some issues needed to be
discussed. In this section we analyse the factors that may
affect the performance of our algorithm.

For online queries, since we make an assumption for
obtaining an optimal pivot r in Section 3.1: r is far away
from all data points in a bucket. The distance between
pivot r and the mean vector of the dataset, which is L in
Eq. (8), is a key factor. In Section 4.2, our experiment
shows that the larger the L is, the better the speedup
would be. However, when L exceeds a certain threshold,
the speedup will be almost unchanged. This is reasonable
and the reason is briefly discussed in Section 4.2.

Some metric space indexes [27,39] use more than one
pivot to further prune the query process. We also use
multipivots in our algorithm to get better speedup. Our
experiments in Section 4.3 show it is feasible to use
multipivots.

Another important factor is the memory occupation of
our modified LSH index. Since the distance to pivot is
saved, our modified LSH index needs more memory. For a
standard LSH index, with N d-dimensional data points, k-
dimensional hash value and L hash tables, the space
complexity is at least OðNdþNkLÞ. If we use one pivot,
the space complexity is OðNdþNkLþNLþnLÞ (n is the
average number of buckets in each hash table, so we have
n5N), so the space complexity of our modified LSH index
is OðNdþNðkþ1þn=NÞLÞ �OðNdþNðkþ1ÞLÞ, which is
similar with a LSH index with kþ1 dimensional hash
value.

The purpose of our algorithm is to accelerate the query
process of Euclidean LSH. In theory, increasing the dimen-
sion of hash value will decrease the average number of
data points in each bucket, thus the query process may be
speeded up. It seems that increasing the dimension of
hash value is a simple way to accelerate the query process
while using the same memory as our algorithm. However,
as the dimension of hash value increases, the probability
of similar points hashed to the same bucket decreases,
thus the quality of query degenerates. Moreover, for range
query, the number of buckets needed to probe increases.
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The time complexity of our algorithm for pivot selec-
tion is OðNd2

Þ. When the algorithm is applied to large-
scale and high-dimensional dataset, it is time-consuming.
Even though this process is offline, we also want to
accelerate it. From our derivation in Section 3.1, we can
see that the data distribution in each bucket is a key factor
for pivot selection. If we can sample a subset of repre-
sentative data points, we may get a good enough estima-
tion of pivot direction, thus accelerate the process of pivot
selection. In Section 4.4, our experiments verify this idea.
4. Experiment

To evaluate the performance of the proposed method,
we conduct experiments on two benchmark datasets:
ANN_SIFT1M (1 million points) [31] and NUS-WIDE
(270k points) [41]. ANN_SIFT1M dataset contains 1 mil-
lion local SIFT descriptors extracted from random images.
It also provides a query set which contains 10,000 data
points. We directly use this query set as our query set. As
the original SIFT points are not normalized and the norm
of each data point is too large (almost 500), we normalize
these data points by dividing each dimension by the
largest norm in the dataset. NUS-WIDE dataset contains
269,684 images from Flickr. Six types of low-level fea-
tures are extracted from these images. We use 144-D
color correlogram to do our experiments. A test dataset
which contains 107,859 feature points is also provided.
We randomly select 10,000 feature points from the test
set as our query set. For this dataset, we normalize all
feature points by dividing each dimension by their
l2 norm.

Since each hash table in Euclidean LSH is independent,
the effectiveness can be observed just by one hash table,
thus in each experiment, we use one hash table and set
the dimension of hash value k¼5. The quantization step
Fig. 4. Speedup for range query on ANN_SIFT1M dataset using our data-base

horizontal ordinate is number of buckets probed and the vertical ordinate is p

effective for range query and outperforms the random selection method.
width W is set to 0.95. In the query process, the number of
buckets probed is set to 20.

To evaluate the effectiveness of our method, for each
query q, we record the number of points skipped (the
actual distance of these points to q is not calculated)
during the query process. The final speedup is averaged
among 10,000 queries. The acceleration of the proposed
method for rang query, (approximate) nearest neighbor
(ANN) query and k-nearest neighbor query (k NN) are
evaluated respectively. To prove the advantage of our
optimal pivot selection method which is our primary
contribution, we compare it with the random selection
method which is used in [25–28]. In addition, we demon-
strate the influence of parameter selection through
experiments. At last, we verify the effectiveness of sam-
pling method to reduce the off-line computing cost. All
the experiments are done on a server with a 64-bit
2.4 GHz Quadcore CPU and 24 GB RAM.

4.1. Experimental results

For a range query, we vary the similar radius and
evaluate the speedup respectively. As shown in Figs. 4 and
5, with the proposed method, the filtering process is
significantly accelerated, e.g. 220% for radius¼0.3 and
140% for radius¼0.6 on ANN_SIFT1M dataset. On NUS-
WIDE dataset, the proposed method gets more obvious
acceleration, which is 320% for radius¼0.2 and 160% for
radius¼0.5. We can observe that, as the similar radius
increases, the speedup decreases. This is reasonable,
because for a query q and a data point p, 9dðq,rÞ�dðp,rÞ9
has a maximum dðq,pÞ, and when similar radius increases,
the probability of 9dðq,rÞ�dðp,rÞ9 larger than similar
radius decreases, thus the speedup decreases. When the
similar radius is larger than dðq,pÞ, no matter where pivot
r is, 9dðq,rÞ�dðp,rÞ9 is always smaller than the similar
radius and the computation of dðq,pÞ is inevitable. We also
d pivot and randomly selected pivot under different similar radii. The

ercentage of speedup. As shown in this figure, the proposed method is



Fig. 5. Speedup for range query on NUS-WIDE dataset using our data-based pivot and randomly selected pivot under different similar radii. The

horizontal ordinate is number of buckets probed and the vertical ordinate is percentage of speedup. As shown in this figure, the proposed method is

effective for range query and outperforms the random selection method.

Fig. 6. Speedup for ANN and k NN query on ANN_SIFT1M dataset using our data-based pivot and randomly selected pivot. The horizontal ordinate is the

number of buckets probed and the vertical ordinate is percentage of speedup. By using our method, the speedup is almost 230% for ANN query and 200%

for k NN query. However, the speedup of random selection method is obviously lower than the proposed method, which is 120% for ANN and 110% for

KNN at most.
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compare our data-based pivot with randomly selected
pivot. As shown in Figs. 4 and 5, our data-based pivot
outperforms randomly selected pivot. In fact, randomly
selected pivot is not very effective.

Figs. 6 and 7 show the experimental results for ANN
and k NN query on both datasets. For k NN query, we set
k¼100. The speedup of the proposed pivot point is almost
230% for ANN and 200% for k NN on ANN_SIFT1M dataset
in Fig. 6, while the speedup of randomly selected pivot
point is less than 120% for ANN and 110% for k NN. The
speedup of the proposed method can reach 260% for ANN
and 210% for KNN on NUS-WIDE dataset in Fig. 7.
Although the speedup of randomly selected pivot point
can reach 150% for ANN and 130% for KNN, it is signifi-
cantly lower than the proposed method.

From the experimental results in this section, we can
conclude that by using our algorithm, the query process of
Euclidean LSH can be accelerated significantly. In addi-
tion, our method is used in reranking stage. Even if the
index can be optimized by a careful implementation or
parameter tuning to get a better query efficiency, by using
our method, the query efficiency can be further improved.
That is to say, our method can accelerate Euclidean LSH in
any case.
4.2. Speedup with different L

In this section, we conduct three experiments to
demonstrate the relationship between the speedup of
our algorithm and L in Eq. (8). We increase L gradually
and calculate the speedup. As shown in Figs. 8 and 9, the
larger the L is, the better the speedup would be. However,
when L is greater than 4.0 in our experiments, the
speedup of our algorithm is almost unchanged. This is
because there is a maximum of Eq. (3). When L is large
enough, which means pivot r is far away enough, the
difference of distances between pivot r and any two data
points is almost unchanged, thus the speedup is almost
unchanged.



Fig. 7. Speedup for ANN and k NN query on NUS-WIDE dataset using our data-based pivot and randomly selected pivot. The horizontal ordinate is

number of buckets probed and the vertical ordinate is percentage of speedup. By using our method, the speedup can reach 260% for ANN query and 210%

for k NN query. However, the speedup of random selection method is significantly lower than the proposed method, which is 150% for ANN query and

130% for KNN query at most.
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Fig. 8. Speedup obtained for ANN and k NN query under different L. The top is the speedup for ANN query and the bottom is for k NN query. As shown,

the large the L is, the better the speedup would be. When L exceeds a certain threshold (4.0), the speedup is almost unchanged, and this is reasonable.
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4.3. Speedup with multipivots

In our previous experiments, we have noticed that
when a data bucket contains many data points, the
second largest eigenvalue, sometimes even the third
largest eigenvalue, is almost larger than 50% of the largest
eigenvalue. This observation means that the distribution
of data projection on the eigenvector with second largest,
or even third largest, eigenvalue is also large. According to
our derivation in Section 3.1, choosing a pivot in these
directions may also bring considerable speedup. In the
following experiment, we use two pivots and three pivots
for range query respectively. As shown in Fig. 10, by using
multipivots, the speedup of the query process is even
higher. With two pivots, the speedup is almost 300% for
range radius¼0.3. With three pivots, the speedup is
almost 400%.

4.4. Sampling method

The eigenvector of the covariance matrix of all data
points in each bucket is necessary for our algorithm.
When the data dimension is high and the number of
points is large, the calculation of eigenvector is time-
consuming. Even this process is offline, it is valuable to
accelerate the process. In Eq. (8), a pivot in each bucket
consists of two parts: mean vector of the data points in
this bucket (x) and pivot direction vector (x), which is the
eigenvector of covariance matrix of all data points in this
bucket. The calculation of x is fast while the calculation of



0 2 4 6 8 10 12 14 16 18 20
190

200

210

220

230

240
range radius = 0.3

bucket number

sp
ee

du
p

0 2 4 6 8 10 12 14 16 18 20
140

145

150

155

160
range radius = 0.5

bucket number

sp
ee

du
p

L = 1.0 L = 1.5 L = 2.0 L = 3.0 L = 4.0 L = 8.0

Fig. 9. Speedup obtained for range query under different L. Similar radius is 0.3 in the top and 0.5 in the bottom. We can also see that, the large the L is,

the better the speedup would be. When L is larger than 4.0, the speedup is almost unchanged.

0 5 10 15 20
100

200

300

400

500
radius=0.3

1 pivot 2 pivots 3 pivots

0 5 10 15 20
100

150

200

250
radius=0.4

0 5 10 15 20
140

160

180

200
radius=0.5

0 5 10 15 20
130

140

150

160

170

radius=0.6

Fig. 10. Speedup obtained for range query under different number of pivots and different similar radii. As shown in this figure, with more pivots, the

speedup is higher, and this is confirmed under different similar radii.

X. Gu et al. / Signal Processing 93 (2013) 2244–2255 2253
eigenvector x is time-consuming. From our derivation in
Section 3.1, we can see that there is a strong correlation
between the data distribution and the eigenvector x. A
reasonable idea is that if we could sample a subset of
representatives from all data points, we may get a good
enough estimation of data distribution and get a good
enough estimation of eigenvector x. Thus the process of
pivot selection is accelerated.

We conduct an experiment to test our idea. The
sample set used by us is the learning set of ANN_SIFT1M
dataset [31]. First we build a LSH index with the sample
set and calculate the pivot direction xsmp in each bucket,
then we insert the reference dataset into this pre-built
LSH index, and calculate the pivot direction xall after
insertion. We calculate the angle between xall and xsmp

(denoted by yðxall,xsmpÞÞ, the smaller the yðxall,xsmpÞ is,
the better the pivot direction estimated from sample set
would be. There are some buckets which the sample set
may not be hashed to, thus we also record the number of
buckets that the sample set is hashed to. In our derivation
in Section 3.1, we set pivot in the line with direction of
eigenvector and far away from the data points. Because of
symmetry, the eigenvector has two directions which are
opposite to each other, thus both xsmp and �xsmp can be



Table 1

Distribution of yðxall ,xsmpÞ in each bucket.

Range of yðxsmp ,xallÞ Percentage of buckets (%)

[01,51) 13.22

[51,101) 17.31

[101,151) 12.73

[151,201) 11.35

[201,251) 9.14

[231,301) 4.24

[301,501) 9.96

[501,701) 9.22

[701,901) 12.82
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used as an estimation of xall when L is large enough. It
means if yðxall,xsmpÞ is larger than 901, we can use
yðxall,�xsmpÞ (o901) to present the angle between xall

and xsmp in our calculation of distribution of yðxall,xsmpÞ.
For example, if yðxall,xsmpÞ ¼ 1751, then we can consider
the angle between xall and xsmp as 51 in the calculation of
distribution yðxall,xsmpÞ because the effectiveness of
xsmp and �xsmp is same.

Table 1 shows the distribution of yðxall,xsmpÞ. As
shown, in almost 54.6% buckets, yðxall,xsmpÞ is smaller
than 201 which means the estimation of pivot direction is
good enough in a sufficient number of buckets. Moreover,
the fraction of the buckets that the sample set is hashed to
is almost 56.3% in average (the dimension of hash value k

is 5 in our experiment). From these observations, we can
conclude that, if a good enough sample set is provided,
accelerating our algorithm with sampling method is
feasible.

5. Conclusion

LSH is efficient to index high-dimensional data and its
variations can make it index large-scale dataset, thus it
has been a popular index structure for large-scale and
high-dimensional dataset. However, a final filtering pro-
cess based on exact similarity measure is inevitable in
query process. In this paper, we analyse the phenomenon
we call ‘‘Non-Uniform’’ that dramatically degrades the
query performance of the most popular Euclidean LSH.
‘‘Non-Uniform’’ will make a large proportion of queries
hashed to a little fraction of buckets that contain too
many data points with high probability. It causes an
exhaustive computation in the filtering process. There-
fore, the query performance significantly degrades, espe-
cially when the dataset is large-scale. We propose a pivot-
based algorithm to accelerate the filtering process and a
method to get an optimal pivot. In addition, we analyse
some factors that may affect the performance of our
algorithm and propose a sampling method to make our
algorithm more feasible. The experiments show that by
using our algorithm, with little memory enlargement, the
filtering process can be significantly accelerated. In addi-
tion, our method is used in reranking stage. Even if the
index can be optimized by a careful implementation or
parameter tuning to get a better query efficiency, by using
our method, the query efficiency can be further improved.
That is to say, our method can accelerate Euclidean LSH in
any case. Although our algorithm is designed for Eucli-
dean LSH, it can be easily transplanted into other index
structures.
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